Security on the Line:

Modern Curve-based Cryptography

Copyright (© 2019 Joost Renes
ISBN: 978-94-6323-695-9
Typeset using I&TEX

Cover design: Illse Modder — www. ilsemodder.nl
Printed by: Gildeprint — www.gildeprint.nl

Radboud University §

MiNe S

(S
Yorre

) Applied and
N WO Engineering Sciences
This work is part of the research programme TYPHOON with project number 13499,

which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO).

www.ilsemodder.nl
www.gildeprint.nl

Security on the Line:
Modern Curve-based Cryptography

Proefschrift
ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen
op gezag van de rector magnificus prof. dr.]. H.J.M. van Krieken,
volgens besluit van het college van decanen
in het openbaar te verdedigen op maandag 1 juli 2019
om 14.30 uur precies

door
Joost Roland Renes

Promotor
Prof. dr. L. Batina

Manuscriptcommissie

Prof. dr. E.R. Verheul
Prof. dr. S.D. Galbraith (University of Auckland, Nieuw-Zeeland)
Prof. dr. A.J. Menezes (University of Waterloo, Canada)
Dr. N. Heninger (University of California San Diego, Verenigde Staten)
Dr. E Vercauteren (KU Leuven, Belgié)

Acknowledgements

A unique feature of doing a PhD is that by the end of it, one is expected to deliver a
book detailing all personal contributions to the field of study. This inherently high-
lights its individual nature, yet one would be wrong to think all these years are spent
alone in a dark office (if anything, because no PhD student would ever be given their
own office). My academic journey has given me the opportunity to experience life
in many different places, and to visit far too many to list here. I would like to take
this chance to thank those who have been there along the way to make it all the more

worthwhile.

First and foremost I would like to thank my promotor Lejla Batina. Her imme-
diate enthusiasm convinced me to start on this path, and I have never felt a lack of
professional or personal support during. I am very grateful to have had the chance
to work with you and for the many exciting things that have happened because of it.

During my PhD I have been lucky enough to work with great people. A special
thanks goes out to Craig Costello, whom I met at the very beginning of my PhD. We
not only collaborated on my first paper (and others after that), but you also gave me
the opportunity to spend three great summers at Microsoft Research. In extension,
I would like to thank Michael Naehrig for being a great (co-)mentor during said
internships. I am proud of the work I have done with both of you, and slightly
embarrassed of the persistent failures on the soccer field. I would also like to thank
Brian LaMacchia, and the rest of the team, for repeatedly inviting me to the group
and creating a great work environment. A final thanks to Ben Smith, whom I had the
pleasure to work with and whose impressively detailed yet simple way of describing
many topics has tremendously improved my understanding numerous times.

I would like to thank the members of my reading committee Eric Verheul, Steven
Galbraith, Alfred Menezes, Nadia Heninger and Fréderik Vercauteren for taking the
time to go through this lengthy thesis. Also, I thank my co-authors Wouter Castryck,
Huseyin Hisil, David Jao, Tanja Lange, Patrick Longa, Chloe Martindale, Lorenz

vi Acknowledgements

Panny, Peter Schwabe, David Urbanik and Fernando Virdia for their hard work and
the great discussions along the way. A particular thanks to Fréderik Vercauteren
and Steven Galbraith for inviting me to spend some time at their respective research
groups, and to Lorenz Panny for his detailed and helpful comments on a preliminary
version of the first part of this thesis.

Despite all the moving around, most of my time has still been spent in Nijmegen.
I have been a proud member of the Digital Security Group, all of whose (past) mem-
bers I would like to thank for their warmth and kindness through coffee breaks,
Friday beers and game nights. I am proud to have created many friendships that
I am sure will last beyond the brief scope of a PhD. In particular, a special thanks
goes out to Pedro, who has literally been there since day one on the job. It has been
a pleasure to have shared an office for all this time, and I consider it a miracle that
I have not gained weight over the years. I would also like to thank Louiza for her
friendship and advice through the years, whom I was honored to be a paranimph
for. I thank Joan Daemen and Peter Schwabe for their support and nice discussions
related to teaching and research.

I would like to thank my parents and my brothers for their continued support,
for always giving me a place to return home to, and for being there during trying
times.

Finally, a heartfelt thanks to Anna for her love and invaluable support during the
concluding months of this thesis, which have without a doubt been the most chal-

lenging. I am proud to start the next journey by your side.

Joost Renes
Nijmegen, May 2019

Contents

Acknowledgements
Introduction

List of Symbols

1 Background

I Elliptic and Hyperelliptic Curves

1 AlgebraicCurves
2 Curvesof Genusland2
2.1 EllipticCurves
2.2 Hyperelliptic Curvesof Genus2

II Curve-based Cryptographic Protocols

1 Classical Cryptography
1.1 Diffie-Hellman
1.2 Schnorr Signatures
2 Post-Quantum Cryptography
2.1 Supersingular Isogeny Diffie-Hellman
2.2 Ordinary Isogeny Diffie-Hellman

2 Classical Cryptography

III Complete Addition Formulas for Prime Order Elliptic Curves

xiii

xxiii

21
21
22
23
25
25
27

29

31

viii Contents

1 Introduction L L 32
2 Complete Addition Formulas 38
21 TheGeneralCase 39
22TheCasea=—3 42

23 TheCasea=0 44

3 Some Intuition Towards Optimality 44
3.1 Choice of Y = 0 for Bidegree (2,2) Addition Laws 46

3.2 Jacobian Coordinates 47

4 Using These Formulas in Practice 48
4.1 Application to Prime Order Curves 48

4.2 Interoperability With Composite Order Curves 50

4.3 An OpenSSL Implementation 51

5 Hardware Implementations 53
A Magma Verification Code for Parallel ADD 56
IV puKummer: Efficient Hyperelliptic Signatures and Key Exchange 59
1 Introduction 59
2 High-level Overview 61
2.1 Signatures Lo 61

2.2 Diffie-Hellman Key Exchange. 64

3 Algorithms and Their Implementation 64
31 TheFieldF, 64

3.2 The Curve C and Its Theta Constants 66

3.3 Compressed and Decompressed Elementsof J, 67

3.4 The Kummer Surface K, 69

3.5 Pseudo-additionon K, 69

4 Scalar Multiplication 0 000 71
4.1 Pseudomultiplicationon Cp 71

4.2 Point Recovery from ICC toJe, oo 74

4.3 Full Scalar Multiplication on jc 75

5 Resultsand Comparison 77
V qDSA: Small and Secure Digital Signatures 81
1 Introduction 82
2 The gDSA Signature Scheme 83
2.1 The Kummer Variety Setting 84

2.2 BasicOperations 84

Contents ix

2.3 The qID Identification Protocol 85

2.4 Applying Fiat-Shamir 87

2.5 The gDSA Signature Scheme 87

3 Implementing qDSA with EllipticCurves 90
3.1 Montgomery Curves 90

3.2 Signature Verification 91

3.3 Using Cryptographic Parameters 92

4 Implementing gDSA with Kummer Surfaces 92
41 Constants 93

4.2 Fast Kummer Surfaces 95

4.3 Deconstructing Pseudo-doubling 95

5 Signature Verification on Kummer Surfaces 98
5.1 Biquadratic Forms and Pseudo-addition. 98

5.2 Deriving Efficiently Computable Forms 99

5.3 Signature Verification 101

5.4 Using Cryptographic Parameters 101

6 Kummer Point Compression. 103
6.1 The General Principle 104

6.2 From Squared Kummers to Tetragonal Kummers 105

6.3 Compression and Decompression for K54 107

6.4 Using Cryptographic Parameters 110

7 Implementation L L Lo L 110
7.1 Core Functionality 111

7.2 Comparison to PreviousWork 111

A Elliptic Implementation Details 114
A.1 Pseudoscalar Multiplication 114

A.2 The BVALUES Subroutine for Signature Verification 114

B Kummer Surface Implementation Details 116
B.1 Scalar Pseudomultiplication 116

B.2 Subroutines for Signature Verification 116

B.3 Subroutines for Compression and Decompression 118

VI On Kummer Lines with Full Rational 2-torsion 121
1 Introduction L 121
2 Notation 123
3 Maps between Kummer Lines 125

3.1 Models with Rational 2-torsion 126

X Contents

3.2 Actionsof Pointsof Order2 129

3.3 Hybrid Kummer Lines 131

4 Isomorphism Classes over Finite Fields 133
4.1 Identifying Kummer Lines 133

4.2 Canonical KummerLines 134

4.3 Squared and Intermediate Kummer Lines 134

3 Post-Quantum Cryptography 137
VII Efficient Compression of SIDH Public Keys 139
1 Introductiono 140
2 Constructing TorsionBases 146
2.1 Square Roots, Cube Roots, and Elligator2 147

2.2 Generating a Torsion Basis for E(F2)[2°4] 148

2.3 Generating a Torsion Basis for E(F2)[3%] 149

3 The Tate Pairing Computation 151
3.1 Optimized Miller Functions 152

3.2 Parallel Pairing Computation and the Final Exponentiation . . 155

4 Efficient Pohlig-Hellmanin pe 156
4.1 Arithmetic in the Cyclotomic Subgroup 156

42 Pohlig-Hellman 157

4.3 Windowed Pohlig-Hellman 158

4.4 The Complexity of Nested Pohlig-Hellman 159

4.5 Discrete Logarithmsin pipsz2o oL 161

4.6 Discrete Logarithmsin pigoso L. 161

5 Final Compression and Decompression 161
51 Compression 162

52 Decompression 163

6 Implementation Details 164
VIII Computing Isogenies between Montgomery Curves 167
1 Introduction L 167
2 Isogenies on Weierstrass Curves 169
3 Montgomery Form and 2-isogenies 172
3.1 The General Formula. 173

32 2-isogenies 176

3.3 Application to Isogeny-based Cryptography 178

Contents

3.4 Relating 2-isogenies and 4-isogenies

4 Triangular Form and 3-isogenies

4.1 The General Formula

4.2 3-isogenies

4.3 Application to Isogeny-based Cryptography

IX CSIDH
1 Introduction
2 Isogeny Graphs
3 The Class-group Action . .

4 Construction and Design Choices

5 Representing & Validating IFp-isomorphism Classes

6 Non-interactive Key Exchange

7 Security
7.1 Classical Security . .
7.2 Quantum Security .
7.3 Instantiations
8 Implementation
8.1 Performance Results

Discussion & Conclusions
Bibliography

Summary

Samenvatting (Dutch summary)
List of Publications

Curriculum Vitae

X1

180
181
181
184
185

187
187
192
195
199
201
203
205
206
208
212
214
218

221

227

257

259

263

265

Xii

Contents

Introduction

The main theme (and title) of this thesis is “modern curve-based cryptography”.
Indeed, the history of cryptography is long and leads back to the early Egyptians and
Romans. Its principal goal was (and is) to provide means for secure communication.
However, one must wonder what it means to be secure. A typical example sketches a
Roman general during wartime sending a message to one of their soldiers. This leads
to several questions. Firstly, is there a chance that this message may be intercepted?
If so, is the content of the message sensitive and not to be read by any other party?
If the answer to the second question is positive, the general could consider using
a cipher to encrypt the message. Yet, the sensitivity of the content may depend on
the timeliness of the interception. If the general wants to send the message “Attack
in one day!” he likely does not care if the opponent deciphers it in two days. The
cipher the general chooses therefore depends not only on how good the opponent
is at deciphering it, but also on how much time they have to do so. During Roman
wartime, there were no doubt many more factors to take into consideration. The
main takeaway is that understanding the context in which cryptography is used is
crucial to understand its security.

This inherently leads to the question of what context cryptography is used in
present day. The answer, as usual, is that it depends. Much of our communication
nowadays is done through the internet, say our laptops connecting to a server of
a bank to perform a transaction. Hopefully, only a small trusted set of people can

access our laptop while only the bank has access to its server.!

Untrusted parties
can observe the communication between the laptop and the server, but can not view
computations executed locally. Such parties are typically called passive adversaries
(since they do nothing but listen). At first glance the situation appears analogous
to that of the Roman general and the soldier, but there is a crucial difference in as-

sumptions. We can reasonably presume that the Roman army has had time to pre-

! Whether or not to trust banks is a separate issue that has lead to the development of cryptocurrencies
(or awkwardly abbreviated as crypto), which is not to be confused with cryptography (or currency).

Xiv Introduction

pare (say, in Rome) before going out into the battlefield. During this time, they could
have communicated a secret value (or a key). Once out in adversarial territory, they
can use this shared key to encrypt their messages. Note that such an assumption
cannot sensibly be made for a person connecting to the server of their bank. For
example, what if one lives outside of Europe and wants to connect to a server in the
Netherlands? Even if one could bootstrap communication by having a private meet-
ing once, one should consider what happens if the key is compromised. Moreover,
is such a setup feasible for banks with huge customer bases? Indeed, this problem is
difficult and is known as the key distribution problem.

It is (more or less) in this context that a major breakthrough in cryptography
happened. In 1976 the (now) famous cryptographers Whitfield Diffie and Martin
E. Hellman [DH76] proposed to split the cryptographic primitive in two parts; a
private operation that is done locally by each party separately (on the laptop and on
the server) using a private key, leading to a public piece of data called a public key.
The laptop and the server can now exchange their public keys and derive a shared
key from them. Aslong as the passive adversary cannot learn any information about
the private keys or the shared key from learning the public keys, we can assume the
two parties have exchanged a key that is only known to them and henceforth use a

cipher for communication.

Although extremely elegant in its simplicity, it is not immediately obvious how
such a system can be achieved. This explains why the work of Diffie and Hellman
was such a big leap forward. Not only did they present the idea of public-key
cryptography, they also provided a working instantiation. Although not as secure
as initially believed, it is worthwhile noting that their original proposal still holds
up today. However, other primitives have since gained in popularity. Besides the
well-known RSA cryptosystem [RSA78] by Rivest, Shamir and Adleman that was
found quickly after the introduction of public-key cryptography, the instantiations
based on elliptic curves by Miller [Mil86] and Koblitz [Kob87] are increasingly being
used. The latter systems are typically referred to as elliptic-curve cryptography (ECC)
or (slightly more generally) as curve-based cryptography. Their main advantage com-
pared to earlier proposals is that the keys remain small, even when adversaries are
assumed to have relatively extensive computational power. In this thesis, we only
concern ourselves with curve-based primitives and we refer to §I for a more tech-
nical introduction. We should emphasize that curve-based cryptography is ubiqui-
tous. For example, it is present in the TLS [Res18] protocol that dictates the afore-
mentioned secure internet communications (known mostly for the appearance of a

green lock next to the URL in a web browser). Moreover, it is used for securing bio-

XV

metric passports or identity cards [ICA15] (e. g. Dutch identity documents), popular
messaging applications such as Whatsapp [Whal7] and Signal [Sig] and operating
systems like Android [And] and iOS [App]. In short, there are too many examples to
list; it is not unreasonable to expect that essentially every person reading this thesis
uses curve-based cryptography on a daily basis.

