
Rapidly Verifiable XMSS Signatures
Joppe W. Bos1, Andreas Hülsing2, Joost Renes1 and

Christine van Vredendaal1

1 NXP Semiconductors
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, NL
authors-rapidxmss@huelsing.net

Abstract. This work presents new speed records for XMSS (RFC 8391) signature
verification on embedded devices. For this we make use of a probabilistic method
recently proposed by Perin, Zambonin, Martins, Custódio, and Martina (PZMCM)
at ISCC 2018, that changes the XMSS signing algorithm to search for fast verifiable
signatures. We improve the method, ensuring that the added signing cost for the
search is independent of the message length. We provide a statistical analysis of the
resulting verification speed and support it by experiments. We present a record setting
RFC compliant implementation of XMSS verification on the ARM Cortex-M4. At a
signing time of about one minute on a general purpose CPU, we create signatures
that are verified about 1.44 times faster than traditionally generated signatures.
Adding further implementation optimizations to the verification algorithm we reduce
verification time by over a factor two from 13.85 million to 6.56 million cycles.
In contrast to previous works, we provide a detailed security analysis of the resulting
signature scheme under classical and quantum attacks that justifies our selection of
parameters. On the way, we fill a gap in the security analysis of XMSS as described
in RFC 8391 proving that the modified message hashing in the RFC does indeed
mitigate multi-target attacks. This was not shown before and might be of independent
interest.
Keywords: Post-quantum cryptography, XMSS, RFC 8391, embedded devices, signa-
ture generation / verification trade-off, exact security, optimized implementation.

1 Introduction
Digital signatures are the necessary means to establish message authentication in settings
where establishing a shared key is not a viable option. In particular, a digital signature
can be verified by an arbitrary number of people. This makes them the predominant
choice for securing software distribution and updates, as well as applications like secure
boot and certification of public keys. With the rise of the Internet of Things (IoT), digital
signatures also have to be available on resource-constrained devices. In order to make
digital signatures accessible to such small devices, it is important to minimize the resources
required and optimize their speed. While the speed of all involved routines is relevant, in
many applications verification speed is more crucial than signing time. As many signatures
are generated once but are verified thousands of times, verification is potentially done
much more often than signing. This generally holds for updating and secure boot as
sketched above, and is especially relevant for IoT applications. For example, in the wireless
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car-to-car and car-to-infrastructure setting described in [25, §1], cars sometimes have to
verify up to 1000 signatures per second to authenticate incoming messages.

Moreover, in the context of IoT applications, signatures are for example used to sign
software in Over-the-Air (OTA) update mechanisms, and to verify the authenticity of
firmware during secure boot. In these applications there is an imbalance between signer
and verifier. Signatures are generated (once) in a secure environment by an entity with
access to large-scale computing capabilities. Signatures are verified by many (OTA) or
frequently (secure boot) on embedded devices which are resource constrained in memory,
storage and computing power. In these cases the efficiency of verification is even more
significant to the overall performance than that of signature generation.

Many embedded devices that are designed now will be in the field for the next three
or more decades, for example when used in the automotive industry. In this setting,
securing them with traditional signature schemes like RSA or (EC)DSA becomes a gamble
– betting that there will be no large-scale quantum computer available in 30 years. The
only post-quantum alternative that is (about to be) approved by relevant standardization
bodies like the US National Institute of Standards and Technology (NIST) [10] or the
German Bundesamt für die Sicherheit in der Informationstechnologie (BSI) [14] are the
stateful hash-based signatures XMSS [19] and LMS [26] for which each a Request For
Comments (RFC) exists. The idea of hash-based signatures dates back to a proposal
by Ralph Merkle [27] from the late 70s. The security of this approach relies on the
cryptographic strength of the hash function and the pseudo-random function family used:
cryptographic primitives which are well-studied, understood, and not known to be broken
by quantum computers.

In this work we answer the question “How can we maximize the verification speed of
XMSS on embedded devices?” While we answer this question for XMSS, our results also
apply to LMS.

Hash-based signatures. XMSS and LMS are at the end of a long line of research (see
e.g., [27, 12, 8, 7, 11, 5, 6, 18, 17, 20, 16, 30, 22]) due to regained interest in this approach
caused by the quantum computing threat to cryptography. Both XMSS and LMS are
stateful signature schemes. Contrary to common signature schemes like RSA or EC(DSA),
they require the storage of a secret-key state, i.e. the signing key changes after every
signature. If one such secret-key state is used twice, the scheme becomes insecure. This is
due to the use of so-called one-time signature schemes (OTS) which must not be used to
sign two distinct messages, as they can otherwise be broken [4]. This is a heavy burden, but
the benefits are much higher speeds and far smaller signatures compared to the recently
proposed stateless schemes SPHINCS [2] and SPHINCS+ [3]. Indeed, it was shown that
the signature size of SPHINCS is a limiting factor for the use on embedded devices [21].

The generic construction of stateful hash-based signature schemes (or Merkle signature
schemes) groups 2h OTS key pairs into one signature key pair. This is done by authenti-
cating the one-time public keys using a binary hash tree, called a Merkle tree, of height
h. The root node is the new public key. Each leaf of the tree is an OTS key pair. To
avoid reuse of OTS signing keys, the OTS keys are used successively, starting with the left
most leaf. Hence, the changing part of the secret-key at least contains an index that stores
which OTS key was used last. A Merkle signature contains the index of the used OTS key
pair in the tree, an OTS signature of the message, and the so called authentication path.
The latter provides the sibling nodes of the nodes on the path from the used OTS public
key to the root node (see Figure 1.1). OTS signature verification does not return a boolean
but a candidate OTS public key. This candidate public key can be used together with
the nodes in the authentication path and the index to compute a candidate root node. If
this root node equals the one in the Merkle public key, the signature is valid. This generic
construction is the same for all stateful hash-based signature schemes including LMS and
XMSS. The main difference between XMSS, LMS, and further schemes like GMSS [7] is



Bos, Hülsing, Renes, van Vredendaal 3

pk

Figure 1.1: The authentication path to authenticate the fifth leaf is shown in gray.

how hash functions are used to compute nodes in the tree or within the OTS. In this work
we focus on XMSS, but we expect the results to translate to other schemes, especially
LMS, with little to no changes since the results are independent of how nodes in the OTS
or the tree are computed.

While some of the previous proposals for hash-based signatures differed in the OTS
they use, all modern proposals settled for a form of the Winternitz OTS (WOTS) [27].
For example, XMSS in RFC 8391 uses a scheme commonly referred to as WOTS+ (which
we follow, although it actually is WOTS-T [22]). We describe WOTS+ in Section 2.
The PZMCM technique. We are not the first set out to answer the question of how
to maximize the verification speed of XMSS signatures. Our work largely builds on a
technique by Perin, Zambonin, Martins, Custódio, and Martina (PZMCM) [28]. Instead
of speeding-up the verification algorithm, PZMCM proposed to exploit the fact that while
WOTS signing and verification times differ from message (digest) to message (digest),
their sum is constant. More precisely, the number of hash function calls for generating
a signature and afterwards verifying it always sum to the same value. To exploit this,
they suggest to add a counter to the input of the message hash. Then they try T different
counter values and pick the one that leads to the fastest to verify signatureamong the
T candidates. This trade-off allows to compute signatures that require significantly less
hash computations for signature verification than traditionally generated signatures, at
the price of increased signing time.

The PZMCM technique perfectly fits our needs. However, we identify several short-
comings in the implementation and analysis of the technique.

1. The time required to search for the signature depends on the length of the message to
be signed. Especially for (large) software packages this can pose a problem.

2. PZMCM only analyze the security of the modified signature scheme under the as-
sumption that the message hash is collision resistant, while XMSS explicitly avoids
this assumption, aiming for collision-resilience as this allows to use shorter message
digests. When choosing parameters according to the security analysis by PZMCM and
preserving security, not only verfication speed but also signing and key generation speed
would actually get worse and signature size would increase compared to regular XMSS.

3. PZMCM do not provide a detailed analysis of the expected improvement in verification
time for a given T . Their analysis is limited to experimental validation for small values
of T and does not allow to estimate the impact of choosing larger values of T .

4. While motivated by use cases in automotive, PZMCM does not provide an experimental
evaluation of the impact of their method on actual embedded devices. Hence, the
impact of their improvement might be significantly smaller. For example, verification
time could be dominated by storage access times.

Contributions. We present a collection of modifications that, for example, achieve a
factor two improvement of verification speed on an ARM Cortex-M4 at the cost of about
one minute additional signing time on a general purpose CPU. At the same time, all our
changes provably preserve security and RFC compliance. We achieve this by filling in the
above gaps.
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1. We modify the PZMCM technique for signature generation to make the added time
independent of the message length. For this we exploit the iterative nature of most
cryptographic hash functions. By precomputing and storing the internal state of the
hash function after absorbing the message, the message only has to be processed once,
instead of T times. For a 100KB message and T = 225, this reduces the signing time
from over 3 hours to 14 seconds on a general purpose CPU.

2. We give a detailed security analysis of the impact that the PZMCM technique has
on the security of XMSS. We formally prove that as long as the used hash function
behaves like a random function, security does not significantly degrade. More precisely,
the XMSS parameters listed in the RFC still achieve the same level of security with
PZMCM. As an intermediate step we complete the security proof of XMSS as described
in the RFC. We give a tight bound for the complexity of generic attacks against the
message hashing construction used in the RFC showing that the modification indeed
prevents multi-target attacks.

3. We present a statistical analysis of the speed-up provided by the PZMCM technique.
For this purpose we analyze the statistical distribution of the base-w encoding of a
random message digest and determine its expectation. This allows to predict the
expected speed-up also for larger values of T and thereby avoids the need for costly
experiments when choosing the best trade-off for a given use-case. Our analysis makes
some idealizing assumptions. We therefore support it with an experimental validation
of relevant parameter sizes.

4. We provide an implementation of XMSS verification on the ARM Cortex-M4 and present
new speed records for XMSS signature verification. On the one hand, the speed-up is
caused by the use of the PZMCM technique for signature generation. On the other
hand, we implement a further well known optimization that reuses an intermediate
state of the hash computation shared among all the hash computations in WOTS+.

Related work. Since the introduction of XMSS in 2011 [6], there have been a number
of works which also studied implementations of XMSS variants on embedded platforms.
In [18] a variant titled XMSS+ is presented together with an implementation for 16-bit
smart cards. The authors of [21] look into implementation aspects of the stateless hash-
based signature scheme SPHINCS on an embedded microprocessor. In order to provide
a meaningful comparison, they present implementation results of XMSSMT (a multi-tree
version [20] of XMSS that could be used to sign a virtually unlimited number of messages)
on an ARM Cortex-M3. These variants of XMSS differ from XMSS as described in RFC
8391 as they do not implement the multi-target mitigation technique from [22] because they
predate it. An implementation study of XMSSMT for the Java Card platform is provided
in [31]. The work gives a good motivation why Java Card might not be the preferable choice
when implementing hash-based signatures and aiming for good performance. Finally, a
recent concurrent work [9] presents the first XMSS implementation on the ARM Cortex-M4
platform. However, the aim of [9] differs from our work as it targets a comparison of XMSS
and LMS on embedded devices. In this context the authors also analyze the impact of
applying changes to the hashing constructions, recently proposed in [3] in the context of
SPHINCS+. For the work at hand, we decided that all changes that are not RFC-compliant
are out of scope as they will hinder fast adoption.

Organization. The remainder of this paper is organized as follows. Tweakable hash func-
tions and WOTS+ are introduced in Section 2. In Section 3 we introduce the modification
to XMSS signature generation that enables the signature generation / verification trade-off
of [28] as well as our optimization. Our security analysis of the resulting signature scheme
under classical and quantum attacks is given in Section 4. We provide the statistical
analysis of the algorithm in Section 5, for which experimental support is given in Section 6.
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Lastly, in Section 7, we present the record setting RFC compliant implementation of XMSS
verification on the ARM Cortex-M.

2 WOTS+ and tweakable hash functions
Before introducting WOTS+, we briefly recall the notion of tweakable hash functions.

2.1 Tweakable hash functions
XMSS matured since its original publication and the scheme described in RFC 8391
actually is a variant introduced as XMSS-T in [22] with a slightly changed message hash.
Hash-based signatures describe a graph structure in which nodes are computed using hash
functions. The main difference between different XMSS variants, and between XMSS and
schemes like LMS [26] or GMSS [7], is how hash functions are used to compute nodes while
the structure is essentially identical. To unify the description of schemes, [3] introduced
the abstraction of tweakable hash functions which we use in our description. For a security
parameter n, a tweakable hash function Thk : {0, 1}n × {0, 1}256 × {0, 1}kn → {0, 1}n
takes as additional input besides a kn-bit message, an n-bit public parameter, and a tweak.
For XMSS the tweak is a 256 bit string representing an address which uniquely identifies
the node in the graph structure of XMSS. The public parameter is a random value that is
part of the public key. These additional inputs are used for domain separation of different
hash function calls to mitigate multi-target attacks [22]. For consistency with previous
works, we follow [3] and use F in place of Th1. We always assume that the additional
inputs are used when not explicitly stated. For further details and constructions see [3].

2.2 WOTS+

XMSS uses WOTS+ [17] as OTS which we describe now in the context of XMSS. We
roughly follow the description from [3].
Parameters. The security parameter n determines the message digest length m and
influences the size of private key, public key and signature. The Winternitz parameter
w can be used to control a trade-off between speed and signature size. A greater value
of w implies a smaller signature, but slower speeds. Typically w is chosen as a power
of 2 within {4, 16, 256}, as this allows for easy transformation of bit strings into base-w
encoded strings. We further define

`1 = dm/log2(w)e, `2 = blog2 (`1(w−1))/log2(w)c+ 1 and ` = `1 + `2.

An uncompressed WOTS+ private key, public key, and signature consist of ` blocks of n
bits each.
WOTS+ key pair. The secret key of a WOTS+ key pair is derived from a secret seed
SK.seed that is part of the XMSS private key, combined with the address of the WOTS+

key pair within the XMSS structure, using a pseudo-random function PRF. For each n-bit
private key node, the corresponding public key node is derived by applying a tweakable
hash function F iteratively (w − 1) times. The ouput of the last iteration is then set to be
the public key node. This defines ` hash chains of length w each. The ` public key nodes
are compressed into a single n bit node using a non-complete binary tree called L-tree.
We refer to this single node as WOTS+ public key.
WOTS+ checksum, signature generation and verification. Anm-bit message digest
of a message M , HM can be re-written to its base-w representation. The result is a length
`1 vector of integers hi ∈ [0, w − 1]. Each of these integers defines a chain length in the
message (hash) chains. The checksum of HM is defined as CM =

∑`1
i=1(w − 1 − hi),
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which can be represented as a length `2 vector of base-w values CM = (c1, . . . , c`2), with
ci ∈ [0, w − 1]. We call these hash chains the checksum (hash) chains. This checksum is
necessary to prevent message forgery: an increase in at least one hi leads to a decrease
in at least one ci and vice-versa. Using these ` integers as chain lengths, the function
F is applied to the private key elements. This leads to ` n-bit values that make up the
signature. For a received message and signature, the verifier can recompute the checksum,
derive the chain lengths, apply F iteratively to complete each chain to its full length w,
and compute a candidate WOTS+ public key. This can then be compared to the n-bit
public key.

3 Algorithm for rapidly verifiable signatures
We now describe how to apply the techniques of PZMCM and storage of the internal state
of the applied hash function to achieve rapidly veriable signatures. The resulting speed-up
will be given in Section 7.

3.1 PZMCM Winternitz tuning
The cost of verification of a WOTS+ signature is largely determined by the value of the
`1 integers h1 . . . , h`1 , as the number of hash computations necessary to complete the `1
message chains of a signature is

∑`1
i=1 w − 1 − hi. Therefore signature verification cost

decreases as the hi increase. The number of hashes required for verifying the remaining `2
checksum chains may increase as the hi grow. However, there are about a factor 10 less
checksum chains than message chains for common parameters.

Using a good hash function to hash the message, these values behave like uniformly
distributed. In [28], PZMCM propose a trade-off technique to get signatures with greater
hi values to lower signature verification time. The idea is to search for a counter ctr ∈ [0, T ]
such that the cumulative chain length corresponding to Hctr

M ← Hmsg(ctr,M) is maximized
and consequently the signature verification time is reduced. This allows one to trade the
additional effort of computing T iterations of Hmsg, as opposed to a single one during
signature generation, for more efficient verification. While below we focus on analyzing
powers of two, i.e., T = 2t, this is not necessary. For example PZMCM give results for
T ∈ {25, 200, 3500} (see [28, Table 2]), showing an improvement for T = 3500 of up to 25%,
33% and 42% for w = 16, w = 256 and w = 216, respectively. As a side-effect, the bias
towards larger hi results in a bias of the hash value Hctr

M . Such behavior could potentially
be exploited by an adversary. We analyze the impact on security in Section 4.

3.2 Tuning XMSS signatures
We now present how we incorporate this approach in XMSS. For the presentation we focus
on the usage of the SHA-256 hash function since this is the only required hash function
for usage in XMSS [19]. To be consistent with the RFC, we also use n for message digest
length in bytes in this section. The results carry over to using any other hash function. In
practice this means one has to iterate the line

byte[n] M’← Hmsg(r || getRoot(SK) || (toByte(idxsig, n)), M) (1)

of the signing algorithm in the RFC by appending a counter (see [19, Algorithm 12]). The
counter can be included in different places of the algorithm, or even at different places of
the above line. We choose to append a 64-bit counter ctr to the message:

byte[n] M’ ← Hmsg(r || getRoot(SK) || (toByte(idxsig, n)), (M || ctr)).
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Algorithm 1: XMSS∗sign - Generate an XMSS signature and update the XMSS
private key using the iterative approach: return the best counter found.
Input: Message M , XMSS private key SK
Output: Updated SK, XMSS signature Sig, counter ctr

1 idxsig ← getIdx(SK)
2 setIdx(SK, idxsig + 1)
3 ADRS ← toByte(0, 32)
4 byte[n] r ← PRF(getSKPRF(SK), toByte(idxsig, 32))
5 best_length ← −1
6 num_blocks ← 2 + bdlog2(M)/8e/64c
7 in ← (r || getRoot(SK) || (toByte(idxsig, n)) || M)
8 sha256_inc_blocks(intermediate_state, in, num_blocks)
9 for i← 0, 1, . . . 2t − 1 do

10 temp_state← intermediate_state
11 in ← last_block(M || i)
12 sha256_inc_finalize(h, intermediate_state, in, 1)
13 intermediate_state← temp_state
14 new_length ← wots_getlengths(h)
15 if new_length > best_length then
16 best_length ← new_length
17 ctr ← i
18 M’ ← h

19 Sig ← idxsig || r || treeSig(M’, SK, idxsig, ADRS)
20 return (SK || Sig || ctr)

This has multiple advantages over inserting this at different locations in the digest compu-
tation. Firstly, this change is fully compatible with the RFC [19] and hence also compliant
with the upcoming NIST special publication [10]. (However, it is not transparent to a
verifier as the counter has to be removed from the message after verification.)

Secondly, appending the counter to the end of the input has an important benefit to
performance, as it allows one to compute and store the internal state of the hash function
after processing all but the last block of the input and only recompute the final block for
the 2t counter values. The size of the input in the original hash function call Hmsg(r ||
getRoot(SK) || (toByte(idxsig, n)), M)is 4 ·n+Mlen bytes where Mlen = dlog2(M)/8e and
n is the length in bytes of the message digest (e.g., n = 32 bytes for SHA-256). When
adding the eight byte counter the input size increases to 4 ·n+Mlen +8 bytes. The internal
blocksize for SHA-256 is 64 bytes: hence, the first 2 + b(Mlen + 8)/64c blocks can be
precomputed and only the final block with (part of) the message and the counter need to be
recomputed. This approach is outlined in Algorithm 1, where line (1) of [19, Algorithm 12]
is replaced by the lines in blue. Especially for larger messages, this improvement becomes
very significant. See Table 7.1 for experimental results. Note that the original XMSS
signing algorithm can be recovered by setting t = 0 and discarding the ctr (which will
always be 0) appended in line 20 of Algorithm 1.