We return to the question of context in modern-day cryptography. As a result of
the protocol by Diffie and Hellman, we can assume adversaries to only access public
data. The question now shifts to what “public” means. Certainly anything that is
purposefully published by the communicating parties is public. However, an ad-
versary could have access to the network over which this is communicated. In that
case they can measure the time it takes for the messages to be delivered and, more
interestingly, how long it takes a party to respond. This potentially leaks a little bit
of information about the private computation. Such attacks are referred to as timing
attacks and were first introduced by Paul Kocher [Koc96]. If an adversary has access
to a device (e. g. a passport or identity card), not only can they measure the time the
operations take, but also (say) measure the power consumption or electromagnetic
emanation [KJJ99]. More generally, such unintended channels of potential leakage
of private information are called side channels. The exploitation of side channels has
turned out to be a very fruitful method of attack. Even stronger adversaries can, for
example, try to inject faults in the (private) computation by optical means (i. e. shoot
a laser) or by means of power spikes [BDL97]. These faults could cause an erro-
neous execution of the algorithm that leads to knowledge about the private key. An
attacker with these capabilities is called active. As such, implementing curve-based
protocols on devices with such strong (yet realistic!) adversaries is a non-trivial task.
Regardless, the classical cryptographic schemes based on elliptic curves have proven
to be resistant for decades (potentially with the use of appropriate additional coun-
termeasures, see e. g. [Cor99]).

This leads us to the final and most recent adversarial model that has arisen due
to the advances of quantum computation. Assuming that an adversary has ac-
cess to a large enough quantum computer, the security of the public-key cryptosys-
tems described in this section completely disappears due to an algorithm of Peter
Shor [Sho97]. At this moment, significant resources are spent towards advancing the
field of quantum computing. The largest quantum computer in existence is built by
Google and consists of 72 (physical) quantum bits (qubits) [Kell8]. It is estimated
that 2330 (logical) qubits are required to run the algorithm of Shor to break moder-
ate elliptic-curve cryptographic parameters [Roe+17, Table 2], but it is unclear when
(and if) this number will be reached. Notice the discrepancy between physical and

xvi Introduction

logical qubits; it is expected that many physical qubits are necessary to build a single
logical qubit.

Although this adversarial model is not yet realistic (as far as we know), the field
of cryptography should be prepared when it becomes so. For that reason, the Na-
tional Institute of Standards and Technology (NIST) has initiated standardization
for public-key cryptographic schemes that resist quantum adversaries [Nat16]. It
is not immediate that protocols based on (elliptic) curves can be adapted to be se-
cure against quantum adversaries. Indeed, significantly different techniques are em-
ployed [Cou06; RS06; JDF11] and the resulting research direction is referred to as
isogeny-based cryptography. In particular, it underlies SIKE [Jao+16], one of the 82
submitted proposals to the standardization effort of NIST and one of 26 proposals
remaining in the (currently ongoing) second round. Again, the main advantage of
the protocol based on elliptic curves is the small size of the (public) keys. However,
the isogeny-based protocols incur a much more significant slowdown compared to
other schemes.

In the first part of this thesis we work towards simply and securely implementing
curve-based primitives against classical (i. e. non-quantum) adversaries. Although
minimizing the time spent on computing keys and signatures is tempting to opti-
mize for, it will typically come at a cost. For example, the fastest formulas for most
(if not all) forms of elliptic curves have exceptional cases that may be exploited by an
adversary. Moreover, one must be even more careful in the presence of adversaries
that have access to side-channels. One may instead want to opt for formulas that are
simpler and easier to implement, thereby more naturally excluding certain attack
vectors. Due to the increasing number of online devices with low resources, another
typical trade-off is between speed, code size and memory usage. We believe that
the most important feature of an implementation is its security, which is strongly
connected to the simplicity and size of the underlying code. In the second part we
look towards isogeny-based protocols, conjectured to be secure against quantum ad-
versaries (i. e. post-quantum secure). Although similar trade-offs can be made, these
protocols are less standard and much more sensitive to change. As such, the focus of
these chapters is aimed towards understanding the related theory, and thereby im-
proving the efficiency and size of the primitives. In fact, in Chapter IX we propose a
new post-quantum primitive. In short, this thesis is divided into three parts;

Part 1. The first part (Chapters I & II) gives an introduction to the theory that under-
lies the rest of the thesis. That is, we discuss the basics of elliptic and hyperel-
liptic curves and their usage in cryptography. There is no claim of novelty in
this part, and its intention is simply to provide the necessary background.

Xvii

Part 2. The second part (Chapters III-VI) considers contributions to classical cryp-
tographic protocols. More precisely, protocols that are secure under the as-
sumption that the adversary does not have access to a quantum computer. In
essence, we improve the security and efficiency of protocols for key exchange
and digital signatures based on the discrete logarithm problem in the (Kummer

variety of the) Jacobian of curves of genus 1 or 2.

Part 3. The final part (Chapters VII-IX) makes contributions to protocols based on
isogeny problems, which are thought to be secure against quantum adver-
saries. We improve the efficiency of the SIDH protocol and its key compression
methods, and present the new primitive CSIDH.

Contributions

This work is organized as a sequence of (mostly published) papers, with minor mod-
ifications. These changes are made to align notation and lay-out of the different pa-
pers, and to combine overlapping material. This is done with the intent to improve
readability and should not affect the content. As such, there is no reason to read the
thesis sequentially (although the order is mostly chronological). In particular, refer-
ences to tables, figures and equations do not include chapter numbers. In all cases
this means that the reference points to within the chapter itself. For any exception
the chapter number will be explicitly included. Many chapters also include software,
which is all made available (most of which in the public domain) at

https://joostrenes.nl

unless mentioned otherwise. In the rest of this section we briefly summarize the

contents of each chapter, and highlight our own contribution.

Complete Addition Formulas (Chapter III)

In the first chapter we consider the arithmetic of elliptic curves present in many
standards. That is, curves in (short) Weierstrass form defined over a prime field IF,
whose group of rational points over IF, has prime order. Such curves were known
to have complete addition formulas (i.e. formulas that work on all pairs of points
as input), but they incurred a tremendous slowdown compared to the incomplete
formulas. In this chapter we significantly improve these formulas. Although a minor

loss of efficiency remains (of about 30-40% in software depending on parameters),

https://joostrenes.nl

xviii Introduction

the implementation naturally simplifies and should give users more confidence in

their security. The chapter is mostly based on the paper

Joost Renes, Craig Costello, and Lejla Batina. “Complete Addition For-
mulas for Prime Order Elliptic Curves”. In: Advances in Cryptology — EU-
ROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien Coron. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 403-428.

A convenient property is the parallelizability of the formulas, which is especially
exploitable in hardware. We work out efficient algorithms for 1-6 cores and apply
them in a hardware implementation in

Pedro Maat C. Massolino, Joost Renes, and Lejla Batina. “Implementing
Complete Formulas on Weierstrass Curves in Hardware”. In: Security,
Privacy, and Applied Cryptography Engineering. Ed. by Claude Carlet, M.
Anwar Hasan, and Vishal Saraswat. Cham: Springer International Pub-
lishing, 2016, pp. 89-108.

This essentially comprises of §5 of Chapter III.

Contribution. I am the main author of the work in the first paper. I developed
the optimized formulas and algorithms in §2, including their inclusion in OpenSSL
in §4.3 and their Magma implementations. Moreover, I wrote and implemented (in
Magma) the parallel versions of the second paper that appear in §5 and the appendix.
I'have also written the optimality analysis in §3.

Digital Signatures from Kummer Varieties (Chapter IV & V)

The next two chapters consider the practicality of signature schemes based on the
efficient arithmetic on Kummer varieties. In Chapter IV we present the results of

Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. “yKummer:
Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers”.
In: Cryptographic Hardware and Embedded Systems — CHES 2016. Ed. by
Benedikt Gierlichs and Axel Y. Poschmann. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 301-320,

which provides implementations of the Diffie-Hellman key exchange and Schnorr
signature scheme based on a Kummer surface of a genus-2 hyperelliptic curve. The
software is written for the AVR ATmega and ARM Cortex MO architectures, out-
performing all other existing schemes and demonstrating its applicability for low-
resource devices. In this work we follow the approach of Chung, Costello and Smith

XiX

[CCS17] of performing all scalar multiplications on the Kummer surface via project-
ing and recovering. However, this leaves some complex operations to be performed
on the Jacobian, leading to increased code complexity and memory usage. An ar-
guably more elegant approach slightly modifies the signature scheme itself to be
naturally instantiated with a Kummer variety. This leads to the qDSA signature
scheme, which is presented in

Joost Renes and Benjamin Smith. “qDSA: Small and Secure Digital Signa-
tures with Curve-Based Diffie-Hellman Key Pairs”. In: Advances in Cryp-
tology — ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Cham: Springer International Publishing, 2017, pp. 273-302.

On top of a theoretical security analysis of the scheme and highly efficient imple-
mentations on the same two architectures as before, we also show how to efficiently
instantiate the necessary operations (i. e. signature verification and public-key com-
pression) with genus-2 Kummer surfaces.

Contribution. I have developed the pKummer library on both the AVR ATmega
and ARM Cortex MO0 platforms, which is the main contribution of the first paper. I
have also co-developed the qDSA signature scheme, and wrote its proof of security.
Moreover, I created the qDSA library consisting of a C reference implementation and
software for the AVR ATmega and ARM Cortex MO platforms.

On Kummer Lines with Rational 2-torsion (Chapter VI)

The final chapter of Part 2 studies the relations of the various Kummer lines that
have appeared in the literature. In the presence of full rational 2-torsion, we pro-
vide explicit maps between Montgomery curves, (twisted) Edwards models and
(squared) Kummer lines. This significantly simplifies the treatment of Karati and
Sarkar [KS17], who demonstrate the feasibility of the squared Kummer line on plat-
forms with SIMD instructions. In

Huseyin Hisil and Joost Renes. On Kummer Lines With Full Rational 2-
torsion and Their Usage in Cryptography. Cryptology ePrint Archive, Re-
port 2018/839. https://eprint.iacr.org/2018/839. 2018

we present an easy framework for moving between the different models with iso-
morphisms. This improves interoperability of the models and simplifies the task of
an implementer. In particular, this allows for a straightforward generalization of the

qDSA signature scheme to the squared Kummer line.

https://eprint.iacr.org/2018/839

XX Introduction

Contribution. I am a main contributor of the work that appears in this paper. In
particular, I developed the library implementing qDSA based on the squared Kum-
mer line on the ARM Cortex M0 platform.

Efficient Compression of SIDH Public Keys (Chapter VII)

The main advantage of SIDH compared to other post-quantum scheme is the rela-

tively small size of its public keys. This chapter is based on

Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. “Efficient Compression of SIDH Public Keys”. In:
Advances in Cryptology — EUROCRYPT 2017. Ed. by Jean-Sébastien Coron
and Jesper Buus Nielsen. Cham: Springer International Publishing, 2017,
pp- 679-706,

which shows how to achieve even smaller public keys. It is based on the work
by [Aza+16] but improves on it in multiple ways. We provide techniques for effi-
ciently sampling torsion bases on a curve, significantly improve the pairing compu-
tations and obtain extremely efficient discrete logarithms in smooth cyclic groups.
Moreover, we show how to compress the keys even further at essentially no cost.

Contribution. I am a main contributor to all content in this chapter. In particular,
I created the optimized discrete logarithm algorithm of §4 and the (de)compression
algorithms of §5. In addition, I have significantly contributed to the C and Magma
libraries.

Computing Isogenies between Montgomery Curves (Chapter VIII)

The speed of supersingular-isogeny Diffie-Hellman is for a large part determined by
the efficiency of the arithmetic of the elliptic-curve model and its isogeny formulas.
A particularly popular form is the Montgomery form, which is used in the currently
most optimal implementations of SIDH. This chapter is based on

Joost Renes. “Computing Isogenies Between Montgomery Curves Using
the Action of (0,0)”. In: Post-Quantum Cryptography. Ed. by Tanja Lange
and Rainer Steinwandt. Cham: Springer International Publishing, 2018,
pp. 229-247,

and studies the isogeny formulas between elliptic curves in Montgomery form, ex-
panding on and simplifying the work of [CH17]. That is, we show that the isogeny

XX1

formulas generalize to any group not containing the point (0,0) (and in particular
2-isogenies) and provide simplifications to the proofs. We also include potential new
models that could lead to elegant isogeny formulas, though they do not lead to faster
implementations of SIDH as of yet.

Contribution. Iam the sole author of the work in this paper.

CSIDH (Chapter IX)

The last chapter proposes a new cryptographic primitive for key exchange, which
is strongly related to the work of Couveignes [Cou06] and Rostovtsev and Stol-
bunov [RS06]. It is based on the paper

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: Advances in Cryptology — ASIACRYPT 2018. Ed. by Thomas
Peyrin and Steven Galbraith. Cham: Springer International Publishing,
2018, pp. 395427,

and replaces the class group action arising from the endomorphism ring of an ordi-
nary elliptic curve by a class group action related to the IF,-rational endomorphism
ring of a supersingular elliptic curve. The main upside is the fact that the group of ra-
tional points over IF), has exactly size p + 1, allowing to easily select primes such that
the curves have extremely smooth group orders. This leads to significantly faster
evaluation of isogenies, while retaining the extremely small public keys. Moreover,
we show how to efficiently validate public keys. As a result, the key exchange sup-
ports static public keys and is considered non-interactive.

Contribution. The main idea of this work is attributed to the first author. The paper
is a collaborative effort, in which my contributions focus on the instantiation and its
arithmetic, methods of public-key validation and the corresponding security analy-
sis (§§4-8). The optimized C and assembly implementation is credited to the fourth
author.

xxii Introduction

List of Symbols

ADD

n

>

@) 6 (@) =

char

cl

a, s, neg

M/ S/ mC/ E/ I

Additive group operation.

Affine space of dimension 7.

Algebraic closure of a field k.

Algebraic curve.

(1) Base point of an elliptic curve or (2) Endomorphism ring.
Big-O complexity.

Characteristic of a field.

Class group.

Concatenation.

Cost associated to a finite field addition (a), subtraction (s) and
negation (neg).

Cost associated to a finite field multiplication (M), squaring (S),
multiplication by constant ¢ (m.), exponentiation (E) and inver-

sion (I).

Xxiv List of Symbols

DBL Doubling operation in a group.

af Differential of a rational function f.

Py n-division polynomial for some integer 7.
Pic Divisor class group.

div(f) Divisor of a non-zero rational function f.
Div Abelian group of divisors.

Prin Group of principal divisors.

X Dual of an element x.

&y Set of elliptic curves over a finite field IF, with a given endo-

morphism ring.

E Elliptic curve.

k Field.

F, Finite field of order 4.

Gal Galois group.

a,b,cl Ideals in an order of a quadratic number field.
J Jacobian.

SK,PK,K Private (SK), public (PK) and shared (K) keys.

K Kummer surface.

K Kummer surface (general model).

log Logarithm in base 2.

MADD Mixed addition in group of points of an elliptic curve.

N(x) Norm of an element x.

o0 Point at infinity on an elliptic curve.

X,y Projection maps to the x-coordinate or y-coordinate of an ellip-

tic curve.

List of Symbols XXV

P Projective space of dimension 7.
(®) Rational numbers.

L Riemann-Roch space.

Z Ring of integers.

Z/NZ Ring of integers modulo N.
* Star operator denoting the action of a class group on the set of
(isomorphism classes of) ordinary elliptic curves.

® Tensor product.

XXVi List of Symbols

Part 1

Background

Chapter

Elliptic and Hyperelliptic Curves

The main theme of this thesis is curve-based cryptography, so we begin by introduc-
ing the notions that are encountered throughout the different chapters. There are
several great sources to find more extensive introductions to (hyper)elliptic curves
and their cryptographic properties, for example the books by Silverman [Sil09] and
Galbraith [Gal12]. The intent of this chapter is to summarize the relevant theory and
fix notation, often referring back to established works for further details.

1 Algebraic Curves

Throughout this chapter (and indeed, the whole thesis) we follow [Sil09] and let k
be a perfect field (i. e. every finite extension is separable). In a cryptographic context
k=]Fq is a finite field of g elements, in which this assumption holds true. The main
consequence of interest is that the algebraic closure k is a Galois extension of k, in
which case the fixed field

G/ — fA e k| o(A) = Aforall o € Gal(k/k)}

of k/k is the base field k. Moreover, for any finite extension K/k, the fixed field of
the (necessarily Galois) extension k/K is K. This allows us to initially make many
definitions and statements over k, and only restrict to K whenever necessary (i. e.
when talking about K-rationality). For example, we let A" and IP"* denote affine resp.
projective n-space over k, which have a canonical action of Gal(k/K) (i. e. coordinate-
wise). We write A" (K) resp. IP"(K) for the points fixed under this action (i.e. their

4 Chapter 1. Elliptic and Hyperelliptic Curves

K-rational points). This applies analogously for many concepts that we define, and
we return to this in more detail at the end of the section.

Algebraic varieties. As is commonplace, we denote elements of A" by comma-

separated tuples (x1,...,x,), and elements of P" by colon-separated capitalized tu-

ples (Xp:---: Xy). Foranyi € {0,...,n} there exists an embedding
Xi: A" — P"
(1, c,xn) = (X1 rxiq sl ixigq X)),

and since any element of IP" has a non-zero coordinate, projective space is covered by
the union of the x;(A"). As usual, the affine and projective n-spaces carry the struc-
ture of a topological space via the Zariski topology [Har77, §1.1-1.2]. The closed sub-
sets of affine (resp. projective) n-space are the sets of common zeroes of polynomials
(resp. homogeneous polynomials) of (necessarily finitely generated by Hilbert’s ba-
sis theorem [Hil90]) ideals I inside k[x1, ..., xu] (resp. k[X, . .., Xn]), viewed as func-
tions to k. We define an affine (resp. projective) algebraic variety V to be a non-empty,
closed and (topologically) irreducible subset of A" (resp. IP").

Remark 1. Given a projective algebraic variety V C IP”, we note that V N x;(A") is an
affine variety whose projective closure is V [Sil09, Proposition 1.2.6]. We shall often
identify the two without explicit mention. For example, although elliptic curves are
often defined via their affine Weierstrass model in A2, we are always interested in

their projective closure in IP? (which includes an extra point at infinity).

For a (projective algebraic) variety V' C IP" defined by an ideal I, we define its
function field k(V') as the set of fractions G/ H of homogeneous polynomials (of equal
degree) G, H €< k[Xo, ..., X,] such that H ¢ I and under the equivalence relation
defined by Go/Hy = G;1/H;j if and only if GoHy — G1Hp € I [Sil09, Remark I1.2.9].
Elements of k(V) are referred to as rational functions. A rational function is said to be
reqular at a point P € V if there exists a representative in its equivalence class whose
denominator does not vanish at P. A rational map 1 between projective varieties
VCPtand W CP"isamapy = (fo: - : fm) : V — W where f; € k(V).
Note that this map is only well-defined at a point P € V if there exists a rational
function ¢ € k(V) such that all of the gf; are regular at P. In that case, (P) =
(gfo(P) : --- : gfu(P)) lies in W, and we say that 1 is reqular at P. The map ¢ is
a morphism whenever it is regular at all points in V. It is an isomorphism if it is a
morphism and there exists a morphism x : W — V such that ¢ o x and) o ¢ are the

identity map. Crucially, the choice of g is not necessarily the same for every point in

1. Algebraic Curves 5

V. However, for any point P € V there exists an open neighborhood U C V of P and
functions go, ..., gm € k(V) regular on U such that ¥(Q) = (g0(Q) : -+ : gm(Q))
for all Q € U [Har77, Lemma 1.3.6]. In other words, any morphism can be locally
described by well-defined fractions of homogeneous polynomials (of equal degree).

The dimension of an algebraic variety is its dimension as a topological space (and
coincides with the Krull dimension of its coordinate ring). A curve C is a projective al-
gebraic variety of dimension 1. It is called hyperelliptic when there exists a morphism
C — P! of degree 2. Every curve considered in this thesis is hyperelliptic (and, in
fact, any curve of genus 1 or 2 is hyperelliptic). A curve C C IP" is smooth at P when-
ever the rank of the Jacobian matrix (of a set of generators of the ideal defining C)
evaluated at P is n — 1 [Sil09, § I.1], and is called smooth (or non-singular) when it
is smooth at all points. In this thesis we shall mostly work with smooth curves. A

surface is a projective algebraic variety of dimension 2.

The Jacobian of a curve and its Kummer variety. A particularly useful property of
curves is that there exists a well-defined notion of zeroes and poles of rational func-
tions at smooth points, and every non-zero rational function only contains finitely
many such points [Sil09, Proposition I1.1.2]. Hence if C is a smooth curve, for each
point P € C we can define a valuation vp : k(C)* — Z [Gal12, Lemma 7.4.14] which
assigns to each function its order of vanishing at P. In other words, to any function

f € k(C)* we can assign a finite formal sum of points

div(f) = ¥ op(P)(P).

peC

More generally, any formal sum of points

where only finitely many np are non-zero is called a divisor. Its degree is deg(D) =
Y.pec np- The divisor D is called effective whenever np is non-negative for all P € C,
and we define the so-called Riemann—Roch space L(D) as

It is a finite-dimensional k-vector space [Sil09, Proposition IL5.2]. The set of divi-
sors is denoted Div(C) and forms an (abelian) group under addition with identity
0 (the divisor with np = 0 for all P € C), and the set Div’(C) of divisors of degree

6 Chapter 1. Elliptic and Hyperelliptic Curves

zero is a subgroup. The divisors of the form div(f) for f € k(C)* are called princi-
pal divisors, and the set of such divisors is denoted Prin(C). They are contained in
Div’(C) [Gal12, Theorem 8.3.14], and in fact form a subgroup [Gal12, Lemma 7.7.6].

The divisor class group (or Picard group) is the quotient group
Pic’(C) = Div®(C)/ Prin(C) .

The set of points of Pic’(C) is a projective algebraic variety,! which we refer to as the
Jacobian J¢ of C. Carrying over the group structure of Pic’(C), one can show that J¢
is in fact an abelian variety. The set K¢ = J¢ /= (i. e. the set of points where elements
are identified with their inverses) is also an algebraic variety, which we refer to as
the Kummer variety K¢ of C. The image of a point P € J¢ in K¢ is denoted by £P.
The Kummer variety does not inherit the abelian group structure of J;. However,
the operation {+P, £Q} — {£(P + Q), £(P — Q)} is well-defined via lifting to Je.
Moreover, since scalar multiplication on J¢ commutes with the negation map, the
Kummer variety does inherit a well-defined pseudo-scalar multiplication (m, £P) —
+[m]P. See §2 for more details.

Differentials and the genus. Let C be a smooth curve. We define the space of dif-
ferentials Q¢ on C to be the 1-dimensional k-vector space [Sil09, Proposition 11.4.2]
generated by formal elements df for f € k(C) with the relations [Sil09, §I1.4]

(1) d(f+g)=df +dg forall f,g€k(C),
(2) d(fg) =gdf + fdg forall f,¢ € k(C),
(3) dx=0 forall x € k.

The notions of poles and zeroes are also well-defined on non-zero differentials w €
Q¢ [Sil09, Proposition 11.4.3], giving rise to divisors div(w) in the same way as for
principal divisors. The divisors of elements of () all lie in the same divisor class.
This is called the canonical divisor class, and any element of that class is called a canon-
ical divisor. Although differentials are only explicitly used in Chapter VIII, the degree
of canonical divisors has a direct connection to the genus of a curve and is therefore
implicit throughout this whole thesis. The genus g of C is the (non-negative) integer
g =deg(D) + 1+ dimg £(div(w) — D) — dimg £(D) , where w € Q¢ is an arbitrary
non-zero differential.

! This is not immediately obvious in general. For elliptic curves the Picard group can always be em-
bedded into IP? using the Weierstrass model [Sil09, Proposition II1.3.4], while the Jacobian of genus-2
curves can be described as the locus of 72 quadratic equations inside P!> [CF96, §2]. These are the only
two cases we care about in this thesis.

2. Curves of Genus 1 and 2 7

Rationality. Until now, we have worked merely over the algebraically closed field
k. However, for cryptographic purposes the finite fields IF, of interest are not alge-
braically closed. As promised, we now discuss rationality of the objects discussed so
far over the perfect base field and its finite extensions.

We say that an algebraic variety V' C P" is defined over k when its generating
ideal has a generating set contained in k[Xj, ..., X,]. In that case, for any finite field
extension K/k, there is an action of Gal(k/K) on the points P = (Zy : - -+ : Z,) of V
where o(P) = (¢(Zp) : -+ : 0(Zy)) for any ¢ € Gal(k/K). We define V(K), called
the set of K-rational points of V, to be the set of points invariant under the action of
Gal(k/K). Moreover, suppose that V is defined over k and let W C PP be another
variety defined over k. Recall that a morphism ¢ : V — W is locally given by rational
functions with coefficients in k. Therefore, any o € Gal(k/K) acts on ¢ by acting on
its coefficients. We say that ¢ is defined over K when ¢(P) = o(¢)(P) forall P € V and
all o € Gal(k/K). Finally, there is an action of Gal(k/K) on any divisor D € Div(C)
by acting on the points in its support [Sil09, §I1.3] and we say that D is defined over K
if (D) = D for all ¢ € Gal(k/K). This action is well-defined on Pic’(C). We define
Pic%(C) to be the Gal(k/K)-stable subgroup of Pic’(C), and note that for all intents
and purposes we shall always work with Pic%(C). It is in bijection with J¢(K) for

any finite extension K/k.

2 Curves of Genus 1 and 2

We now turn our attention to the cryptographically most relevant curves. Note that
we could immediately restrict everything to the case where k is a finite field (i.e. a
field of prime order or its quadratic extension), but the general treatment is usually
not much different, while some results in this thesis hold in the general case too. We
elaborate on special properties of elliptic curves over finite fields, and in particular
their endomorphism rings, at the end of §2.1.

Classically, elliptic-curve cryptography is typically? based on the hardness of the
discrete logarithm problem in Pic?Fp (C) of a curve C defined over the prime field IF.
This can be solved via Pollard’s rho algorithm [Pol75] of time complexity O(v/N),
where N = #Pic?Fp (C). Alternatively, the discrete logarithm problem in the Picard
group of a curve of genus g over a field IF, can be solved with time complexity
O(p*~?/8) [Gau+07, Theorem 1], improving on the time complexity of the rho attack

for ¢ > 3. As such, all curves of genus ¢ > 3 require relatively large parameters

2 We do not consider binary fields at all in this thesis.

8 Chapter 1. Elliptic and Hyperelliptic Curves

to be securely implemented and are much less efficient than their genus 1 and 2
counterparts for which the rho method is the best known attack. Therefore we do
not consider the case ¢ > 3 in this thesis.

For protocols based on the hardness of isogeny problem:s, it is not entirely obvi-
ous that curves of higher genus do not hold value. However, although they are an
interesting direction of research, we only consider isogeny graphs of elliptic curves
in this thesis (which have already received cryptographic interest, see for example
the ongoing standardization process [Nat16] by NIST).

2.1 Elliptic Curves

There exist various more and less general definitions of elliptic curves in the litera-
ture, whose usefulness depends on the context they are being used in. In this thesis
we do not a priori restrict the chosen embedding into projective space (although we
always assume it exists), while we possibly want to consider points that are not de-
fined over the field of definition of the curve. Therefore, we follow [Sil09] and simply
define an elliptic curve E (over k) to be a smooth projective curve of genus 1 with a
specified base point O € E. We say that E is defined over k whenever E is defined

over k as a curve and O € E(k).