The adapted algorithm makes use of a number of external functions. Two calls are
made to the standard SHA256 API functions

• sha256_inc_blocks(s, in, b): processes b 512-bit blocks from the input “in”, using
and updating the context state s,

• sha256_inc_finalize(s, in, b): works similar to sha256_inc_blocks, but also finalizes
the hash computation.

Moreover, wots_getlengths(h) computes the sum of the lengths of the hash-chains from
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the hash-digest h and last_block(in) extracts the most significant (Mlen + 8) mod 512 bits
of the input “in”.

Finally we remark that on top of the iteration technique applied here, [28] also
introduced a padding technique to reduce the verifier hashes even further. The idea here
was to pad the unused bits in the checksum chains to ones (instead of the default zeroes),
which resulted in a reduction of roughly w verifier hashes. For example, for w = 216 this
would mean a reduction of 10%. However we want our algorithm to be RFC compliant,
which checksum padding is not. Therefore we do not incorporate this in the implementation
of Section 7.

4 Security
The authors of [28] already give a rough analysis of their proposal under the assumption
that the used cryptographic hash function is collision resistant. In this section, we give
a new precise analysis of the security of their proposal and analyze the cost of classical
and quantum attacks against the scheme. This new analysis shows that at the same level
of security one may use cryptographic hash functions with about half the output length
compared to the analysis in [28]. This translates to about a factor two speed-up and size
improvement: for the same Winternitz parameter w the number of hash chains per key
pair drops by about a factor two (only the checksum part shrinks by less).

In contrast to other schemes like RSA-PSS or ECDSA one can prove security of XMSS
and its variants (incl. XMSS-T [22] and RFC 8391) with fixed length messages and without
initial message hash. Hence, security of message hashing and fixed-length signature scheme
can be analyzed independently for XMSS and its variants. We show that in all cases we
obtain the bound on the security of the variable input-length scheme as the sum of the
bounds for message hashing and fixed-length scheme. We then analyze the security of
the different message hashing constructions for XMSS-type signatures. For this, we first
formulate the security assumption on the hash function as a standard model property.
Then we analyze the complexity of generic attacks, providing a bound for black box attacks
against random functions.

We start rephrasing the security proof of XMSS-T in this way. Then, building on this
proof, we analyze the security of XMSS with hashing as described in Algorithm 1 above.
As the latter builds on message hashing as in the RFC 8391 we obtain a (tight) security
bound for that as a special case. This message hashing differs from that of XMSS-T [22]
and was never formally analyzed. We prove that this modified message hashing indeed
provides (almost) optimal security.
Index-bound EUF-CMA. Hash-based signature schemes like XMSS-T are so called
key-evolving signature schemes as introduced by Bellare and Miner in [1] and formalized e.g.
in [6] with the additional property that a secret key update occurs after every signature:
we call these simple KES (SKES). The number of updated keys that can be created for
one SKES public key is an additional parameter p for key generation (e.g., for XMSS we
have p = 2h, where h is the height of the XMSS tree). After p updates, the key becomes
⊥. Given ⊥ as key, the signature algorithm fails. For a formal definition see Appendix A.
What is relevant in the context of this work is that in a SKES a signature σ is accompanied
by an index i and we require an extended security definition where a signature is only
valid under the index with which it was produced. We define index-bound existential
unforgeability under adaptive chosen message attacks (iEUF-CMA) using experiment
ExpiEUF-CMA

SKES (A) below for an adversary A that makes qs queries to its signing oracle Sign.
While hidden for readability, the signing oracle Sign is assumed to replace the secret key
with the updated secret key after every signature. The difference to the conventional
EUF-CMA game is that there are two kinds of valid forgeries: Either a forgery is for a fresh
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message, never sent to Sign, (the conventional EUF-CMA case) or it is for a previously
queried message but for an index different from the one used in the signature query.

Experiment ExpiEUF-CMA
SKES (A)

1 : (sk, pk)← gen(1n, p)

2 : (M?, i?, σ?)← ASign(sk,·)(pk)
3 : let {(Mi, (i, σi))}qs

1 be the query-answer pairs of Sign(sk, ·)
4 : return 1 iff vrfy(pk,M?, (i?, σ?)) = 1 and (M?, (i?, ·)) 6∈ {(Mi, (i, σi))}qs

1 .

We denote the success probability of an adversary A against iEUF-CMA security of a
key-evolving signature scheme KES that makes qs signature queries as

SucciEUF-CMA
SKES (A, qs) = Pr

[
ExpiEUF-CMA

SKES (A) = 1
]
.

4.1 Hashing with M-eTCR-Hash
XMSS-T as proposed in [22] makes use of a multi-target extended-target-collision resistant
(M-eTCR) hash function to compress the message. Given a hash function H : {0, 1}k ×
{0, 1}x → {0, 1}m and a fixed input-length SKES S with message space {0, 1}m we build
a variable input-length SKES S ′ = TeTCR[SKES,H] as follows:

S ′.gen(1n, p)

S.gen(1n, p)

S ′.sign(ski,M)

R←R {0, 1}k

(ski+1, (i, σ))← S.sign(ski,H(R,M))
return (ski+1, (i, R, σ))

S ′.vrfy(pk,M, (i, R, σ))

S.vrfy(pk,H(R,M), (i, σ))

Below we relate the security of S’ to the security of S and the M-eTCR security of H. The
success probability of an adversary A against M-eTCR security makes use of a challenge
oracle Box(·) which on input of the j-th message Mj outputs a uniformly random function
key Rj :

SuccM-eTCR
H (A, p) = Pr [ (M ′, R′, i)← ABox(·)(1n) :

M ′ 6= Mi ∧H(Ri,Mi) = H(R′,M ′) ∧ 0 < i ≤ p] .

Now consider the following two algorithms that use a forger A against the iEUF-CMA
security of S’ as a black box to break the iEUF-CMA security of S and the M-eTCR
security of H, respectively.
Forger FA: Given a public key pk for S and access to the corresponding S-signing oracle
Sign run A on input pk. Implement the S’-signing oracle Sign′ for A using Sign: Sample
random R and return Sign(H(R,M)). When A outputs a S’-forgery (M, (i, R, σ)), output
(H(R,M), (i, σ)).
M-eTCR-adversaryMA: Given access to a challenge oracle Box generate a S-keypair
(pk, sk0)← S.gen(1n, p). Run A on input pk. Simulate A’s signing oracle using Box: Given
the j-th query Mj run Rj ← Box(Mj), compute (j, σ)← S.sign(skj ,H(Rj ,Mj)). When A
outputs a forgery (M, (i, R, σ)) output (R,M, i).

Note that the runtime of FA and MA are the same time as that of ExpiEUF-CMA
S′ (A)

assuming that their challengers run in the same time as honest challengers. Moreover,
both make as many queries to their oracles as A makes to its oracle.
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Theorem 1 (M-eTCR + SKES). For any adversary A against the iEUF-CMA security
of S’ we can instantiate the above algorithms FA andMA such that

SucciEUF-CMA
S′ (A, qs) ≤ SucciEUF-CMA

S
(
FA, qs

)
+ SuccM-eTCR

H
(
MA, qs

)
Proof. The event that A succeeds can be split into two mutually exclusive events:

E1: A succeeds (ExpiEUF-CMA
S′ (A) = 1) with some forgery (M, (i, R, σ)) and H(R,M) =

H(Ri,Mi) where Mi is the message of the i-th signature query and Ri is the
randomness used to hash that message.

E2: A succeeds (ExpiEUF-CMA
S′ (A) = 1) with some forgery (M, (i, R, σ)) and H(R,M) 6=

H(Ri,Mi).

Now, whenever E1 occurs, MA succeeds as A generated a collision for one of MA’s
challenges. Consequently, we obtain

Pr[E1] ≤ SuccM-eTCR
H

(
MA, qs

)
.

Whenever E2 occurs, FA succeeds as A’s forgery against S’ also leads to a valid forgery
against S. So we have that

Pr[E2] ≤ SucciEUF-CMA
S

(
FA, qs

)
.

A union bound gives the theorem statement.

In [22], it was shown that for a random function F : {0, 1}k × {0, 1}x → {0, 1}m we get

SuccM-eTCR
F (A, p) ≤

{
(q + 1) p · 2−m+ qp · 2−k , if A is a classical algorithm

O
(
(q + 1)2p · 2−m+ q2p · 2−k

)
, if A is a quantum algorithm

that makes q queries to its F-oracle. This bound is shown to be tight for m ≤ k,
demonstrated by a matching attack in [22]. For k < m we are not aware of such a matching
attack. For a specific instantiation of H these results imply that no attacks exist that
treat H as a black box and do better than above bounds. For parameter selection this
bound says that to achieve b bits of security against quantum attackers, a message digest
size of m = 2b+ log p is necessary (m = b+ log p for classical attackers). This is already
significantly better than when using a collision resistant hash function as considered in [28]
which requires m = 3b against quantum and m = 2b against classical attackers.

4.2 Hashing with index and counter
In our analysis we next looked at XMSS-T with the hashing as done in RFC 8391. The
message hashing changed from XMSS-T to RFC 8391 [19, Section4.1.9] to prevent multi-
target attacks, i.e., to avoid the factor p in the bounds given above. To this end, this
construction used the signature index and root value in the user public key as additional
input. The index works as domain separator between signatures under the same public
key, the root value as domain separator between signatures under different public keys.
Our analysis of this scheme can be found in Appendix B. However, the result can also be
derived as a special case of the analysis below.