The abelian group of points. Perhaps the most well-known property of elliptic
curves is the natural bijection of the set of points on E with Pic’(E), giving a sim-
ple description of Pic’(E) as an abelian variety (i.e. E is its own Jacobian). More
explicitly, the map « that sends P to the class of the divisor (P) — (O) is a bijection
of sets [Sil09, Proposition I11.3.4], and the obvious abelian group structure of Pic’(E)
transfers to E. The identity element of the group of points on E is the specified base
point O. If E is defined over k, then x induces a bijection between E(K) and Pic%(E)
for any finite extension K/k.

For any (non-zero) integer m € Z there is an m-torsion subgroup E[m], which
is the set of points in E that are mapped to O under the multiplication-by-m map
[m] : E — E. If m is non-zero in k, then E[m] = Z/mZ x Z/mZ. Otherwise, if
char(k) = p for a prime p and r a positive integer, then E[p] is isomorphic to either
{0} or Z/p"Z [Sil09, Corollary 111.6.4].

Weierstrass form. Let E be defined over k. Given functions x, y € k(E) such that

L(2[0]) = (1,x), LEB[O]) = (1, x,y)

2. Curves of Genus 1 and 2 9

as k-vector spaces [Sil09, Proposition I1.5.8], we obtain the classical embedding P
(x(P) : y(P) : 1) onto the (projective closure of the) locus defined by the Weierstrass
equation

y2+a1xy+a3y:x3+a2x2+a4x+a6, ay,...,a6 €k (1)

inside the projective plane IP? [Sil09, Proposition I11.3.1(a)] such that O — (0:1:0).
If char(k) # 2,3 then one can apply an additional transformation to ensure that
a1 = ap = az = 0, and we refer to it as the short Weierstrass form.

The group law inherited from Pic?(E) now has a simple geometric description
in P2 [Sil09, Proposition 3.4(e)]. Three points P, Q,R € E satisfy P+ Q+ R = O if
and only if there exists a line intersecting E at all three points. In particular, choosing
R = O implies that for any affine point P = (s,t) € E we have —P = (s, —t), and
we note that these are the only two affine points whose x-coordinate is s. That is, the
degree-2 morphism E — P! mapping (X : Y : Z) — (X : Z) factors through K
and induces an isomorphism Kr = P! (of algebraic varieties).> For that reason, we
refer to Kr as the Kummer line of E. Moreover, it immediately implies that E is a
hyperelliptic curve.

The group operation E x E — E that maps (P,Q) — P + Q can be described
by rational functions and, in fact, is a morphism of algebraic varieties [Sil09, The-
orem II1.3.6]. The same is true for the negation map P — —P. However, we im-
mediately note that morphisms only have local descriptions as (tuples of) rational
functions and are not necessarily well-defined on all of E x E. Instead, they are only
well-defined on an open subset of E x E. Rational maps that compute the group law
on an open subset of E x E are called addition formulas [BL95]. Indeed, Bosma and
Lenstra [BL95, Theorem 1] prove that the full group law can not be described by a
single addition formula. For example, the following addition formulas [Sil09, §II1.2]
that add two points P = (s,t) and Q = (#,v) as R = (w, z) defined by

(v—1t)/(u—s)
= (tu —sv)/(u—s)

w=AN4+mA—a—s—u

A
, Where
v

z=—A4+m)w—v—a3
are only defined on the open subset where P and Q are both affine and s # u. As
shown by Lange and Ruppert [LR85], the space of addition formulas forms a 3-
dimensional k-vector space, and a basis for this space has been given by Bosma and
Lenstra [BL95, §5]. Although a single addition formula does not suffice for E x E,

often one is only interested in K-rational points of E for some finite extension K/k.
Interestingly, if there exist addition formulas defined on an open subset U of E x E

3 Since x = X/Z has a pole of order 2at O = (0: 1:0), we have O + (1:0).

10 Chapter 1. Elliptic and Hyperelliptic Curves

such that (E x E)(K) C U, then this single addition formula will suffice for comput-
ing the group law on E(K). In that case we call the addition formulas K-complete.
Such examples have been given, see e. g. [BL95, §5] or [AKR12, Remark 4.4]. This is
the main topic of discussion in Chapter III, in the cryptographic setting where k is a
finite field IF; and E(IF;) does not contain any points of even order.

Montgomery form. Suppose that char(k) # 2,3 and that E is defined over k. Then
one can embed E into IP? as the (projective closure of the) curve

by2 = 4+ax’+x,

which is known as a Montgomery curve [Mon87], with unique point at infinity O =
(0:1:0). It follows by smoothness of E that b(a? — 4) # 0. It is not immediate that
one can guarantee that 2,b € k and, indeed, this is not true in general. For example,
if k = IF) then one can find 4, b € k if and only if E or its (quadratic) twist contains an
IF,-rational point of order 4 [Ber+08, Theorem 3.3]. Every Montgomery curve has a
k-rational point Q = (0, 0) of order 2 whose action by translation on affine points acts
like inversion on the x-coordinate. Moreover, for any Q4 € E(k) such that [2]Qs = Q
we have Qg € {(1,£/(a+2)/b),(-1,+/(a —2)/b)}.

The geometric description of the group law with identity O as described for the
Weierstrass model in IP? carries over to Montgomery form. In particular, the inverse
of any affine point S = (s,t) is —S = (s,—t) and the map E — P! by sending
(X:Y:Z)— (X:Z)is again a morphism of degree 2. Although the formulas
for computing the group law on a curve in Montgomery form are typically lengthy,
the arithmetic significantly simplifies when we move to the Kummer line Kg = PL.
That is [Mon87, §10], given the abscissas xp resp. xg of two affine points P resp. Q
such that P # +Q and P,Q ¢ E[2] and given the abscissa xp_q of their difference,
we find

xpyq = (xpxg —1)%/ [xp-q(xp — xq)?],
Xjp = (xp —1)%/ [4xp(xp +axp +1)] .

Montgomery curves also have very efficiently computable isogenies on the x-line.
This is the main topic of Chapter VIIL.

(Twisted) Edwards form. Letc € k such that ¢® # cand E : x2 + y? = ¢?(1 + x%?)
is a smooth curve of genus 1. This is technically only a subset of the set of curves of
the form x? + y? = ¢?(1 + dx?y?) originally defined as Edwards curves by Bernstein

2. Curves of Genus 1 and 2 11

and Lange [BL07]. However, in this thesis we are only concerned with the cased = 1,
which corresponds to the form introduced by Edwards [Edw07], who was the first
to observe that its arithmetic with respect to the base point O = (0, ¢) is extremely
symmetric.

Embedding the curve into P? via (x,y) — (x : y : 1) gives two singularities at
(1:0:0)and (0:1:0). We can resolve these by blowing up (see e. g. [His10, §2.3.4]
or [Gal12, Lemma 9.12.18]) to obtain the curve

E/k=V(X?+Y?> - 3(Z2 +T?),XY -TZ) CP?

and embedding (x,y) — (xy : x : y : 1). When referring to Edwards curves, we
will mean their embedding into IP3. For affine points we will sometimes use the
affine notation and expect that this should not cause confusion. Note that this is a
purely theoretical tool, since once all is said and done, the cryptographically relevant
arithmetic is performed in a prime order subgroup in which all points are affine. At

infinity, an Edwards curve contains the elements

©1=(1:c:0:0), b =(1:0:¢:0),
©,=(1:-c:0:0), 6p=(1:0:—c:0),

where @1, @, resp. 61,0, have orders 2 resp. 4. Observe that if E is defined over k,
then O € E(k) implies that c € k. Moreover, if i € k is an element such that i? = —1,
then E[4] = Z/4Z x Z/4Z has generating set (01, (i,1)). That is, the 4-torsion is
rational over k or over a quadratic extension of k.

The geometric description of the group law differs from the Weierstrass model
[Are+11, §4]. For example, given any point P = (Py : P; : P, : P3) € E such that
P # @1,0, there exists a hyperplane H : P;Y — P,Z = 0 C P? that intersects E
in P, ®1, ®; and a unique fourth point Q = (—Py : —P; : P, : P3). It follows
that div(H/ (Y —cZ)) = (P) + (Q) — 2(0O), and hence Q = —P. In particular, the
inverse of an affine point (s, t) is given by (—s, t). Consequently, the projection to the
Kummer line is now obtained by projection to the y-coordinate

E-PL:(T:X:Y:Z)— (Y:2).

Notably, (®1,0,) — ((1:¢),(1: —c)). In other words, the projection to the Kummer
line corresponds to projecting away from {©1,®,} onto P'.
In general, one can not expect for E[4] to be rational over k or a quadratic ex-

tension. As such, not every curve admits an Edwards model over k. As a partial

12 Chapter 1. Elliptic and Hyperelliptic Curves

resolution, instead we can take a, ¢ € k such that ad(ax — 6) # 0 and let
ax® 4 g% =1+ ox%y?

be (the affine part of) a smooth projective curve of genus one. This is commonly
referred to as the twisted Edwards model [Ber+08], where the base point is chosen as
O = (0,1). It is a more general model than the Edwards model and is closely re-
lated to a Montgomery curve [Ber+08, Theorem 3.2(i)]. As above, we use the smooth
model inside IP? containing the elements

O =(1:v6/a:0:0), w;=(1:0:V5:0),
Oy =(1:-V6/a:0:0), wy=(1:0:-V5:0),

where ()1, (); have order 2 and w;, wy have order 4. Again, we have a projection to

P! by projecting to the y-coordinate, which in particular maps
(1, Q) > ((1 \/o/a), (1 —\/5/0&)) .

As opposed to Montgomery curves, the arithmetic on the curve itself is very sym-
metric. That is, given two affine points P = (s,t) and Q = (u,v) on a twisted
Edwards curve, their sum R = P 4 Q is given by

R— sv+tu tv—asu
A\ 1+stuv’ 1—0dstuv)~

Similar to the case of Montgomery curves, the arithmetic on the Kummer line is
also very elegant. In Chapter VI we provide very simple isomorphisms between the
Kummer lines of Montgomery curves, (twisted) Edwards curves and Kummer lines
arising from the theory of theta functions [GL09, §6].

Isogenies. An isogeny between elliptic curves (Eg, Op) and (Eq, O1) defined over k
is a non-constant morphism ¢ : Ey — Ej such that ¢(Op) = O;. If such an isogeny
exists, we say that Eg and E; are isogenous. For any isogeny ¢ : Eg — E; there exists
a unique isogeny ¢ : E; — Eg such that po ¢ = po ¢ = [deg¢] and we call ¢
the dual isogeny of ¢ [Sil09, Theorem I11.6.1]. The set of elliptic curves isogenous to a
given curve Ej is an equivalence class which we call the isogeny class of Ey. We say
that ¢ is defined over k if it is defined over k as a morphism of algebraic curves. It is
an isomorphism of elliptic curves if there exists an isogeny ¢ from (E;, O1) to (Eg, Op)
such that ¢ o i and ¢ o ¢ are the identity maps.

2. Curves of Genus 1 and 2 13

Elliptic curves are, up to isomorphism over k, classified by their j-invariant [Sil09,
Proposition III.1.4(b)]. A twist of an elliptic curve Ey/k is an elliptic curve over k
which is not isomorphic to Eq over k, but shares the same j-invariant. A morphism
¢ : Ey — E;p induces a field embedding ¢* : k(E;) — k(Eo) by pulling back rational
functions, which gives a finite extension k(Eg) / ¢*k(Ej) [Sil09, Theorem I1.2.4(a)]. We
say that ¢ is separable whenever the corresponding field extension is, and define the
degree of ¢ as deg(¢p) = [k(Ep) : ¢*k(E1)] [Gall2, Definition 8.1.6]. Any separable
isogeny over k has a finite kernel G C Ey, which is a Gal(k/k)-stable group [Gal12,
Exercise 9.6.5] of size deg(¢) [Sil09, Theorem I11.4.10]. In fact, any finite Gal(k/k)-
stable group H C E, gives rise to a separable isogeny ¢ : Ey — E defined over k such
that ker ¢y = H and E is defined over k, which is unique up to post-composition with
an isomorphism [Gal12, Theorem 9.6.19]. In that case we write E = E/H. One can
obtain an explicit description of ¢ and E/ H from H through Vélu’s formulas [Vél71];
in Chapter VIII we discuss alternatives when the action of ¢ on one affine point is
known.

An endomorphism of an elliptic curve E/k is an isogeny ¢ : E — E. The set of
endomorphisms, together with the zero map, forms a ring End(E) (under point-
wise addition and composition of isogenies) called the endomorphism ring. It con-
tains the ring of endomorphisms defined over k, denoted End(E), as a subring.
Both these rings clearly contain Z since they contain the maps [m| : E — E [Sil09,
Corollary II1.5.4]. The algebra End(E) ®z Q is called the endomorphism algebra. 1f
End(E) # Z we say that E has complex multiplication. In fact, there are only two
possible structures for End(E) if E has complex multiplication; it is an order in
End(E) ® Q, which is either a quadratic imaginary number field or a quaternion
algebra [Sil09, Theorem I11.9.3]. In the first case we call E ordinary, in the latter case
we say that E is supersingular. Given an isogeny ¢ : Ey — Ep, the endomorphism
rings of Ey and E; are not necessarily isomorphic, but the induced map

End(Ep) ® Q — End(E;) ® Q
Y= (9poyog)/[deg gl
does give rise to an isomorphism of endomorphism algebras [Koh96, pp. 7]. Conse-

quently, the property of being ordinary or supersingular is well-defined on isogeny
classes.

Elliptic curves over finite fields. Finally we restrict to the cryptographically most
interesting case when k = [is a finite field of size g = p" and E an elliptic curve

14 Chapter 1. Elliptic and Hyperelliptic Curves

defined over IF,. The Frobenius map on F; induces a (purely inseparable) map
n : E — EW@ by applying the Frobenius map to the coordinates of points on E,
where E(7) is the elliptic curve defined by the equation of E after applying the Frobe-
nius map to its coefficients. If E is defined over [F;, then E@ = E and we refer
to 7t as the Frobenius endomorphism. For any non-negative integer m, the endomor-
phism 77" — 1 is separable with kernel E(IF;n) [Sil09, Corollary I11.5.5], i.e. the [Fyn-
rational points of E are simply those fixed by 7t"". There exists a t € Z such that
7> —trr+¢q = 01in End(E) and we refer to t as the trace of Frobenius. By consider-
ing the action 77 on the Tate module [Sil09, §IIL.7] for any prime ¢ # p, one shows
that t = g + 1 — #E(IF;) [Sil09, Theorem V.2.3.1]. The number of possible traces is
relatively small; Hasse’s theorem [Sil09, Theorem V.1.1] tells us that || < /2q. The
endomorphism algebra End(E) ® Q contains the imaginary quadratic number field
Q(7) of discriminant D = #? — 44, so any elliptic curve over IF; has complex multipli-
cation. If E is ordinary, then End(E) ® Q = Q(7r). Otherwise, End(E) ® Q is strictly
bigger and E is supersingular. This happens if and only if t = 0 (mod p) [Sil09,
Exercise V.5.10].

Isogeny graphs over finite fields. Let E/IF; be an elliptic curve over a field of char-
acteristic p and let £ # p be a prime. Given a finite extension K/IF;, we denote by
Gk ¢ the f-isogeny graph over K, i.e. the graph whose nodes are K-isomorphism
classes of elliptic curves and whose edges are (separable) isogenies of degree ¢ over
K (up to post-composition with K-isomorphisms). When K = IF,, the isomorphism
classes can be represented by their j-invariants. Moreover, since E(IF,) [(] = Z/(Z x
Z./lZ, the curve E contains exactly ¢ + 1 subgroups of order ¢. These correspond to
£+ 1 outgoing isogenies from j(E). Note that typically (i.e. when j(E) # {0,1728},
see [Gall12, Remark 25.3.2]) every outgoing edge has a corresponding incoming edge,
since every isogeny induces a dual isogeny. Therefore, although isogenies techni-
cally have a direction, the isogeny graph can (almost) be thought of as an undirected
graph. The /-isogeny graph consists of ordinary and supersingular components.
Suppose that E/IF; is an ordinary curve with Frobenius endomorphism 7t of trace
t. By Tate’s theorem [Tat66, §3], the set of such curves forms an isogeny class. The
ring of [F-rational endomorphisms Endp, (E) is an order O C Q(t2 — 4q) contain-
ing Z[mt] [Sil09, Theorem I11.9.3]. Given an ideal a C O we define ¢4 : E — E/a to
be an isogeny with ker ¢ = (¢, kera. It is immediate that ker ¢4 is Gal(FF; /IF,)-
stable, and thus ¢ is defined over]Fl7 and E/ais well-defined up to]Fq—isomorphism.
As principal ideals in O correspond to endomorphisms, we obtain a well-defined ac-

tion * of the ideal class group cl(O) on the set X of IF;-isomorphism classes of curves

2. Curves of Genus 1 and 2 15

of trace t with endomorphism ring O by defining [a] * E = E/a, identifying the
curves with their IFj-isomorphism classes. This action is free and transitive [Sch87;
Wat69, Theorem 4.5], and we say that X is a principal homogeneous space for c1(O).
Note that typically one does not require the isogeny class to have fixed trace ¢, in
which case there are two orbits of the action of cI(O) on the set of [F;-isomorphism
classes with endomorphism ring O (the second orbit are the classes of curves with
trace of Frobenius —t). However, these are simply two isomorphic copies of the same
graph (see [DFKS18, §2.2] for more details) and so we may identify them.

Now let E/F; be supersingular. There exist only finitely many isomorphism
classes of supersingular elliptic curves, and their j-invariants are contained in IF
[Sil09, Theorem V.3.1(a)]. As a result, every isomorphism class can be represented
by a supersingular elliptic curve defined over IF». More precisely, the number of
isomorphism classes is exactly |p/12] + ¢, [Gall2, Theorem 9.11.11], where

0 ifp=1 (mod12),
ep=141 ifp=57 (mod 12),
2 ifp=11 (mod 12).

The set of supersingular isomorphism classes forms a connected component in G ,
[Koh96, Corollary 78], necessarily (£ 4 1)-regular almost everywhere (i. e. away from
j = 0,1728) and satisfies the Ramanujan property [Piz90]. Note that although setting
k = FF,» would suffice to have Gy contain all supersingular isomorphism classes
as nodes, this does not necessarily imply that all /-isogenies are defined over k. We
expand on this in a cryptographic context in §I1.2.

Finally, suppose that E is supersingular and defined over [F, for p > 5. Its IF-
rational endomorphism ring Endp, (E) is an order O C Q(y/=p) containing Z[7].
The graph of such curves is contained in the supersingular isogeny graph over IF ,
but much more closely resembles the (volcano) structure of the ordinary case [DG16].
In Chapter IX we elaborate on this case, and show how to obtain an efficient non-
interactive key exchange protocol.

Pairings. Finally, we briefly discuss bilinear pairings on elliptic curves. Although
the literature is vast, including all sorts of applications in cryptography, we only
consider the Weil and (reduced) Tate-Lichtenbaum pairing. Only the latter is used
in this thesis (see Chapter VII), to efficiently solve discrete logarithm problems on
supersingular elliptic curves of smooth order.

Let E/TF; be an elliptic curve and m a positive integer not divisible by p =

16 Chapter 1. Elliptic and Hyperelliptic Curves

char(F;). Given any divisor D = Y pcgnp(P) and rational function f € F4(E)
such that div(f) has support disjoint from D, we define f(D) = [Ipeg f(P)"?. We
denote by iy, the group of m-th roots of unity of F,, and define the Weil pairing
Wi : E[m] x E[m] — pm as wm(P,Q) = fp(Dq)/ fo(Dp), where Dp, D € Div’(E)
and fp, fo € F;(E) are such that

Dp ~ (P) - (0), div(fp) =mDp,
Dg ~ (Q)—(0), div(fg) =mDg,

and Dp and Dg have disjoint support. Note that there exist different definitions
of the Weil pairing [Sil09, §II1.8], which can be shown to be equivalent [Sil09, Ex-
ercise 3.16]. It is a bilinear, alternating, non-degenerate and Galois invariant map
[Sil09, Proposition II1.8.1]. The bilinearity and alternating properties lead to a strong
relation to (two-dimensional) discrete logarithm problems. That is, if E[m] = (P, Q)
and R = [a]P + [b]Q for some a,b € Z/mZ, then it follows that

wn(P,R) = wn(P,Q)", wm(Q,R) =wn(Q,P)".

In other words, the Weil pairing allows to reduce discrete logarithms in E to discrete
logarithms in p,,. It is not immediately obvious that this leads to a computational ad-
vantage. First, if m is exponentially large, then so are the degrees of fp and fo. How-
ever, wy, can be computed with complexity logarithmic in m due to an algorithm of
Miller [Mil04]. More problematic is the fact that ., is typically not contained in IF,,
but only in an extension IF ;. The smallest positive k is called the embedding degree
of m in qu. Although k is generally large, one can show that k < 6 whenever E is
supersingular (see e.g. [MOV91, Table 1]). In this thesis we only consider the case
where E is indeed supersingular (with k = 2), and hence do not need to worry about
the embedding degree.

A computationally more appealing pairing is the Tate-Lichtenbaum pairing [Lic69].
Let K be a finite extension of IF; such that E[m] C E(K). Then we define the pairing
as the function

byt E[m] x E(K)/mE(K) = K*/(K*)", (P,Q) — fp(Dg).

That is, the computation can again be performed via Miller’s algorithm, but requires
fewer Miller functions. Note that since K is a finite extension of [F; (say of degree k),
its multiplicative group K* is cyclic of order ¥ — 1. Moreover, since E[m] C E(K)
it follows that m | g€ — 1, and in particular K* /(K*)" = u,, through the (group)

2. Curves of Genus 1 and 2 17

isomorphism T : x X =1)/m, Although this causes a computational overhead,
the isomorphism is typically used to avoid working with cosets. We refer to ¢, :
E[m] x E(K)/mE(K) — py, defined by &, = T o t,, as the reduced Tate-Lichtenbaum
pairing. The (reduced) pairing is bilinear and non-degenerate [Eng14, Theorem 9].
Note, however, that the relation with the discrete logarithms above relied on the
pairing being alternating. Indeed, the (reduced) Tate-Lichtenbaum pairing does not
have this property in general (in fact, the definition of being alternating does not
even make sense since E[m] and E(K)/mE(K) are distinct objects). However, in the
cases of our interest we shall have E(K) = (Z/mZ)?* x (Z/¢Z)? for some prime
{ # m (see §2.1). In that case it is immediate that

mE(K) = (Z2/¢Z)?, E(K)/mE(K) 2 E[m].

We write e, : E[m] x E[m] — py, for the resulting pairing (which we also refer to
as the reduced Tate-Lichtenbaum pairing). Moreover, we shall always assume e, to
be alternating and therefore to be interchangeable with the Weil pairing for all our

purposes (this can easily be checked in specific cases).

2.2 Hyperelliptic Curves of Genus 2

Finally, we consider the case where C is a smooth curve of genus 2 over a field k such
that char(k) # 2. In this thesis, we only use genus-2 curves in protocols based on the
hardness of the discrete logarithm problem. In fact, only a single genus-2 curve is
used. Although everything we describe works for other genus-2 hyperelliptic curves
(say given in Rosenhain form), it does not lead to cryptographically secure protocols
unless #Pic?Fp (C) is divisible by a large prime. Such curves are not easy to find and,
in fact, the only one (satisfying also certain other cryptographic properties) that has
been found to date is the Gaudry-Schost curve. Therefore we do not lose much
generality by restricting our attention to this curve. As such, we fix p = 2! — 1 and
let k = IF,. Given the constants

A = 0x15555555555555555555555555555552,
U = 0x73E334FBB315130E05A505C31919A746,
v = 0x552AB1B63BF799716B5806482D2D21F3,

we define C/TF, to be the genus-2 curve defined by its Rosenhain form v = x(x —
1)(x —A)(x — p)(x — v). Itis (the quadratic twist of) the twist-secure curve found by
Gaudry and Schost [GS12] for which #J¢ (IF)) equals 16 - N for a 250-bit prime N.

18 Chapter 1. Elliptic and Hyperelliptic Curves

The Picard group. Contrary to the case of elliptic curves, there exists no bijection
between elements of Pic%p (C) and C(IFy). However, every divisor class of Pic%p)

can be uniquely represented by a divisor that is one of

@ o,
2 [R]-[0],
@) [PI+[Q]-2[0],

where P,Q and R are affine points such that xp # xg and O is the (unique) point
at infinity [Gall2, Theorem 10.4.1]. This is called a reduced divisor [Can87, §2]. A re-
duced divisor is commonly described by its Mumford representation [Mum93], which
simply keeps track of the affine points that identify it. That is, it is a pair of polyno-

mials (u(x),v(x)) where

1) (u(x),o(x)) = (1,0) ,
2 (u(x),v(x)) = (x — xR, YR) ,

3) (u(x),v(x)) = ((x —xp)(x — xq), Zg:g’;x + xQZg:fCI;y% :

An element of J¢(IFp) can therefore be represented by the coefficients of u(x) and
v(x), requiring (at most) 4 elements of IF, [Gal12, Lemma 10.3.10].

An algorithm by Cantor performs the group operation in the divisor class group
on reduced divisors in Mumford representation [Can87] and this theoretically suf-
fices to construct the most interesting cryptographic protocols. However, there are
some downsides to this algorithm. Not only is it rather slow, it is also hard to make
constant-time (i. e. with running time independent of its inputs). Alternatively, the
Picard group can be embedded into P'> [CF96, §2.1-2.2], giving an algebraic de-
scription of the Jacobian J; and its group law in terms of the curve coeffients [CF96,
Eq. 3.9.5]. Unfortunately the involved rational functions very quickly become un-
wieldy (i. e. much more computationally heavy than its genus-1 counterpart, see for
example the formulas provided in the appendix of [CF96]). As such, arithmetic on
the Jacobian is best avoided as much as possible (see e. g. Chapter IV and Chapter V).

Kummer surfaces. The situation significantly improves by projecting to the Kum-
mer variety, i.e. by projecting onto the first 4 coordinates of the Jacobian in IP'5,
and by making some assumptions on the curve model [Duq04, §4]. The locus of the
Kummer variety in IP? is described by a quartic

Ke: KT?> + KT+ Ko =0,

2. Curves of Genus 1 and 2 19

where K;(X, Y, Z) fori € {0,1,2} are homogeneous polynomials of degree 4 — i with
coefficients in k[A, u, v] [CF96, Eq. 3.1.9]. It is a 2-dimensional algebraic variety, so
we refer to IEC as the Kummer surface. More precisely, we call this model the general
model of the Kummer surface of J¢ (denoted by the tilde over K¢). Although the
performance improves over working directly on ¢, it is still not more efficient than
the analogous (and much simpler) elliptic-curve operations.

Finally, for use in cryptographic applications Gaudry [Gau07] proposed an alter-
native embedding into IP° as a quartic surface K¢ with locus described by

F(X?T? +Y?Z?%) + G(X?Z? + Y*T?)

X+ Y+ 24+ TH 4 2EXYZT =
+ H(X?Y? 4+ Z%T?)

7

where the constants E,F,G,H € k are determined by the curve C. The surface is
related to the theory of theta functions [CC86] and leads to much faster arithmetic.
We refer to K¢ as the fast Kummer surface,* though different variants exist (see e. g.
Chapter V). It is not necessarily true that E, F, G and H will lie in k. Indeed, not every
Kummer surface of a genus-2 hyperelliptic curve defined over k admits a fast model
over k. For instance, all 16 of the 2-torsion points of J; must be defined over k.

4 Notice a slight abuse of notation, since we use K¢ for both the Kummer variety as well as the fast
model of a Kummer surface. This should not cause confusion.

20

Chapter 1. Elliptic and Hyperelliptic Curves

oo 11

Curve-based Cryptographic

Protocols

Although the field of cryptography is broad, in this thesis we focus on two impor-
tant public-key cryptographic primitives: two-party key exchange and digital sig-
natures. Classically, this is achieved via the Diffie-Hellman key exchange and the
Schnorr signature scheme based on the hardness of the discrete logarithm problem. We
introduce these in §1. However, the introduction of large-scale quantum computers
would break these schemes through Shor’s (polynomial-time) algorithm [Sho97]. As
a result, alternative protocols based on the hardness of the isogeny problem were in-
troduced. We elaborate on them in §2.

1 Classical Cryptography

In this section protocols always take place in cyclic prime-order groups, so we fix
notation first. Let J be an (additive) abelian group of prime order N with identity
element O, and let P be a non-zero element of 7 (i.e. such that J = (P)). For any
integer m € Z, scalar multiplication is denoted by a map [m] : J — J such that
[m] : (m, P) — [m]P. Let K = J /= be the set of its elements under the equivalence
relation where Q and R are in the same class whenever Q = +R. As usual, the image
of an element Q € J in K is denoted by £Q. The notation suggests that [can be
instantiated as the (prime order subgroup of the rational points of a) Jacobian of a
hyperelliptic curve over IF;, while K is its Kummer variety. Indeed, in this thesis this

is always the case.