We now analyse the security of the message hashing as described in Section 3. For our
security analysis we integrate the counter selection into a security property of the hash
function and show that an adversary does not gain any advantage from this change in
generic attacks. To this end we assume that we are given a hash function H : {0, 1}k ×
{0, 1}n × {0, 1}blog qsc × {0, 1}x × {0, 1}t → {0, 1}m and a fixed input-length SKES S with
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message space {0, 1}m which allows for the computation of a unique n-bit identifier idpk
per public key1. We integrate the index selection defining two functions cost and selectcost.
The function cost assigns a positive integer value to an output of H. The function selectcost
takes inputs R, idpk, i,M , computes cost(H(R, idpk, i,M, j)) for 0 ≤ j < 2t and returns ctr
such that cost(H(R, idpk, i,M, ctr)) is minimal. From this we build a variable input-length
SKES S ′ = Tctr[SKES,H]:

S ′.sign(ski,M)

R←R {0, 1}k

ctr← selectcost(R, idpk, i,M)
(ski+1, (i, σ))← S.sign(ski,H(R, idpk, i,M, ctr))
return (ski+1, (i, R, ctr, σ))

S ′.gen(1n, p)

S.gen(1n, p)

S ′.vrfy(pk,M, (i, R, ctr, σ))

S.vrfy(pk,H(R, idpk, i,M, ctr), (i, σ))

Again, we will relate the security of S’ to the security of S and the security of H.
The security that is required from H is what we call M-eTCR with nonce and counter
(cnM-eTCR). Besides adding two domain separators (index and public key identifier),
the definition of cnM-eTCR adds the selection of a counter with respect to a cost
function. Therefore it makes use of a slightly different challenge oracle Boxcost(·) that on
input of the j-th message Mj outputs a uniformly random function key Rj together with
ctrj = selectcost(Rj , j, id,Mj):

SuccnM-eTCR
H (A, p) = Pr [ (id, cost)← A(1n), (M ′, R′, ctr′, i)← ABoxcost(·)(id) :

M ′ 6= Mi ∧H(Ri, id, i,Mi, ctri) = H(R′, id, i,M ′, ctr′) ∧ 0 < i ≤ p] .

Now consider the following two algorithms that use a forger A against the iEUF-CMA
security of S’ as a black box to break the iEUF-CMA security of S, and the cnM-eTCR
security of H, respectively.
Forger FA: Given a public key pk for S and access to the corresponding S-signing
oracle Sign run A on input pk. Compute idpk from pk. Implement the S’-signing oracle
Sign′ for A using Sign: To answer the i-th query, sample random R, compute ctr ←
selectcost(R, idpk, i,M), and return (i, R, ctr,Sign(H(R, idpk, i,M, ctr))). When A outputs
a S’-forgery (M, (i, R, ctr, σ)), output (H(R, idpk, i,M, ctr), (i, σ)).
nM-eTCR-adversaryMA: When initialized, generate a keypair (pk, sk) ← S.gen(1n, p)
for S, compute and output idpk. When called with idpk and access to a challenge oracle
Box run A on input pk. Simulate A’s signing oracle using Box: Given the j-th query
Mj run (Rj , ctrj) ← Box(Mj), compute (j, σ) ← S.sign(skj ,H(Rj , idpk, j,Mj , ctrj)), and
return (j, Rj , ctrj , σ). When A outputs a forgery (M, (i, R, ctr, σ)) output (R,M, ctr, i).

Note that the runtime of FA and MA is the same time as that of ExpiEUF-CMA
S′ (A)

assuming that their challengers run in the same time as honest challengers. Also, both
make as many queries to their oracles as A makes to its oracle.

Theorem 2 (cnM-eTCR + SKES). For any adversary A against the iEUF-CMA security
of S’ we can instantiate algorithms FA andMA such that

SucciEUF-CMA
S′ (A, qs) ≤ SucciEUF-CMA

S
(
FA, qs

)
+ SucccnM-eTCR

H
(
MA, qs

)
The proof is analogous to that of Theorem 1 above. The actual (small) difference is

hidden in the new algorithms FA andMA.
The more interesting part of the analysis is the hash function property cnM-eTCR

with regard to the complexity of generic attacks. This tells us how large the impact of the
hash function modification is on security. For a random function F we prove the following.

1For XMSS variants the root node fulfills this property
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Theorem 3. Let F : {0, 1}k×{0, 1}n×{0, 1}blog pc×{0, 1}x×{0, 1}t → {0, 1}m be random
over the set of all functions with that domain and range. Let A be an adversary that makes
q queries to its F-oracle.

SucccnM-eTCR
F (A, p) ≤

{
(q + p2t) · 2−m+ (q + 1) p · 2−k, if A is classical,

8(2q + p2t)2 · 2−m+ 8(2q + 1)2p · 2−k, if A is quantum.

Setting t = 0 we obtain the case of RFC 8391. Moreover, it is worth noting that we
do not have a q2p2−m term anymore in the quantum case (pq2−m for classical) compared
to the M-eTCR security of a random function. This is the result of the added domain
separation. For choosing post-quantum parameters this means that as long as p is far
smaller than the number of queries needed for a successful attack, we are fine with a digest
size of m = 2b for security level b (and m = b for classical). This justifies to chose the
message digest length m = n to be equal to the output length of the internal hash function
as done in the XMSS-RFC. This was not justified following the security analysis in [28]
which requires m = 2n against classical and m = 1.5n against quantum attackers.

The proof of Theorem 3 uses the HRS-framework introduced in [22]. On a high level,
the idea is to use an attacker against the hash function to solve an average-case search
problem (Lemma 3) for which known bounds exist (Lemma 1). The search problem is
modeled as finding an input that maps to ’1’ for a boolean function f . For this, our
reduction B generates a hash function H̃ with the same domain as f that has a solution
to nM-eTCR exactly where the ’1’ entries in f are.

As the cnM-eTCR game is interactive, i.e., the adversary A selects the target messages,
B has to adaptively reprogram H̃ while A already has access to H̃. We use a second
reduction C and a hybrid argument to demonstrate that this reprogramming cannot
change A’s success probability by much (Lemma 3). This is done using a reduction from
reprogramming a function in several positions at once for which a bound (Lemma 2) was
implicitly proven in [22]. The final bound is then obtained, plugging in the known bounds
into Lemma 3.

The HRS-framework uses an average case search problem. The problem is defined in
terms of the following distribution Dλ over boolean functions.

Definition 1 ([22]). Let F def= {f : {0, 1}c → {0, 1}} be the collection of all boolean
functions on {0, 1}c. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions Dλ on F
such that f ←R Dλ satisfies

f : x 7→
{

1 with prob. λ,
0 with prob. 1− λ

for any x ∈ {0, 1}c.

Using this distribution the average case search problem Avg-Searchλ is the problem of
finding an x such that f(x) = 1 given oracle access to f ← Dλ. For any q-query quantum
algorithm A

SuccAvg-Searchλ (A) := Pr
f←Dλ

[f(x) = 1 : x← Af (·)] .

For this average case search problem HRS prove a quantum query bound. The result for
classical algorithms is folklore.

Lemma 1 ([22]). For any q-query algorithm A it holds that

SuccAvg-Searchλ (A) ≤
{

λ(q + 1) , if A is a classical algorithm
8λ(q + 1)2, if A is a quantum algorithm
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Another tool that we need is adaptive reprogramming. Consider the following two
games. We are interested in bounding the maximum difference in A’s behaviour between
playing in one or the other game.
Game G0i : After A selected id, it gets access to F. In phase 1, after making at most
q1 queries to F, A outputs a message M ∈ {0, 1}x. Then a random R ←R {0, 1}k is
sampled, ctr← selectcost(R, id, i,M) is computed and (R, ctr,F(R, id, i,M)) is handed to
A. A continues to the second phase and makes at most q2 queries. A outputs b ∈ {0, 1}
at the end.
Game G1i : After A selected id, it gets access to F. After making at most q1 queries
to F, A outputs a message M ∈ {0, 1}x. Then a random R ←R {0, 1}k is sampled as
well as 2t random range elements yj ←R {0, 1}m. Program F(R, id, i,M, j) = yj and call
the new oracle F′. Compute ctr ← selectcost(R, id, i,M) with respect to F′. A receives
(R, ctr, y = F′(R, id, i,M, ctr)) and proceeds to the second phase. After making at most
q2 queries, A outputs b ∈ {0, 1} at the end.

We want to bound the advantage AdvG0i ,G1i
(A) = |Pr[A(G0i) = 1]− Pr[A(G1i) = 1]|

of an adversary A to distinguish between these two games. In [22, Lemma 5] the quantum
case is proven for a function H : {0, 1}k × {0, 1}x → {0, 1}m. Considering id, i, and ctr
as part of the message, the lemma applies to F. Moreover, while the lemma in [22] only
covers reprogramming the function in one position, its proof also covers reprogramming in
2t positions and thereby to prove the following lemma.

Lemma 2. For any q-query algorithm A it holds that for p ∈ N, i ∈ [0, p]

AdvG0i ,G1i
(A) ≤

{
q2−k, if A is a classical algorithm

8q22−k, if A is a quantum algorithm

The proof of [22] still applies for the following reason. It uses three intermediate games
to get from G0i to G1i : In the first game R is sampled in the very beginning. In the
second game, it replaces FR (the function resulting from F by fixing the first input to R)
during the first phase by the constant zero function. In the third game, it programs FR in
the second phase at position (id, i,M). The step to G1i is then to make FR during the
first phase again a random function. Now, in our setting we change the third game to
reprogram FR in 2t positions. However, the distinguishing advantage of any adversary
between the second and the original third game is 0 and remains 0 for the modified third
game. The reason is that in both games, FR in the second phase is a fresh random function.
The only difference is who is sampling the points of the function but that is transparent to
the adversary. The remaining analysis stays the same.

For non-quantum A it is folklore to argue that this is simply the probability that
A correctly guessed R in one of its q queries. As the final ingredient for the proof of
Theorem 3, we need the following lemma.

Lemma 3. Let H as defined above be a family of random functions. Any (quantum)
adversary A that solves cnM-eTCR making q (quantum) queries to H and p to Box can
be used to construct quantum adversaries B against Avg-Search1/2m that makes no more
than 2q + p2t queries to its oracles and C distinguishing games G0i , G1i above that makes
no more than 2q + 1 queries to its oracles such that

SucccnM-eTCR
H (A, p) ≤ SuccAvg-Search1/2m (B) + p ·AdvG0i ,G1i

(C) .

For non-quantum adversaries A the number of queries are q + p2t and q + 1, respectively.

Note that the reductions B and C described in the proof below only have to be quantum
if A is quantum. Consequently, for classical A our reductions B and C are also classical.
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Proof. The reduction B is shown in Figure 4.1. B makes use of several random functions
(e and g). In [32], Zhandry showed that against a q query quantum adversary, random
functions can be simulated using 2q-wise independent hash functions. In addition, we
require that e : K × {0, 1}t → {0, 1}m for a fixed R ∈ K is collision free. Such a function
can be simulated using a quantum secure pseudorandom permutation (qPRP) over {0, 1}m
with key space K. Such qPRP exist if one-way functions exist [33]. Moreover, it makes
use of a function select′cost : K → {0, 1}t that simulates the behavior of selectcost.