22 Chapter II. Curve-based Cryptographic Protocols

1.1 Diffie-Hellman

In their seminal work Diffie and Hellman [DH76] first proposed the idea of pub-
lic key cryptosystems, and provided an instantiation based on the discrete loga-
rithm problem in the multiplicative subgroup of finite fields. A decade later, Diffie-
Hellman groups were constructed as the group of rational points of an elliptic curve
(or the Jacobian of a hyperelliptic curve [Kob88]) over a finite field [Mil86; Kob87].

Diffie-Hellman in J. The protocol works in an arbitrary cyclic group J = (P),
which we assume to be of prime order N. Two parties Alice and Bob both choose
their respective private keys SK4 and SKp as an element of (Z/NZ)*, and publish
their public keys PK4 = [SK4]P and PKg = [SKp|P. Both parties can now derive the
shared secret K p = [SK4|PKp = [SKB|PK 4.

Diffie-Hellman in K. As remarked by Miller [Mil86], a completely analogous con-
struction works in the Kummer variety K. Given the image P of a generator of .7,
Alice (resp. Bob) again chooses their private key SK4 (resp. SKp) as an element of
(Z/NZ)*. Their public key is now PK4 = £[SK4]P (resp. PKp = £[SKp|P), while
the shared secret can be derived by both parties as K4p = £[SK4 - SKp]P.

Security. We only discuss the security of the Diffie-Hellman protocol in the group
J. The Diffie-Hellman problems for the protocol in K all reduce to the analogous
Diffie-Hellman problems in 7, with a minor security loss in the reduction. The
security of the Diffie-Hellman protocol relates to several problems:

Discrete Logarithm Problem. The discrete logarithm problem supposes to be given
non-zero P,Q € J and asks to find an m € (Z/NZ)* such that Q = [m]P. In
terms of Diffie-Hellman, it is the problem of retrieving a secret SK from a public
key PK. The best-known (generic) classical algorithm for solving the discrete
logarithm problem is Pollard’s rho algorithm [Pol75] using O(y/m) group op-
erations with negligible memory requirement. Note that we assume that index
calculus attacks [COS86] do not apply to the groups under consideration. The
problem is solved in polynomial time by Shor’s algorithm [Sho97] under the
assumption of having a large enough quantum computer.

Computational Diffie—-Hellman. The computational Diffie-Hellman problem (abbre-
viated CDH) requires to compute K43, given all public information of the pro-
tocol. This problem is no harder than the discrete logarithm problem, but is

not known to be equivalent. However, it is typically conjectured to be (see

1. Classical Cryptography 23

e.g. [Boe90; MW99]) and the currently best-known attacks on curve-based
Diffie-Hellman are attacks on the discrete logarithm problem (i. e. Pollard rho).

Decisional Diffie—-Hellman. The decisional Diffie-Hellman problem (abbreviated as
DDH) requires to distinguish K4p from a random element, given all public
information of the protocol. It is no harder than DDH, and indeed there exist
groups where CDH is hard yet DDH is easy. A large prime order group of
rational points of a supersingular elliptic curve would fall in this class through
the use of pairings (see §2.1).

Computational aspects. The group operation of J is written as a function ADD :
J xJ — J that maps (P,Q) — P+ Q. For the special case where P = Q we
define the function DBL : J — J as DBL(P) = ADD(P,P). Although naively
[m]P = P+ P+ ---+ P, this would have O(m) computational complexity (in the
number of group operations). It can more conveniently be computed via the double-
and-add algorithm of complexity O(log, m). There exist many variants of this algo-
rithm, most notably ones whose sequence of operations is independent of m under
the assumption that we know an upper bound on m (such algorithms lend them-
selves to easy constant-time implementations).

The set K does not (generally) inherit an abelian group structure from 7. Note
that although K has a well-defined operation XDBL : =P + =£[2]P coming from DBL
on J, the ADD operation becomes slightly more complicated. That is, we have a
function

XADD : {+P,+Q,+(P - Q)} — £(P+ Q)

referred to as differential addition (i.e. we can only compute the sum of two points
if we are given the difference). Since scalar multiplication on J commutes with the
negation map, the Kummer variety has a well-defined pseudo-scalar multiplication
LADDER : (m,+P) +— =£[m]P. This can be computed with O(log, m) calls to XADD
and XDBL through the Montgomery ladder [Mon85]. Typically one defines a function
XDBLADD that simultaneously computes XDBL and XADD at lower cost.

1.2 Schnorr Signatures

There exist many different (variants of) signature schemes based on the discrete log-
arithm problem. Here we describe the Schnorr signature scheme [Sch90], which is

(arguably) the most natural.

24 Chapter II. Curve-based Cryptographic Protocols

Alice ‘ Bob
SK4 <R (Z/NZ)* SKp <R (Z/NZ)*
PK4 < [SK4]P PKp < [SKg]P
PK 4, PKp
—t
Kap < [SKa]PKp Kap < [SKg|PK4

Figure 1. Diffie-Hellman key exchange in a cyclic group J = (P) of (large) prime order N.

Schnorr identification and signatures. We first define the Schnorr identification pro-
tocol (see Figure 2) in 7. Suppose that Alice has a secret key SK4 € (Z/NZ)* and
an accompanying public key PK4 = [SK4|P. She wants to prove knowledge of her
secret key SK 4 to Bob, without revealing any information about it (i. e. this is a zero-
knowledge protocol). By tying her identity to her public key PK 4 (e. g. via a certificate
authority), this provides a form of authentication from Alice to Bob. Alice starts
by selecting an ephemeral secret r € (Z/NZ)* and computing R = [r]P, and she
sends her commitment R to Bob. Upon receiving R, Bob selects a random challenge
c € Z/NZ and returns it to Alice. In turn, Alice computes

s=(r—c-SKy) mod N

and sends s to Bob. Bob accepts if and only if R equals [s]P + [c]PK 4.

Notice that this is an interactive authentication protocol. It can be made non-
interactive via the Fiat-Shamir heuristic [FS87]. That is, Alice can generate the chal-
lenge herself based on the commitment R by setting ¢ = H(R), where H is a random
oracle [BR93]. By instead selecting ¢ = H(R || M) for some message M, Alice can
compute a Schnorr signature (R,s) on M that can be validated by any party that has
access to her public key.

Security. A signature scheme in this thesis is considered to be secure if any party
that does not know SK4 is unable to forge signatures on any message not signed
before. That is, a signature scheme is secure when it is existentially unforgeable under
adaptive chosen message attacks. Any signature scheme constructed by applying the
Fiat-Shamir heuristic to a sigma protocol has this property [PS96]. A sigma protocol
is a three-round protocol that satisfies the properties of completeness, special soundness
and honest-verifier zero-knowledge [HL10, §6.2]. The Schnorr identification scheme
is such a sigma protocol, which is typically proved via the Forking Lemma [PS96,
Lemma 2] in the random oracle model. In Chapter V we construct a sigma proto-

2. Post-Quantum Cryptography 25

col similar to the Schnorr identification scheme that works in IC, and we define a

signature scheme in K via the Fiat-Shamir heuristic.

Alice ‘ Bob
r g (Z/NZ)*
R« [r]P -k
— c€Z/NZ

s« (r—c-SKg) mod N | ——
?

R = [s]P + [c|PK4

Figure 2. Schnorr identification scheme in a cyclic group J = (P) of (large) prime order N.

2 Post-Quantum Cryptography

The protocols in this section are based on (variants of) the isogeny problem, i.e. the
hardness of finding an isogeny between two curves in the same isogeny class. How-
ever, the structure of the isogeny graph is highly dependent on whether we are in an
ordinary or supersingular component, which results in significantly different proto-

cols (and attacks). We discuss them separately.

2.1 Supersingular Isogeny Diffie-Hellman

The key exchange based on (a variant of) the supersingular isogeny problem closely
resembles the Diffie-Hellman key exchange, and is therefore referred to as Super-
singular Isogeny Diffie—Hellman (SIDH). It was introduced by Jao and De Feo [JDF11]
in 2011 and has since received a lot of attention, resulting in the SIKE submission
[Jao+16] to the post-quantum standardization effort by NIST [Nat16]. The descrip-
tion of the SIDH protocol here includes some of the choices made in the SIKE sub-
mission, simplifying the treatment.

As before, we assume to have two parties Alice and Bob that wish to exchange a
secret. An important remark to make is that SIDH is not completely symmetric. That
is, it begins by having Alice and Bob choose between two distinct (small) primes
¢ and m. In what follows we assume Alice to have chosen the prime ¢ and Bob
the prime m. In practice this requires communication between Alice and Bob (as
opposed to regular Diffie-Hellman). For that reason, we denote the secret—public
key pair of Alice (resp. Bob) by (SKy, PKy) (resp. (SKm, PKy,)).

26 Chapter II. Curve-based Cryptographic Protocols

SIDH. Let /¢ and m be two small primes, and e, and e,; be two positive integers such
that p = £° - m*" —1is prime. Let Eg/IF > be a supersingular elliptic curve with the
Frobenius map 7 : (x,y) — (x?°,y”") having trace t = —2p. Then #Eo(F2) =
(p+1)? and the eigenvalues of the action of 7 on Ey[¢*] and Eg[m®"] are all 1.
Thus, Eo(F,2)[¢%] = (Z/£Z)* and Eo(F2)[m] = (Z/m™Z)*. As such, we
can fix (public) bases Eo[¢*/] = (P, Q) and Eg[m‘"] = (Py, Q) inside Eo(F).
The secret key SK; (resp. SKj;) is a random element of Z/{*/Z (resp. Z/m*"Z).
It determines a cyclic subgroup (P; + [SK/]Q) (resp. (Pp + [SKm|Qm)) of Ep of
order ¢°¢ (resp. m‘"). In turn, these determine (separable) isogenies (up to post-
composition with an isomorphism) ¢, : Eg — E; and ¢, : Eg — E;; of degree
¢t resp. mm, where E; = Eo/(Py + [SK¢]Qy) and E;; = Eo/(Pw + [SKu]Qm). The
public keys are PKy = (Ey, ¢¢(Pu), ¢¢(Qm)) and PKyy = (Em, @i (Py), 9 (Qy)), re-
spectively, while the shared secret Ky, is j(Eo/(Py + [SK¢|Qp, P + [SKm]Qm)). In
other words, the shared secret is the j-invariant of the curve E,, / (¢ (P; + [SK/]Qy))
resp. E¢/{(¢¢(Pm + [SKm|Qm)) that can be computed by Alice resp. Bob.

Security. The security of SIDH (against passive attacks) relates to several problems
that are analogous to classical Diffie-Hellman problems; the Computational Supersin-
gular Isogeny (CSSI) problem asks to compute SK, from PK, [DFJP14, Problem 5.2],
the Supersingular Computational Diffie-Hellman (SSCDH) problem asks to compute
K¢ [DFJP14, Problem 5.3], while solving the Supersingular Decisional Diffie—-Hellman
(SSDDH) requires to distinguish Ky, from random [DFJP14, Problem 5.4]. Although
these problems are not known to be equivalent, they are assumed to be. The best-
known attacks against SIDH are indeed attacks against the CSSI problem. Following
the security definitions of NIST (i.e. A-bit security means breaking the problem is
at least as hard as recovering a A-bit AES key), the best-known attacks on SIDH are
classical and are trivial meet-in-the-middle attacks of query and memory complex-
ity O({/p). As a result, for a A-bit security level one chooses ey, ey, such that £ and
men are greater than 22*. We emphasize that on the one hand the latter choice is
conservative; it is very hard to obtain efficient access to memory of size /p. Al-
gorithms that overcome this problem (i.e. Van Oorschot-Wiener [OW99]) lead to
higher run-times [Adj+19]. On the other hand, the described problems that underly
the security of SIDH are quite different from generic isogeny problems. For instance,
the number of possible public keys equals the size of Z /(¢ Z (resp. Z /m*"Z), which
is approximately ,/p. This is much smaller than the [p/12] + ¢, (see §2.1) supersin-
gular isomorphism classes, making the isogeny problem easier. Note that this could

be solved easily, but would naively require to move to (possibly large) extension

2. Post-Quantum Cryptography 27

fields [Pet17, §2]. Finally, the inclusion of torsion points to the public key has led to
serious active attacks [Gal+16].

Computational aspects. Typical choices for parameters are { = 2 and m = 3, in
which case Eg can be chosen as the Montgomery curve y? = x* + x [CLN16a]. Such
curves contain the 2-torsion point (0,0) whose action by translation is very sim-
ple. We show how one can use this action to efficiently compute isogenies on Mont-
gomery curves in Chapter VIII. Moreover, although the bases for E([2°2] and E([3%]
can be chosen arbitrarily, we show that certain choices allow to completely avoid
exceptional cases in the arithmetic.

The sizes of the public keys are naively about 8log, p bits, since the curve (in
short Weierstrass form) can be represented by two elements of IF >, while each point
is represented by its x-coordinate in IF » (plus a sign bit). This can be improved to
6log, p bits by projecting the curve to the Kummer line [CLN16a]. Alternatively,
one can observe that for the above parameters the curve can always by put in Mont-
gomery form y?> = x> + Ax?> + x (i.e. with B = 1) and can therefore simply be
represented by the coefficient A € F (see Remark VIIL8). It can be further com-
pressed to 4log, p using point compression techniques [Aza+16]. The main idea is
to transmit basis points P, Q such that (P,Q) = E(FF2)[n], where n € {¢%, m®"},
as their two-dimensional scalar decomposition with respect to a fixed public basis
(R1,Rz) = E(F2)[n]. Of course, the curve in each public key is different and thus
there is no public basis that can be fixed once-and-for-all. The idea therefore relies
on Alice and Bob being able to, on input of a given curve E, arrive at the same basis
{R1, Ry} for E(F 2)[n]. Given such a basis, we can write P = [ap]Ry + [Bp|R> and
Q = [ag]Ry + [Bo]R2, and can solve for (ap, Bp,ag, Bg) € (Z/nZ)*. This is fea-
sible via the Pohlig-Hellman algorithm [PH78] since #E(IF,2)[n] = n? is extremely
smooth. By noting that w, (Ry, P) = wy,(Ry, Ry)P? and wy,(Ra, P) = w,(Ry, Ry) %P
(and similarly for ag, Bo) they reduce the discrete logarithm computation to p, in
IF,, increasing efficiency. As log, n ~ 1 log, p, the size of (ap, Bp, xg, Bo) is about
2log, p. In Chapter VII we show how to decrease the public keys to %log2 p bits
while simultaneously significantly increasing the efficiency of the above procedures.