Reduction B
Given: f ← Dλ : {0, 1}k×{0, 1}n×{0, 1}blog pc×{0, 1}x×{0, 1}t → {0, 1}, λ = 1

2m .
Output: Z ∈ {0, 1}k × {0, 1}n × {0, 1}blog pc × {0, 1}x such that f(Z) = 1.

1. Let e : K × {0, 1}t → {0, 1}m be a random function where K = {0, 1}n ×
{0, 1}blog pc that for a fixed K ∈ K is collision free.

2. Let select′cost : K → {0, 1}t be the function that givenK ∈ K returns ctr such
that cost(e(K, ctr)) is minimal within {cost(w) | w = e(K, z) ∧ 0 ≤ z < 2t}.

3. Let g =
{
gK : {0, 1}k × {0, 1}x × {0, 1}t → {0, 1}m\{e′(K)} | K ∈ K

}
be a

family of random functions, where e′(K) = e(K, select′cost(K)). We construct
H̃ : {0, 1}k×K×{0, 1}x×{0, 1}t → {0, 1}m as follows: for any R,K,X,C ∈
{0, 1}k ×K × {0, 1}x × {0, 1}t

(R,K,X,C) 7→
{
e(K, select′cost(K)) if f(R‖K‖X‖C) = 1
gK(R,X,C) otherwise.

4. Run A(1n), when it outputs id store it.

5. Run A(id) simulating Box. When A sends its ith query Mi ∈ {0, 1}x:

(a) Sample Ri ←R {0, 1}k.
(b) For 0 ≤ c < 2t do

i. If f(Ri‖id‖i‖Mi‖c) = 1 output Ri‖id‖i‖Mi‖c and stop.
ii. Program H̃(Ri, id, i,Mi, c) = e(id‖i, c).

(c) Return (Ri, select′cost(Ri)).

6. When A outputs (M ′, R′, i′, c′) output (R′‖id‖i′‖M ′‖c′).

Figure 4.1: Reducing Avg-Search to cnM-eTCR.

We now analyze the success probability of B. Per construction, whenever (M ′, R′, i′, c′)
is a valid cnM-eTCR solution, H̃(R′‖id‖i′‖M ′‖c′) = e(id‖i′, select′cost(id‖i′)), which for
M ′ 6= Mi′ only is the case if f(R′‖id‖i′‖M ′‖c′) = 1. So, whenever A succeeds, also B
succeeds. It remains to argue about A’s success probability when run by B. To this end, we
observe that H̃ follows the uniform distribution over all functions with the same domain and
co-domain as H̃: Per K every domain element maps to e(K, select′cost(K)) with probability
λ = 2−m. Every other value is taken with probability ((2m − 1)2m)(1/(2m − 1)) = 2−m
which corresponds to the probability of f not being 1 and sampling the value out of a set of
2m−1 values. This also holds for all intermediate versions generated by the reprogramming
in Step 5 when treated as independent functions (we handle the dependency below) as
reprogramming means that we re-sample a random position. The Ri are sampled uniformly
at random and hence also follow the distribution used in the cnM-eTCR game. Due
to the use of select′cost we ensure that the returned counter values also follow the right
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distribution. While we do exclude the possibility of collisions in the output of e for fixed K,
this does not disturb the distribution as we implicitly consider the cases where collisions
occur (by checking if f = 1 for any of the programmed values) but immediately abort with
a success event in that case.

We further have to show that the re-programming in Step 5 does not change A’s success
probability by much. This can be shown by a sequence of game hops. Consider the games
Gj for 0 ≤ j ≤ p which are similar to B but only reprogram H̃ for the first j queries to
Box and leave it untouched for the remaining queries.

Given the above analysis, G0 is perfectly simulating the cnM-eTCR game for A.
Consequently, the probability that A succeeds when run by G0 is SuccnM-eTCR

H,p (A) for
random H. On the other end, Gp = B, so by the above analysis the success probability of
A in Gp is upper bounded by SuccAvg-Search1/2m (B).

Now, the difference in success probability of A between any two consecutive games
Gj−1, Gj is upper bounded by AdvG0j ,G1j

(C) for the following algorithm C. We construct
a C that simulates Gj−1 when run in G0j and Gj when run in G1j to A. Given access
to the first function F, C simulates Gj−1 using F in place of the initial H̃ constructed
in Step 3. This means, C forwards all regular function queries to its F oracle but the
ones for values where it reprogrammed during the first j − 1 calls to Box. Now, when C
runs in G0j , the outer game does not change F and consequently, this perfectly simulates
Gj−1. If in turn C runs in G1j , the outer game does reprogram F in one more position and
consequently, this perfectly simulates Gj . Now C simply outputs 1 whenever A succeeds
and 0 otherwise. The final bound is obtained observing that there are p game hops.

Theorem 3 now follows from plugging the bounds of Lemmas 1 and 2 into the bound
of Lemma 3.

5 Analysis
PZMCM [28] gives an experimental argument for the normal distribution of the hashchain
values of Winternitz signatures when using Winternitz tuning. The parameters for this
distribution need to be determined separately for each value of w and T to get estimates
on the expected number of hashes for the verification of the resulting signature. In this
section we formalize this analysis by analyzing the distribution of the hash chain values
under the assumption that the hash function H used to create the message digest behaves
like a random function F. This results in a closed formula that can be used to estimate the
expected value for any value of w and T . This enables an implementer to choose signature
parameters without running many experiments.In Section 6 we provide experimental
support justifying this heuristic analysis. Below we denote by HM the m-bit message
digest of an arbitrary length messageM obtained by applying Hmsg as defined in Section 3
where we only make the inputs M and ctr explicit and assume the remaining inputs to be
fixed.

5.1 Message chain length analysis
For an m-bit base-w message digest HM = (h1, . . . , h`1) we have the following Lemma.

Lemma 4. Fix w and m as positive integers which define `1 = dm/log(w)e, and let
X = (

∑`1
i=1 hi)/`1 be a random variable; i.e. the mean of the integer base-w representation

values of HM = (h1, . . . , h`1) ∼ U({0, 1}m) where 0 ≤ hi < w for 1 ≤ i ≤ `1, and U is
the uniform distribution. Then the mean of X, denoted by µ(X), is equal to w−1

2 and the
variance is equal to w2−1

12`1
.
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Proof. The proof follows from the fact that if HM ∼ U({0, 1}m) then hi ∼ U([0, w − 1])
for i = 1, . . . , `1. Therefore E[hi] = w−1

2 and Var[hi] = w2−1
12 . Furthermore the hi are I.I.D.

distributed. We then have that

E[X] = E[
∑`1
i=1 hi
`1

] =
∑`1
i=1 E[hi]
`1

=
∑`1
i=1

w−1
2

`1
= w − 1

2 , and

Var[X] = Var[
∑`1
i=1 hi
`1

] =
∑`1
i=1 Var[hi]

`2
1

=
∑`1
i=1

w2−1
12

`2
1

= w2 − 1
12`1

.

Corollary 1. For a ctr ∈ N, Lemma 4 applies to the output of Hmsg computed as in
Algorithm 1, if Hmsg behaves like a random function.

Proof. This follows from the uniform output distribution of random functions.

Let N (µ, σ) denote the normal distribution with mean µ and standard deviation σ.
In order to provide estimates on the performance of Algorithm 1 we make the following
assumption.

Assumption 1. The random variable X defined in Lemma 4 behaves close to N (w−1
2 , w

2−1
12 ).

Assumption 1 has been confirmed experimentally by [28]. Moreover, we can also reason
as follows. Since hi ∼ U([0, w − 1]) for i = 1, . . . , `1, we have that the sum of these values
(i.e. the message chains), S :=

∑`1
i=1 hi, is distributed according to S ∼

∑`1
i=1 U([0, w− 1]).

This is a scaling of the Irwin-Hall distribution [23, 15], which converges to a normal
distribution. It should be noted that although it is close, X is not distributed exactly
as N (w−1

2 , w
2−1
12 ). Since hi ∼ U([0, w − 1]), each hi is bounded by w − 1, whereas this

is not the case in our assumption on X; the continuous normal distribution has no such
tail-bound. This does impact the experiments in Section 6. However, the goal of this
section is to give an approximation of the expected number of hash computations. With
this in mind, we present the main theorem.

Theorem 4. Let m ∈ Z be the message digest length and w ∈ Z the Winternitz parameter
which defines `1 = dm/log(w)e. When we iterate over T = 2t counters in Algorithm 1 then
the expected number of hash computations needed in signature verification is

`1(w − 1)
2 − Φ−1

(
T − α

T − 2α+ 1

)√
`1(w2 − 1)

12 ,

under the assumption that Assumption 1 holds, where α = π
8 and Φ−1 is the inverse of the

standard normal distribution N (0, 1).

Proof. Let random variables Xi for i = 1, . . . , n be independent and identically normally
distributed with mean µ and standard deviation σ. Then by [13, 29] the expectation of
the r-th order statistic Xr:n can be approximated as

E[Xr:n] ≈ µ+ Φ−1( r − α
n− 2α+ 1)σ ,

where α is determined in [13] as π8 and Φ−1 is the inverse of the standard normal distribution.
Setting µ = w−1

2 and σ =
√

(w2 − 1)/(12`1), we obtain that after processing T = 2t
counters in Algorithm 1 the expected longest message chain average max{Xj}, where
Xj = (

∑`1
i=1 hj,i)/`1 and Hj := Hmsg(j,M) = (hj,1, . . . , hj,`1), is approximately

E[max{Xj}] = E[(Xj)T :T ] ≈ w − 1
2 + Φ−1

(
T − α

T − 2α+ 1

)√
(w2 − 1)/(12`1) .
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Letting Sj =
∑`1
i=1 hj,i, it then follows that

E[max{Sj}] ≈
`1(w − 1)

2 + `1Φ−1
(

T − α
T − 2α+ 1

)√
(w2 − 1)/(12`1)

= `1(w − 1)
2 + Φ−1

(
T − α

T − 2α+ 1

)√
`1(w2 − 1)/12 .

Since the total number of hashes in the message chains is equal to (w−1)`1, and subtracting
the above quantity, the theorem follows.

5.2 Chain lengths checksum

So far we have only looked into the lengths of the `1 message chains. For the length of the
`2 checksum chains, the challenge is that it is dependent on the values HM = (h1, . . . , h`1).
On average, when values of the coefficients of HM are high, the checksum coefficients
CM = (c1, . . . , c`2) (written in base-w) will be low. However, this is not always the case.
As in [4] we assume the computations of expectations are independent.

Assumption 2. Given a hash HM = (h1, . . . , h`1), the accompanying checksum CM =∑`1
i=1(w − 1− hi) behaves independent and its coefficients (c1, . . . , c`2) follow the uniform

distribution.

For analysis of total averages, Assumption 2 implies that the number of hashes as
stated in Theorem 4 should be appended with the average values of the checksum chains.
Hence, for the checksum coefficients CM = (c1, . . . , c`2) we obtain similar to the case for
entries of HM that ci ∼ U([0, w − 1]) for i = 1, . . . , `2.

Lemma 5. Let Y =
∑`2
i=1 ci be a random variable, i.e. the sum of the checksum values of

HM . Then the mean µ(Y ) is equal to `2(w−1)/2 and the variance is equal to `2(w2−1)/12.

Proof. This follows from the properties of the uniform discrete distribution.

A difference between this work and [4] is that we pick the best one with regard to
the hash effort of the verifier out of T hashes, whereas in [4] fully independent signatures
were analyzed. As we will also see in Section 6, for large values of T the independence
assumption 2 no longer holds for analysis purposes.

As an alternative, one could assume that the maximum value is reached in all the
checksum chains. This means assuming CM equals the all-zero vector for the verifying
effort and the number of hashes to be computed is `2(w − 1). This option should not
impact the analysis too much since `2 � `1. We discuss both options in more detail in
Section 6.

6 Experimental verification
We now verify the estimates given in Section 5. We analyze the expected number of
hashes for a verifier according to Section 5 and compare it to an experimentally determined
minimal and maximal performance gain for the verification by appending 2t counters in the
message hash. All experiments are run with w ∈ {4, 16, 256}, conform with the approach
as outlined in [19] and run on a single core of an AMD Ryzen Threadripper 1950X running
at 3.4GHz.
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(a) w = 4 (b) w = 16

(c) w = 256

Figure 6.1: Average number of hash computations for signature verification of the first `1
message chains as a function of t. Solid blue line: average over 103 experiments. Dashed
red line: estimate of Theorem 4.

6.1 Validation
We first validate Theorem 4 in practice. We compute 103 signatures for every combination
w ∈ {4, 16, 256} and for each t ∈ {0, 1, . . . , 29, 30}. Hence, each signature generation
computes T = 2t different counter values in the hash computation and records the best
achieved result in terms of the number of hash computations required to verify the signature
when only considering the length of the message chains. The average best results over
these 103 trials are plotted in Figure 6.1. We observe that the values indeed coincide
with the estimate of Theorem 4 and therefore Assumption 1 seems to hold. However, for
larger values of (w, t) the estimate becomes slightly optimistic. As explained in Section 5,
we conjecture this is the case due to the chain lengths not being exactly distributed as
N (w−1

2 , w
2−1
12 ), but each chain having a bounded maximum. This causes the approximate

chain-length distribution to take on larger extreme values than is possible in reality, and
therefore the estimate is optimistic for large values of t. We conjecture that this effect is
stronger for larger values of w, because the effect of one extremal chain-value is larger.

We perform a similar experiment where we include the checksum hash chains. The
results are depicted in Figure 6.2.

Two estimates are presented in each graph. One where we assume the length of the
checksum chains to behave according to Assumption 2 and takes its average as determined
in Lemma 5 and one where we take the upper bound of w− 1 hash function calls for these
chains. It can be observed that for small t values, the average estimate of Lemma 5 fits quite
well. For these values, the conservative estimate of w − 1 hashes for each checksum chain
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(a) w = 4 (b) w = 16

(c) w = 256

Figure 6.2: Average number of hash computations for signature verification of all ` message
chains as a function of t. Solid blue line: average over 103 experiments. Dashed red line:
estimate of Theorem 4 for `1 + mean of Lemma 4 for each `2 checksum chain. Dash-dotted
magenta line: estimate of Theorem 4 for `1 + maximum value w − 1 for each `2 checksum
chain.

is pessimistic on the effort reduction in signature verification; the average experimental
number of hashes is strictly lower than taking the maximum. However for larger values
of t one observes that, especially for w ∈ {16, 256}, the upper bound for the checksum
chains lies closer to reality. We have found this is due to the violation of the independence
assumption. This effect is directly caused by our algorithm adaptations; by choosing the
signatures with high value hash chains and by construction of the checksum CM (see
Section 2.2), we have that a high average value for all hash chains hi, 0 < i ≤ `1, on
average means a low average value for the checksum hash chains ci, `1 < i ≤ `1 + `2.

However, this is not straightforward to analyze, as we see for w = 4. There adding
the average estimate for the `2 checksum chains of Lemma 5 seems closer to reality.
Experiments show that the probability of CM /∈ [256, 512] is very small. In fact it did
not occur once in 107 random trials. This means that even though the checksum (which
determines the checksum chains) has 10 bits; 1) the first bit is always set to 0, because the
checksum fits in 9 bits, 2) the second bit is almost always set to 0, because the probability
that CM > 512 is very low, and 3) the fourth bit is almost always set to 1, because the
probability that CM < 256 is very low. This means that for w = 4, which has `2 = 5, with
high probability c1 = 0 and c2 ∈ {2, 3}. This inflexibility in the checksum means that the
conservative estimate can never be reached and therefore for w = 4, Lemma 5 serves as
the better estimate.
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(a) w = 4 (b) w = 16

(c) w = 256

Figure 6.3: Number of hashes for the verifier in the ` chains, after taking the highest
cumulative hash chain value out of 2t appended counters. Boxplot is over 103 trials for
each value of t. The box represents the 50% confidence interval (i.e. datapoints between
the first and third quartile), with the yellow line the median. The whiskers of the boxplot
represent the 95% confidence interval. The dots represent the outliers.

6.2 Expectation of Hashes in Signature Verification
We continue to analyze the expected minimum and maximum number of hash computations
in signature verification given a fixed value of t. Although the expected value is a good
indicator of the improvement trend, for practical implementations it is good to know what
could be achieved in the best case result, but more importantly, also what could be the
worst possible result of applying this signer/verifier trade-off. To this end, the boxplots
of our experimental results are depicted in Figure 6.3. Not surprisingly, one observes
outliers in practice. Note however that even for the worst case in 103 trials, the trend is
downwards.

We now use this data to derive a heuristic upper and lower bound for the number of
hash computations of the verifier, as a function of the number of signature computations
2t of the signer. We see the results in Figure 6.4. We extrapolate the minimum and
maximum values found in the experiments up to 5 ≤ t ≤ 30 by fitting an exponential
function f(x) = a · e−bx + c over the values. We omit the first values to avoid precision
errors caused by the initial steep decline. The resulting fit can be seen in the legend of the
dash-dotted line. To get some extra confidence in our estimate, we run one trial for larger
values of t (instead of the 103 trials for the remaining graph). For the resulting datapoints
in Figure 6.4 for t = 33, 37, 40 we see that these fall within our estimates. However for
tighter and more confident bounds, more data would need to be gathered.
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(a) w = 4 (b) w = 16

(c) w = 256

Figure 6.4: Number of hashes for the verifier in the ` chains, after taking the highest
cumulative hash chain value out of 2t appended counters. Blue resp. red line: minimum
resp. maximum cumulative hash chain value over 103 experiments for each value of t.
Blue resp. red dash-dotted line: extrapolated fit of a · exp(−bx) + c over the experimental
data for the minimum resp. maximum. Green dots represent three single experiments for
t ∈ {33, 37, 40}.

7 Benchmark Results
The implementation used for both the signature generation on the high-end platform as well
as signature verification on the embedded device is the reference implementation, which was
released together with the RFC [19]2. We replaced only the SHA-256 implementation with
the C-implementation also used in the embedded crypto benchmark platform pqm4 [24].
For all benchmarks we used the XMSS parameter set known as “XMSS-SHA2_10_256”
(where w = 16). We put the modified reference code of XMSS with all optimizations
discussed in this paper into the public domain. It is available at https://huelsing.net/
code/RapidXMSS_code.zip and comes with no guarantee or warranty.

7.1 Signature Generation
The estimates from Section 5 have been shown to hold experimentally in Section 6. In this
section the goal is to quantify the trade-off of the computational time from the signature
verification to the signature generation more precisely. As in Section 6 the signature
generation is run on a single core (out of the 16 cores) of an AMD Ryzen Threadripper

2https://github.com/XMSS/xmss-reference.

https://huelsing.net/code/RapidXMSS_code.zip
https://huelsing.net/code/RapidXMSS_code.zip
https://github.com/XMSS/xmss-reference
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Table 7.1: Signature generation time for a message hash with 225 different counter values,
with and without precomputing the first 2 + bMlen + 8/64c SHA-256 blocks.

Message size in bytes Signature generation time (t = 25)
without precomp with precomp

32 bytes 30 sec 14 sec
1 KB 2 min 42 sec 14 sec

10 KB 20 min 19 sec 14 sec
100 KB 3 h 19 min 12 sec 14 sec

1950X running at 3.4GHz while the system is active with other tasks in order to simulate
a typical system environment. Since these are typically long runs the timings are reported
in seconds instead of clock cycles: the goal is not to be overly precise but give a ball-park
figure how long one can expect signature generation to take.

First let us investigate the practical impact when using the optimization described
in Section 3. By precomputing the first 2 + b(Mlen + 8)/64c blocks of SHA-256 one only
has to compute the final block where the counter is included over and over again. When
this optimization is used the time for a fixed large value of t becomes independent of
the message size. For example, when t = 25 (so doing 225 SHA-256 computations per
signature) computing an XMSS signature requires around 14 seconds irrespective of the
message size. When this optimization is not applied the situation is quite different and
summarized in Table 7.1.