2.2 Ordinary Isogeny Diffie-Hellman

The key exchange based on the isogeny problem in ordinary isogeny graphs was
originally introduced by Couveignes (see the abstract of [Cou06] for details) and was
rediscovered by Rovstovstev-Stolbunov [RS06] a decade later. It is much easier to

28 Chapter II. Curve-based Cryptographic Protocols

describe (on a high level) than SIDH, and its security reduces to a much more natural
problem. Moreover, the scheme is non-interactive. This makes it interesting as a direct
replacement for classical Diffie-Hellman. Its major drawback is its inefficiency.

OIDH. Let [F; be a finite field and E/IF; an ordinary elliptic curve with endomor-
phism ring O and trace of Frobenius t. Let X be the set of IF;-isomorphism classes
of elliptic curves with trace of Frobenius t whose endomorphism ring is isomorphic
to O. Then the action * : cl(O) x X — X such that [a] * E = E/a is simply transi-
tive, where a is an arbitrary representative of its class and we identify curves with
their [Fj-isomorphism class. As such, the secret keys SK4 and SKp are chosen to be
random elements of cl(©), and their corresponding public keys are PK4 = SK4 * E
and PKp = SKp * Eo. The shared secret K 45 is now simply (SK4 - SKp) * Ej.

Security. As usual, there is a separation between the key recovery problem and the
(computational and decisional) Diffie-Hellman problems that are not known to be
equivalent. However, we observe that the key recovery problem is simply the ordi-
nary isogeny problem; given two isogenous ordinary curves Ey and E; over a finite
field IF; with endomorphism ring O, find an isogeny between them. The isogeny
problem can be phrased as a hidden shift problem [C]S14], which can be solved in
subexponential time on a quantum computer [Kup05; Reg04]. Though these attacks
do of course not lead to a complete break, they are what motivated the development
of SIDH (see [JDF11, §1]).

Computational aspects. Although the protocol is much easier to describe from a
high level, quite the opposite is true for the computation of the group action. In fact,
the evaluation of the group action has sub-exponential complexity [C]S14]. There-
fore, instead of randomly sampling secret keys, we construct them as classes of prod-
ucts of ideals with small norm. That is, we fix a set of (distinct small) Elkies primes
ly,...,0s and ideals Iy, . . ., s such that [;I[; = (¢;) and such that cl(O) is (expected to
be) generated by the [[;]. A secret key is now simply a tuple SK = (e, . . ., e;) of small
elements of Z, while the public key is PK = [[y]?0 - - - [[5]% % Eg. Now it remains to
compute the action of ideals of norm ¢;, essentially reducing to computing separable
isogenies of degree /;. Ideally, one finds a rational point and applies Vélu's formu-
las [Vé171]. However, such points are typically only defined over (large) extension
fields, forcing one to resort to other methods. As a result, the protocol is extremely
slow [DFKS18]. In Chapter IX we show how to overcome many of these issues by
instantiating the protocol with supersingular elliptic curves over a prime field |F),.

Part 2

Classical Cryptography

s L1

Complete Addition Formulas for

Prime Order Elliptic Curves

An elliptic curve addition law is said to be complete if it correctly computes the sum
of any two rational points in the elliptic curve group. One of the main reasons for
the increased popularity of Edwards curves in the ECC community is that they can
allow a complete group law that is also relatively efficient (e. g. when compared to
all known addition laws on Edwards curves). Such complete addition formulas can
simplify the task of an ECC implementer and, at the same time, can greatly reduce
the potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete
addition laws that are relatively efficient have only been proposed on curves of com-
posite order! and have thus been incompatible with all of the currently standardized

prime order curves.

In this chapter we present optimized addition formulas that are complete on every
prime order short Weierstrass curve defined over a field k such that char(k) # 2,3.
Compared to their incomplete counterparts, these formulas require a larger number
of field additions, but interestingly require fewer field multiplications. We discuss
how these formulas can be used to achieve secure, exception-free implementations
on all of the prime order curves in the NIST (and many other) standards.

! The order of an elliptic curve E /T, is defined as #E(IF,).

32 Chapter IlII. Complete Addition Formulas

1 Introduction

Extending the works of Lange—-Ruppert [LR85] and Bosma-Lenstra [BL95], Arene,
Kohel and Ritzenthaler [AKR12] showed that, under any projective embedding of an
elliptic curve E/k, every addition law has pairs of exceptional points in (E x E)(k).
That is, over the algebraic closure of k, there are always pairs of points for which a
given elliptic curve addition law does not work.

Fortunately, in elliptic curve cryptography (ECC), we are most often only con-
cerned with the k-rational points on E. In this case it is possible to have a single ad-
dition law that is well-defined on all pairs of k-rational points, because its exceptional
pairs are found in (E x E)(k), but not in (E x E)(k). A celebrated example of this is
the Edwards model [Edw07]; when suitably chosen [BL07], an Edwards curve has a
simple addition law that works for all pairs of k-rational points. This phenomenon
was characterized more generally over elliptic curves by Kohel [Koh11], and further
generalized to arbitrary abelian varieties in [AKR12]. For our purposes it suffices to
state a special case of the more general results in [Koh11; AKR12]: namely, that every
elliptic curve E over a finite field IF; (with g > 5) has an IF;-complete addition law
corresponding to the short Weierstrass model in IP? ().

Addition laws that are IF;-complete are highly desirable in ECC. They can signif-
icantly simplify the task of an implementer and greatly reduce the potential vulner-

abilities of a cryptosystem. We elaborate on this below.

Our contributions. In Algorithm 1 we present an optimized ADD : EX E — E
function, i.e. point addition formulas that correctly compute the sum of any two
points on any odd order elliptic curve E/F,: y* = x>+ ax + b with g > 5. We do
not claim credit for the complete formulas themselves, as these are exactly the for-
mulas given by Bosma and Lenstra two decades ago [BL95]. What is novel in this
chapter is optimizing the explicit computation of these formulas for cryptographic
application. In particular, Table 1 shows that the computation of the Bosma-Lenstra
complete additions can be performed using fewer general field multiplications than
the best known (incomplete!) addition formulas on short Weierstrass curves: exclud-
ing multiplications by curve constants and field additions, the explicit formulas in
this chapter compute additions in 12 field multiplications (12M), while the fastest
known addition formulas in homogeneous coordinates require 14 field multiplica-
tions (12M + 2S) and the fastest known addition formulas in Jacobian coordinates
require 16 field multiplications (11M + 5S). We immediately note, however, that our

explicit formulas incur a much larger number of field additions than their incom-

1. Introduction 33

Table 1. Summary of explicit formulas for the addition law on prime order short Weierstrass
elliptic curves E/k: y?> = x® 4+ ax + b in either homogeneous coordinates or Jacobian coor-
dinates, and the corresponding exceptions (excep.) in both point doublings (DBL) and point
additions (ADD). Here the operation counts include multiplications (M), squarings (S), mul-
tiplications by a (m,), multiplications by (small multiples of) b (my,), and additions (a), all in
the ground field k. We note that various trade-offs exist with the above formulas [BLb].

Ref. 4 ADD(P, Q) DBL(P)
Excep. M S m, mp, a Excep. M S m, my, a
any 120 3 2 23 8 33 2 15
This -3 — 20 0 229 — 83 0 2 21
-0 120 0 2 19 6 2 0 1 9
[CMO98; BLb] any 122 0 0 7 56 1 0 12
[CMO98;BLb] -3 Q#+P,0O 122 0 0 7 P#0O 7 3 0 0 11
—0 — —
[CMO98] any 12 4 0 7 3 1 13
[CMO98;LG10] -3 Q#+£P,0 124 0 0 7 — 4 0 0 8
[CMO98; HLX12] —0 124 0 0 7 340 0 7

plete counterparts. Thus, as is discussed at length below, the relative performance of
the complete additions will be highly dependent on the platform and/or scenario.
However, we stress that outperforming the incomplete addition formulas is not the
point of this chapter: our aim is to provide the fastest possible complete formulas for

prime order curves.

Wide applicability. While the existence of an [F;-complete addition law for prime
order Weierstrass curves is not news to mathematicians (or to anyone that has read,
e.g. [BL95; AKR12]), we hope it might be a pleasant surprise to ECC practitioners.
In particular, the benefits of completeness are now accessible to anyone whose task
it is to securely implement the prime order curves in the standards. These include:

— The example curves specified in the working drafts versions X9.62 and X9.63
[Acc99a; Acc99b] of the American National Standards Institute (ANSI).

— The five NIST prime curves specified in the current USA digital signature stan-
dard (DSS), i.e. FIPS 186-4 — see [Nat00; Nat13]. This includes Curve P-384,
which is the National Security Agency (NSA) recommended curve in the most
recent Suite B fact sheet for both key exchange and digital signatures [Nat15;
Com15]; Curve P-256, which is the most widely supported curve in the Secure
Shell (SSH) and Transport Layer Security (TLS) protocol [Bos+14, §3.2-3.3]; and

34 Chapter IlII. Complete Addition Formulas

Curve P-192, which is the most common elliptic curve used in Austria’s na-
tional e-ID cards [Bos+14, §3.4].

— The seven curves specified in the German brainpool standard [ECCO5]. That
is, brainpoolPXXXr1 where XXX € {160, 192,224,256,320,384, 512}.

— The eight curves specified by the UK-based company Certivox [Cer], namely
ssc-XXX, where XXX € {160, 192,224, 256,288, 320, 384, 512}.

— The curve FRP256v1 recommended by the French Agence nationale de la sécu-
rité des systémes d’information (ANSSI) [Age14].

— The three curves specified (in addition to the above NIST prime curves) in the
Certicom SEC 2 standard [Cer10]. This includes secp256k1, which is the curve
used in the Bitcoin protocol.

— The recommended curve in the Chinese SM2 [Chil0] digital signature algo-
rithm.

— The example curve in the Russian GOST R 34.10 standard [Gov01].

In particular, implementers can now write secure, exception-free code that supports
all of the above curves without ever having to look further than the ADD function
for curve arithmetic. Moreover, in §4.2 we show how ADD can easily be used to se-
curely implement the two composite order curves, Curve25519 [Ber06a] and Ed448-
Goldilocks [Ham15b], recently recommended for inclusion in future versions of TLS
by the Internet Research Task Force Crypto Forum Research Group (IRTF CFRG).

Side-channel protection. Real-world implementations of ECC have a number of
potential side-channel vulnerabilities that could fall victim to simple timing attacks
[Koc96] or exceptional point attacks [IT02; FGV11]. One of the main reasons these
attacks pose a threat is the branching that is inherent in the schoolbook short Weier-
strass elliptic curve addition operation. For example, among the dozens of if state-
ments in OpenSSL’s2 function ec_GFp_simple_add for point addition, the first three
that check whether the input points are equal, opposite, or at infinity can cause tim-
ing variability (and therefore leak secret data) in ECDH or ECDSA. The complete
formulas in this chapter remove these vulnerabilities and significantly decrease the
attack surface of a cryptosystem. As Bernstein and Lange point out [BL09], com-
pleteness “eases implementations” and “avoids simple side-channel attacks”.

2 See ecp_smpl.c in crypto/ec/ in the latest release at https://openssl.org/source/.

https://openssl.org/source/

1. Introduction 35

Although it is possible to use incomplete formulas safely, e. g. by carefully deriv-
ing uniform scalar multiplication algorithms that avoid exceptional pairs of inputs,
implementing these routines in constant-time and in a provably correct way can be a
cumbersome and painstaking process [Bos+16, §4]. Constant-time ECC implementa-
tions typically recode scalars from their binary encoding to some other form that al-
lows a uniform execution path (c. f. Okeya-Tagaki [OT03] and Joye-Tunstall [JT09]),
and these recodings can complicate the analysis of exceptional inputs to the point
addition functions. For example, it can be difficult to prove that the running value
in a scalar multiplication is never equal to (or the inverse of) elements in the lookup
table; if this equality occurs before an addition, the incomplete addition function is
likely to fail. Furthermore, guaranteeing exception-free, constant-time implementa-
tions of more exotic scalar multiplication routines, e. g. multiscalar multiplication for
ECDSA verification, fixed-base scalar multiplications [LL94], scalar multiplications
exploiting endomorphisms [GLV01], or scalar multiplications using common power
analysis countermeasures [Cor99; FV12], is even more difficult; that is, unless the
routine can call complete addition formulas.

Performance considerations. While the wide applicability and correctness of the
ADD function is at the heart of this chapter, we have also aimed to cater to imple-
menters that do not want to sacrifice free performance gains, particularly those con-
cerned with supporting a special curve or special family of curves. To that end,
Algorithms 2 and 3 give faster complete addition formulas in the special (and stan-
dardized) cases that the Weierstrass curve constant a isa = —3 or a = 0, and in the
special case of point doublings (DBL); Table 1 summarizes the operation counts for
all of these scenarios.

As we mentioned above, outperforming the (previously deployed) incomplete
addition formulas is not the point of this chapter. Indeed, the high number of field
additions present in our complete addition functions are likely to introduce an over-
all slowdown in many scenarios. To give an idea of this performance hit in a common
software scenario, we plugged our complete addition functions into OpenSSL’s im-
plementation of the five NIST prime curves. Using the openssl speed function to
benchmark the performance of the existing incomplete formulas and the new com-
plete formulas shows that the latter incurs between a 1.34x and 1.44x slowdown in
an average run of the elliptic curve Diffie-Hellman (ECDH) protocol (see Table 5 for
the full details). As we discuss below, and in detail in §4.3, this factor slowdown
should be considered an upper bound on the difference in performance between the

fastest incomplete algorithms and our complete ones.