Hence, for large messages of 100 KB precomputing the initial blocks results in almost
three order of magnitudes speed-up. It is of interest to estimate how long the more efficient
implementation will run for larger values of t. On our target platform a good estimate for
t = 22 + δ for positive integer values of δ (values where signature generation takes longer
than one second) is 1.8 · 2δ seconds. Combining these estimates with those for the average
verifier hashes of Theorem 4 (applying respectively the Lemma 4 and the maximum value
w − 1 for the `2 chains) and the extrapolated minimum and maximum of Figure 6.4, we
offer an implementer some support to choose their algorithm parameters. Practically, this
means that for a given amount of time invested in generating a (firmware) signature, we
can expect the signature verification speed-up in Table 7.2.

The comparative percentages here are with respect to the average number of verifier
hashes in a one-shot signature verification, i.e., XMSS without using the PZMCM technique.
We see that the largest jump in improvement is already reached by spending a few seconds on
the computation of a firmware signature. Note that these computations are embarrassingly
parallel and can be distributed over multiple cores. Moreover, it might be an interesting
projectto see to what extend existing Bitcoin mining ASICS can be reused for these
repeated hash computations.

7.2 Signature Verification
For the benchmark platform and representative embedded target platform we used the
Freedom-K64F (FRDM-K64F) which is an ultra-low-cost development platform for Kinetis
microcontrollers by NXP. More specifically, these low-power microcontrollers are based on
an Arm Cortex-M4 core and have 256 kB RAM, 1 MB flash memory and run at 120 MHz.
ARM provides on most Cortex-M3, M4 and M7 devices, including e.g. the NXP Kinetis
or LPC devices, the Data Watchpoint and Trace (DWT) unit. The DWT is an optional
debug unit that provides watchpoints, data tracing, and system profiling for the processor.
It contains counters for, among others, clock cycles (CYCCNT). This makes it extremely
simple to gather accurate cycle counts for portions of the code and we have used the DWT
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Table 7.2: Trade-off between signature generation time and verification for message
hashing with 2t different counter values: improvement compared to standard XMSS are
displayed in italics.

#Hmsg Sign. gen. Exp. from Thm. 4 Max. Min.
+ `2 · (w − 1) + Lemma 5

210 ∼ 0.04 sec. 405.43 382.93 421.64 335.66
(−19 .3%) (−23 .8%) (−16 .1%) (−33 .2%)

221 ∼ 1 sec. 340.68 318.18 348.77 289.84
(−32 .2%) (−36 .7%) (−30 .6%) (−42 .3%)

227 ∼ 1 min. 313.04 290.54 324.36 267.54
(−37 .7%) (−42 .2%) (−35 .5%) (−46 .8%)

233 ∼ 1 hour. 271.50 265.95 306.93 246.96
(−42 .6%) (−47 .1%) (−38 .9%) (−50 .9%)

237.5 ∼ 1 day. 310.89 249.00 297.21 232.56
(−46 .0%) (−50 .4%) (−40 .9%) (−53 .7%)

240.5 ∼ 1 week. 260.79 238.29 291.97 223.44
(−48 .1%) (−52 .6%) (−41 .9%) (−55 .5%)

unit to collect the reported cycle counts in this section. The reference implementation
is compiled with the flags -03 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard using the
arm-none-eabi-gcc cross-compiler version 8.3.1 using the MCUXpresso IDE.3

One of the optimizations discussed in [9] is concerned with precomputing some of the
hash computations. Let us assume one uses XMSS with SHA-256, then for a fixed key
pair the first 512-bit input to the pseudo-random function is the same for all calls. Since
the internal block size of SHA-256 is also 512 bits, this can be precomputed and reused:
halving the number of total calls to the SHA-256 compression function. This optimization
is fully compatible with the RFC [19] and is not applied in the accompanying reference
implementation. We have implemented this approach and denote this with “precomp’.

In order to benchmark the impact of the iterated hash technique we measure the average
signature verification time using both the pre-hash and the techniques from Section 3.
From Theorem 4, using w = 16, t = 10, α = π/8, `1 = 64, the expected number of required
hashes is 360.4. For analysis purposes we can assume the `2-chains to be independent and
uniformly distributed. Therefore from Lemma 5 we obtain using `2 = 3 that the mean value
for the checksum is 45/2; hence, the expected number of hashes is 382.9. This is 1.31 times
faster than the (64+3)7.5 = 502.5 hashes one expects when not using this technique (t = 0).
When looking at the experimental data from Section 6 this ratio remains the same; 391.8
and 508.4 hashes for t = 10 and t = 0, respectively. The following performance numbers in
millions of cycles are the average over a hundred signature generation / verification runs.

t = 10 t = 27
Ref. precomp ctr precomp + ctr ctr precomp + ctr
13.85 9.41 11.49 7.87 9.60 6.56

Precomputing the hash inputs as remarked by [9] leads to a factor 1.47 speed-up. Using
t = 10, which means signature generation time of around 40ms, results in a speed-up factor
of 1.21. Combining both leads a reduction of the signature verification time of a factor

3https://mcuxpresso.nxp.com

https://mcuxpresso.nxp.com
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1.76 compared to the reference implementation. Obviously one can increase the value of
t to improve these figures. Let us assume the signer can afford to spent one minute on
a single core on signature generation (t = 27): then the verifier can expect more than a
factor 1.44 and 2.11 speed-up with and without precomputing hash inputs respectively,
and a signature verification time of well below 7 million cycles.
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A Simple Key Evolving Signature Schemes
Here we provide the formal definition of Simple Key Evolving Signature Schemes (SKES).
Our definition builds on the one for KES in [6].

Definition 2 (Simple Key Evolving Signature Scheme). A simple key evolving signature
scheme (SKES) is a triple of algorithms SKES = (gen, sign, vrfy). It is parameterized by
a security parameter n ∈ N and the number of key updates p ∈ N and operates on the
following sets: The secret key space KS = KS ′ × {0, . . . , p− 1}, the public key space KP ,
the message spaceM, and the signature space Σ. The algorithms are defined as follows:

(sk, pk)←R gen(1n, p): The key generation algorithm on input of the security parameter
n ∈ N in unary and the number of time periods p ∈ N outputs an initial secret
signing key sk ∈ KS ′ × {0} and a public verification key pk ∈ KP.

⊥/((σ, i), sk′)←R sign(sk,M): The signature algorithm takes as input a signature key
sk ∈ KS ′ × {i}, and a message M ∈ M. If i < p, it returns a signature (σ, i) ∈ Σ
of the message M and an updated secret key sk′ ∈ KS ′ × {i + 1}. It returns ⊥,
otherwise.

0/1← vrfy(pk,M, (σ, i)): The verification algorithm on input of a public key pk ∈ KP ,
a message M ∈M, and a signature (σ, i) ∈ Σ outputs 1 iff (σ, i) is a valid signature
on M under public key pk and index i, and 0 otherwise.

The usual correctness conditions apply, i.e., an honestly generated signature must verify.

B Hashing with T-target eTCR-Hash and index.
In the following we provide the dedicated proof for the case of XMSS-T with message
hashing done as in RFC 8391. As we want it to be accessible without reading Subsection 4.2
first, we recall all necessary lemmas and definitions.

The message hashing changed from XMSS-T to RFC 8391 [19, Section 4.1.9] to prevent
multi-target attacks, i.e., to avoid the factor p in the bounds given above. To this end, the
construction used the signature index and root value in the user public key as additional
input. The index works as domain separator between signatures under the same public
key, the root value as domain separator between signatures under different public keys.
We review this construction below.

Given a hash function H : {0, 1}k × {0, 1}n × {0, 1}blog qsc × {0, 1}x → {0, 1}m and a
fixed input-length SKES S with message space {0, 1}m which allows for the computation
of a unique n-bit identifier idpk per public key4 we build a variable input-length SKES
S ′ = Tidx[SKES,H] as follows:

S ′.gen(1n, p)

S.gen(1n, p)

S ′.sign(ski,M)

R←R {0, 1}k

(ski+1, (i, σ))← S.sign(ski,H(R, idpk, i,M))
return (ski+1, (i, R, σ))

S ′.vrfy(pk,M, (i, R, σ))

S.vrfy(pk,H(R, idpk, i,M), (i, σ))

Below we will relate the security of S’ to the security of S and the security of H. The
security that is required from H is what we call M-eTCR with nonce (nM-eTCR). The
definition of nM-eTCR is extremely similar to that of M-eTCR. It makes use of the
same challenge oracle Box(·) that on input of the j-th message Mj outputs a uniformly

4For XMSS variants the root node fulfills this property
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random function key Rj . One difference is that A can select an arbitary n-bit string before
the experiment starts:

SuccnM-eTCR
H (A, p) = Pr [ id← A(1n), (M ′, R′, i)← ABox(·)(id) :

M ′ 6= Mi ∧H(Ri, id, i,Mi) = H(R′, id, i,M ′) ∧ 0 < i ≤ p] . (2)

Now consider the following two algorithms that use a forger A against the iEUF-CMA
security of S’ as a black box to break the iEUF-CMA security of S, and the nM-eTCR
security of H, respectively.
Forger FA: Given a public key pk for S and access to the corresponding S-signing
oracle Sign run A on input pk. Compute idpk from pk. Implement the S’-signing
oracle Sign′ for A using Sign: To answer the i-th query, sample random R and re-
turn (i, R, Sign(H(R, idpk, i,M))). When A outputs a S’-forgery (M, (i, R, σ)), output
(H(R, idpk, i,M), (i, σ)).
nM-eTCR-adversaryMA: When initialized, generate a keypair (pk, sk) ← S.gen(1n, p)
for S, compute and output idpk. When called with idpk and access to a challenge oracle
Box run A on input pk. Simulate A’s signing oracle using Box: Given the j-th query Mj

run Rj ← Box(Mj), compute (j, σ)← S.sign(skj ,H(Rj , idpk, j,Mj)). When A outputs a
forgery (M, (i, R, σ)) output (R,M, i).

Note that the runtime of FA and MA is the same time as that of ExpiEUF-CMA
S′ (A)

assuming that their challengers run in the same time as honest challengers. Also, both
make as many queries to their oracles as A makes to its oracle.

Theorem 5 (nM-eTCR + SKES). For any adversary A against the iEUF-CMA security
of S’ we can instantiate the above algorithms FA andMA such that

SucciEUF-CMA
S′ (A, qs) ≤ SucciEUF-CMA

S
(
FA, qs

)
+ SuccnM-eTCR

H
(
MA, qs

)
The proof is analogous to that of Theorem 1 (except replacing M-eTCR by nM-eTCR).

The actual (tiny) difference is hidden in the new algorithms FA andMA.
The interesting difference is that we can prove a better bound for generic attacks

against nM-eTCR. We prove this bounding the success probability of any attack agains
a random function F.

Theorem 6. Let F : {0, 1}k × {0, 1}n × {0, 1}blog pc × {0, 1}x → {0, 1}m be random over
the set of all functions with that domain and range. Let A be an adversary that makes q
queries to its F-oracle and p queries to its Box-oracle. Then

SuccnM-eTCR
F (A, p) ≤

{
(q + p) · 2−m+ qp · 2−k, if A is a classical algorithm

8(2q + p)2 · 2−m+ 32q2p · 2−k, if A is a quantum algorithm

The proof of Theorem 6 uses the HRS-framework introduced in [22]. On a high level,
the idea is to use an attacker against the hash function to solve an average-case search
problem (Lemma 7) for which known bounds exist (Lemma 1). The search problem is
modeled as finding an input that maps to ’1’ for a boolean function f . For this, our
reduction B generates a hash function H̃ with the same domain as f that has a solution
to nM-eTCR exactly where the ’1’ entries in f are.

As the nM-eTCR game is interactive, i.e., the adversary A selects the target messages,
B has to adaptively reprogram H̃ while A already has access to H̃. We use a second
reduction C and a hybrid argument to demonstrate that this reprogramming cannot
change A’s success probability by much (Lemma 7). This is done using a reduction from
reprogramming a function in one position in a similar setting for which a bound (Lemma 6)
was proven in [22]. The final bound is then obtained, plugging in the known bounds into
Lemma 7.
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Remark 1. The second term of the bound in Theorem 6 originates from the application of
adaptive reprogramming. While the bound is tight for the classical setting, we conjecture
that it is extremely loose in the quantum setting. Indeed, our reduction is tight, but we
conjecture that the bound in Lemma 6 is not. We would assume that a tight quantum
bound for reprogramming would be close to the classical bound as it seems to be related
to random guessing for which quantum computations do not provide an advantage.

The bound in Theorem 6 is nevertheless interesting because it justifies the use of a
message digest length m = 2b for a targeted security level b in the post-quantum setting
that is independent of the number of targets p. This is optimal for the given problem as
an attack using Grover can reach this bound. For XMSS-style signatures this is highly
relevant as the length of the message digest (here m) largely influences the number of hash
values in a Winternitz signature. The bound is still not optimal with regard to the required
length k of the randomizer which has to be chosen as k ≥ 2b+ log p in the post-quantum
setting. However, the impact of this non-tightness is less severe as it only increases the
size of one value in the signature.

The HRS-framework uses an average case search problem. The problem is defined in
terms of the following distribution Dλ over boolean functions.

Definition 1 ([22]). Let F def= {f : {0, 1}c → {0, 1}} be the collection of all boolean
functions on {0, 1}c. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions Dλ on F
such that f ←R Dλ satisfies

f : x 7→
{

1 with prob. λ,
0 with prob. 1− λ

for any x ∈ {0, 1}c.

Using this distribution the average case search problem Avg-Searchλ is the problem of
finding an x such that f(x) = 1 given oracle access to f ← Dλ. For any q-query quantum
algorithm A

SuccAvg-Searchλ (A) := Pr
f←Dλ

[f(x) = 1 : x← Af (·)] .

For this average case search problem HRS prove a quantum query bound. The result for
classical algorithms is folklore.

Lemma 1 ([22]). For any q-query algorithm A it holds that

SuccAvg-Searchλ (A) ≤
{

λ(q + 1) , if A is a classical algorithm
8λ(q + 1)2, if A is a quantum algorithm

Another tool that we need is adaptive reprogramming. Consider the following two
games. We are interested in bounding the maximum difference in A’s behaviour between
playing in one or the other game.

Game G0,i: After A selected id, it gets access to F. In phase 1, after making at most q1
queries to F, A outputs a message M ∈ {0, 1}x. Then a random R ←R {0, 1}k is
sampled and (R,F(R, id, i,M)) is handed to A. A continues to the second phase
and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.

Game G1,i: After A selected id, it gets access to F. After making at most q1 queries to
F, A outputs a message M ∈ {0, 1}x. Then a random R←R {0, 1}k is sampled as
well as a random range element y ←R {0, 1}m. Program F(R, id, i,M) = y and call
the new oracle F′. A receives (R, y = F′(R, id, i,M)) and proceeds to the second
phase. After making at most q2 queries, A outputs b ∈ {0, 1} at the end.
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The advantage AdvG0i ,G1i
(A) = |Pr[A(G0i) = 1]− Pr[A(G1,i) = 1]| of an adversary A to

distinguish between these two games can be bound as follows.

Lemma 6. For any q-query algorithm A it holds that for p ∈ N, i ∈ [0, p]

AdvG0i ,G1i
(A) ≤

{
q2−k, if A is a classical algorithm

8q22−k, if A is a quantum algorithm

In [22] the quantum case is proven for a function H : {0, 1}k × {0, 1}x → {0, 1}m.
Considering id and the index i as part of the message, the lemma applies to F. For
non-quantum A this is simply the probability that A correctly guessed R in one of its q
queries.

From here on the plan is to give a reduction of Avg-Search to nM-eTCR. To argue that
the nM-eTCR adversary still succeeds with sufficient success probability, we additionally
need a hybrid argument (or a sequence of p+ 1 games) which uses the above bound p-times
(for 0 < i ≤ p). This is what we do in Lemma 7 below. Theorem 6 then follows from
plugging the bounds of Lemma 1 and 6 into Lemma 7.

Lemma 7. Let H as defined above be a family of random functions. Any (quantum)
adversary A that solves nM-eTCR making q (quantum) queries to H and p to Box can
be used to construct (quantum) adversaries B against Avg-Search1/2m that makes no more
than 2q + p queries to its oracles and C distinguishing games G0i , G1i above that makes no
more than 2q queries to its oracles such that

SuccnM-eTCR
H,p (A) ≤ SuccAvg-Search1/2m (B) + p ·AdvG0i ,G1i

(C) .

Note that the reductions B and C described in the proof below only have to be quantum
if A is quantum. Consequently, for classical A our reductions B and C are also classical. B
makes use of several random functions (e and g). In [32], Zhandry showed that against a q
query quantum adversary, random functions can be simulated using 2q-wise independent
hash functions.

Proof. The reduction B is shown in Figure B.1.
We now analyze the success probability of B. Per construction, whenever (M ′, R′, i′)

is a valid nM-eTCR solution, H̃(R′‖id‖i′‖M ′) = e(id‖i) which for M ′ 6= Mi′ only is the
case if f(R′‖id‖i′‖M ′) = 1. So, whenever A succeeds, also B succeeds. It remains to argue
about A’s success probability when run by B. To this end, we observe that H̃ follows
the uniform distribution over all functions with the same domain and co-domain: Per K
every domain element maps to e(K) with probability λ = 2−m. Every other value is taken
with probability ((2m − 1)/2m)(1/(2m − 1)) = 2−m. This also holds for all intermediate
versions generated by the reprogramming in Step 4 when treated as independent functions
(we handle the dependency below) as reprogramming means that we re-sample a random
position. The Ri are sampled uniformly at random and hence also follow the distribution
used in the nM-eTCR game.

We further have to show that the re-programming in Step 4 does not change A’s success
probability by much. This can be shown by a sequence of game hops. Consider the games
Gj for 0 ≤ j ≤ p which correspond to algorithm B but with the difference that B only
reprograms H̃ for the first j queries to Box and leaves it untouched for the remaining
queries.

Given the above analysis, G0 is perfectly simulating the nM-eTCR game for A.
Consequently, the probability that A succeeds when run by G0 is SuccnM-eTCR

H,p (A) for
random H. On the other end, Gp = B, so by the above analysis the success probability of
A in Gp is upper bounded by SuccAvg-Search1/2m (B).
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Reduction B
Given: f ← Dλ : {0, 1}k × {0, 1}n × {0, 1}blog qsc × {0, 1}x → {0, 1}, λ = 1

2m .
Output: Z ∈ {0, 1}k × {0, 1}n × {0, 1}blog qsc × {0, 1}x such that f(Z) = 1.

1. Let e : K → {0, 1}m be a random function where K = {0, 1}n×{0, 1}blog qsc.

2. Let g =
{
gK : {0, 1}k × {0, 1}x → {0, 1}m\{e(K)} | K ∈ K

}
be a family of

random functions. We construct H̃ : {0, 1}k × K × {0, 1}x → {0, 1}m as
follows: for any R,K,X ∈ {0, 1}k ×K × {0, 1}x

(R,K,X) 7→
{
e(K) if f(R‖K‖X) = 1
gK(R‖X) otherwise.

3. Run A(1n), when it outputs id store it.

4. Run A(id) simulating Box. When A sends its ith query Mi ∈ {0, 1}x:

(a) Sample Ri ←R {0, 1}k.
(b) If f(Ri‖id‖i‖Mi) = 1 output Ri‖id‖i‖Mi and stop.
(c) Program H̃(Ri, id, i,Mi) = e(id‖i).
(d) Return Ri.

5. When A outputs (M ′, R′, i′) output (R′‖id‖i′‖M ′).

Figure B.1: Reducing Avg-Search to nM-eTCR.

Now, the difference in success probability of A between any two consecutive games
Gj−1, Gj is upper bounded by AdvG0j ,G1j

(C) for the following algorithm C. We construct
a C that simulates Gj−1 when run in G0j and Gj when run in G1j to A. Given access
to the first function F, C simulates Gj−1 using F in place of the initial H̃ constructed
in Step 2. This means, C forwards all regular function queries to its F oracle but the
ones for values where it reprogrammed during the first j − 1 calls to Box. Now, when C
runs in G0j , the outer game does not change F and consequently, this perfectly simulates
Gj−1. If in turn C runs in G1j , the outer game does reprogram F in one more position and
consequently, this perfectly simulates Gj . Now C simply outputs 1 whenever A succeeds
and 0 otherwise.

The final bound is obtained observing that there are p game hops.
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