36 Chapter IlII. Complete Addition Formulas

On the contrary, there are example scenarios where plugging in the complete
formulas will result in an unnoticeable performance difference, or possibly even a
speedup. For example, compared to the incomplete addition function used in the
Bitcoin code® (secp256k1_gej_add_var), our complete addition function ADD in Al-
gorithm 3 saves 4S at the cost of 8a + lmul_int*; compared to Bitcoin’s incomplete
mixed addition (secp256kl_gej_add_ge_var), our complete mixed addition saves
3S at the cost of 3M + 2a + Imul_int; and, compared to Bitcoin’s doubling func-
tion (secp256k1_gej_double_var), our formulas save 2S + 5mul_int at the cost of
3M + 3a. In this case it is unclear which set of formulas would perform faster, but
it is likely to be relatively close and to depend on the underlying field arithmetic
and/or target platform. Furthermore, the overall speed is not just dependent on the
formulas: the if statements present in the Bitcoin code also hamper performance.
On the contrary, the complete formulas in this chapter have no if statements.

There are a number of additional real-world scenarios where the performance
gap between the incomplete and the complete formulas will not be as drastic as
the OpenSSL example above. The operation counts in Table 1 and Table 6 suggest
that this will occur when the cost of field multiplications and squarings heavily out-
weighs the cost of field additions. The benchmarks above were obtained on a 64-bit
processor, where the M/a ratio tends to be much lower than that of low-end (e. g. 8-,
16-, and 32-bit) architectures. For example, field multiplications on wireless sensor
nodes commonly require over 10 times more clock cycles than a field addition (see
e.g. [Liu+13, Table 1] and [Szc+08, Table 1]), and in those cases the complete formu-
las in this chapter are likely to be very competitive in terms of raw performance.

In any case, we believe that many practitioners will agree that a small perfor-
mance difference is a worthwhile cost to pay for branch-free point addition formu-
las that culminate in much simpler and more compact code, which guarantees cor-
rectness of the outputs and eliminates several side-channel vulnerabilities. We also
note that the Bitcoin curve is not an isolated example of the more favorable formula
comparison above: several families of pairing-friendly curves, including Barreto-
Naehrig (BN) curves [BN06] which have appeared in recent IETF drafts, also have
a = 0. In those cases, our specialized, exception-free formulas give implementers an
easy way to correctly implement curve arithmetic in both G; and G; in the setting
of cryptographic pairings. On a related note, we point that the word “prime” in our

title can be relaxed to “odd”; the completeness of the Bosma—-Lenstra formulas only

3 See https://github.com/bitcoin/bitcoin/tree/master/src/secp256ki.
* mul_int denotes the cost of Bitcoin’s specialized function that multiplies field elements by small
integers.

https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1

1. Introduction 37

requires the non-existence of rational two-torsion points (see §2), i. e. that the group
order #E(IF;) is not even. The BN curves define G; as (being isomorphic to) a proper
subgroup of a curve E’/ IF >, whose group order #E' (lez) is the product of a large
prime with odd integers [BN06, §3], meaning that our explicit formulas are not only
complete in Gy C E'(F,2), but also in E'(F,»).

Related work. Complete addition laws have been found and studied on different
models of elliptic curves, e. g. on the (twisted) Edwards [BL07; Ber+08] and (twisted)
Hessian models [Ber+15b]. Unfortunately, in all of those scenarios, the models are
not compatible with prime order curves and therefore all of the standardized curves
mentioned above.

In terms of obtaining a complete and computationally efficient addition algo-
rithm for prime order curves, there has been little success to date. Bernstein and
Lange [BL09] found complete formulas on a non-Weierstrass model that would be
compatible with, e.g. the NIST curves, reporting explicit formulas that (ignoring
additions and multiplications by curve constants) cost 26M + 8S. Bos et al. [Bos+16]
considered applying the set of two Bosma-Lenstra addition laws to certain prime or-
der Weierstrass curves, missing the observation (c. f. [AKR12, Remark 4.4]) that one
of the addition laws is enough, and abandoning the high cost of computing both ad-
dition laws for an alternative but more complicated approach towards side-channel
protection [Bos+16, Appendix C]. Brier and Joye [BJ02] developed unified formulas®
for general Weierstrass curves, but these formulas still have exceptions and (again,
ignoring additions and multiplications by curve constants) require 11M + 6S, which

is significantly slower than our complete algorithms.

Prime order curves can be safe. Several of the standardized curves of prime order
mentioned above have recently been critiqued in [BLc], where they were deemed not
to meet (some or all of) the four “ECC security” requirements: (i) Ladder, (ii) Twists,
(iii) Completeness, and (iv) Indistinguishability.

On the contrary, this chapter shows that prime order curves have complete for-
mulas that are comparably efficient. In addition, Brier and Joye [B]02, §4] extended
the Montgomery ladder to all short Weierstrass curves. In particular, when the curve
E/Fg: y*> = x3+ ax + b has prime order, their formulas give rise to a function
LADDER that computes x([m]P) = LADDER(x(P),m,a,b) for the points P € E(F)
with (x,y) € Fq X Fp,. That is, a function that works for all x € F; and that does
not distinguish whether x corresponds to a point on the curve E, or to a point on its

5 These are addition formulas that also work for point doublings.

38 Chapter IlII. Complete Addition Formulas

quadratic twist E': dy*> = x% 4 ax + b, where d is non-square in [F,. If E is chosen
to be twist-secure (this presents no problem in the prime order setting), then for all
x € IFy, the function LADDER(x, m, a,b) returns an instance of the discrete logarithm
problem (whose solution is m) on a cryptographically strong curve, just like the anal-
ogous function on twist-secure Montgomery curves [Ber0O6a]. Finally, we note that
Tibouchi [Tib14] presented a prime-order analogue of the encoding given for certain
composite-order curves in [Ber+13], showing that the indistinguishability property
can also be achieved on prime order curves.

As is discussed in [BLc], adopting the Brier-Joye ladder (oz, in our case, the com-
plete formulas) in place of the fastest formulas presents implementers with a trade-
off between “simplicity, security and speed”. However, these same trade-offs also
exist on certain choices of Edwards curves, where, for example, the fastest explicit
formulas are also not complete: the Curve41417 implementation chooses to sacri-
fice the fastest coordinate system for the sake of completeness [BCL14, §3.1], while
the Goldilocks implementation goes to more complicated lengths to use the fastest
formulas [Ham14; Ham15a; Ham15b]. Furthermore, there is an additional category
that is not considered in [BLc], i. e. the non-trivial security issues related to having a
cofactor h greater than 1 [Ham15a, §1.1].

Given the complete explicit formulas in this chapter, it is our opinion that well-
chosen prime order curves can be considered safe choices for elliptic curve cryptog-
raphy. It is well-known that curves with cofactors offer efficiency benefits in certain
scenarios, but to our knowledge, efficiency and/or bandwidth issues are the only

valid justifications for choosing a curve with a cofactor i1 > 1.

Organization. In §2 we present the complete addition function ADD. In §3 we give
intuition as to why these explicit formulas are optimal, or close to optimal, for prime
order curves in short Weierstrass form. In §4 we discuss how these formulas can be
used in practice. We also provide Magma [BCP97] scripts that can be used to verify
our explicit algorithms and operation counts (see https://joostrenes.nl).

2 Complete Addition Formulas

The complete addition formulas optimized in this section follow from the theorem
of Bosma and Lenstra [BL95, Theorem 2], which states that, for any extension field
K/k, there exists a 1-to—1 correspondence between lines in]PZ(K) and addition laws
of bidegree (2,2) on E(K). Two points P and Q in E(K) are then exceptional for

an addition law if and only if P — Q lies on the corresponding line. When K = k,

https://joostrenes.nl

2. Complete Addition Formulas 39

the algebraic closure of k, every line intersects E(K); thus, one consequence of this
theorem is that every addition law of bidegree (2,2) has an exceptional pair over the
algebraic closure.

The addition law considered in this chapter is the addition law corresponding to
the line Y = 0 in IP? in [BL95], specialized to the short Weierstrass embedding of
E above. For two points P = (X; : Y1 : Z1), Q = (X2 : Y2 : Zp) on E, the sum
(X3:Y3:2Z3) =P+ Qis given by

X3 =V1Y2(X1Y2 + XoY1) —aX1 X2 (Y122 + Y2Z1)
—a(X1Ya + XoY1)(X1Z2 + X2Z1) — 3b(X1 Y2 + X2Y1)Z1Z,
—3b(X1Z2 + X2Z0) (V123 + Y2 Z1) + a*(V1Zy + Y2Z1) 21 Zs,

Y3 = YZYZ 4 3aX3X3 +9bX1 X0 (X1Zo + X274)
—2a°X125(X1Zo +2X0Z1) + a*(X1Zo + X2Z1)(X1Zp — X2 Z1)
— 3abX1 7,73 — 3abXp 727, — (a® 4+ 9b*) 2373,

Z3 =3X1Xo(X1 Yo 4+ Xo Y1) + Y1V (Y1 Zo + Yo Z1) + a(Xq Yo + X2 Y1) Z1 Z,
4+ a(X1Zo + X0 Z1) (Y1Z2 + Y2 Z1) + 3b(Y1Zo + Y2Z1) 21 Z, .

Bosma and Lenstra prove that a pair of points (P, Q) is exceptional for this addition
law if and only if P — Q is a point of order two.

Exceptions. Throughout this chapter, we fix 4 > 5 and assume throughout that
E(IF;) has prime order to exclude IF;-rational points of order two, so that the above
formulas are complete. However, we note that the explicit algorithms that are de-
rived in §2 will, firstly, be complete for any short Weierstrass curves of odd order,
and secondly, also be exception-free for all pairs of points inside odd order sub-
groups on any short Weierstrass curve. In particular, this means that they can also
be used to compute exception-free additions and scalar multiplications on certain
curves with an even order. We come back to this in §4.2.

2.1 The General Case

Despite the attractive properties that come with completeness, this addition law
seems to have been overlooked® due to its apparent inefficiency. We now show
that these formulas are not as inefficient as they seem, to the point where the per-
formance will be competitive with the fastest, incomplete addition laws in current

6 Some (unpublished) results were obtained by Joye (see http://joye.site88.net/techreps/
complete.pdf), but this chapter improves on it further.

http://joye.site88.net/techreps/complete.pdf
http://joye.site88.net/techreps/complete.pdf

40 Chapter IlII. Complete Addition Formulas

Table 2. Operation counts for group op-
erations on the short Weierstrass curve
E/Fy:y?>=x>+ax+b.

M S m, mg a

ADD 12 0 3 2 23
MADD 11 O 3 2 17
DBL 8 3 3 2 15

implementations of prime order curves. We start by rewriting the above formulas as

Xz = (X1Ya + XoY1)(V1Ya — a(X1Z2 + X2Z1) — 3bZ1Z,)

— (Y1Z + Y2 Z1) (aX1 Xy 4 3b(X1Z2 + X2 Zy) — a°Z1Zs),
Y3 = (3X1 Xy + aZ1Z5) (aX1 Xo + 3b(X1Zy + XoZ1) — a?Z175) +

(V1Yo + a(X1Zo + XoZ1) 4 3bZ1Z,) (V1Yo — a(X1Zo + X2 Z1) — 3bZ1Z,),
Zs = (1Za + YaZ1) (V1Ya + a(X1Zy + X2Z1) + 3bZ1Z,)

+ (X1Yo + Xo Y1) (3X1 Xy + aZ12Z5) . (1)

The rewritten formulas still appear somewhat cumbersome, but a closer inspection
of (1) reveals that several terms are repeated. Although they are sufficient for cryp-
tographic implementations, performance gains can be obtained by specializing the
point additions to the useful scenarios of mixed additions’ (i.e. where Z, = 1)
and/or point doublings (i.e. where P = Q). The mixed addition follows the same
formulas as for point addition, while for a point P = (X : Y : Z), doubling is com-
puted as

X3 = 2XY(Y? - 2aXZ — 3bZ?)
—2YZ(aX? 4 6bXZ —a*7?),

Y3 = (Y2 +2aXZ +3bZ%)(Y? — 2aXZ — 3bZ?)
+ (3X2 +aZ?)(aX? 4 6bXZ — a*Z?),

Z3 =8Y3Z.

Throughout this chapter we write ADD for the function that maps P = (X; : Y7 : Z7)

7 We note that it is not technically correct to call “mixed” additions complete, since Z, = 1 precludes
the second point being the point at infinity. However, this is not a problem in practice as the second
point is typically taken from a precomputed lookup table consisting of small multiples of the input point
P # O. For prime order curves, these small multiples can never be at infinity.

2. Complete Addition Formulas 41

and Q = (Xp : Y2 : Zp) to P+ Q = (X3 : Y3 : Z3), we denote by MADD the ADD
function under the assumption that Z, = 1 and we write DBL for the ADD function
assuming that P = Q. We summarize the costs of these algorithms in Table 2, and

we refer to Algorithm 1 for a (non-unique) way of attaining these operation counts.

Algorithm 1. Group operations in the prime order group E(IF;) on an arbitrary short
Weierstrass curve E/TF; : y2 =x3+ax+0b

Function: ADD 28 ty <+ b3ty 54 73+ X3+ 723 80 Z3z < Z3z+Z3
1t X1-Xo 29 1+ t1 + 1t 55 X3 <t —Z3 81 X3+ a-Zj
2H+Y1-Y, 30 ty < tg—to 56 Z3 <+ t1+ Z3 82 Y3 b3 -t
3t 21-2Zp 31 th+a-t 57 Y3+ X3-Z3 83 Y3+ X3+Y3
4 3 X1+Y1 32 ty <ty + 1t 58 t1 « tg+tp 84 X3+t —Y3
54+ X+Y, 33 tgt1-t4 59 t1 <+ t1 + 1o 85 Y3+ t1+ Y3
6 t3 < t3-14 34 Y3+ Y3+t 60 tr) <—a-Zq 86 Y3+ X3-Y3
7 tg < tg+ 1 35ty t5-14 61 ty < b3ty 87 X3+ t3-X3
8 13+ t3—14 36 X3+ t3-X3 62 t] «—t1 + 1o 88 Z3 < b3-Zj
9 1, X1+ 721 37 X3+ X3 — 1y 63 tr «— tyg— 1o 89 th+—a-t
10 t5 < Xo + 275 38 tg+—t3-11 64 th <—a-tp 90 t3 <ty — 1o
11 ty <ty - 15 39 Z3 +t5-Z3 65 ty «—ty+ 1o 91 t3 < a-t3
12 t5 <ty + 12 40 Z3 < Z3s+ 1y 66 ty <t -1y 92 t3 < t3+ Z3
13 ty <ty —t5 67 Y3+ Y3+t 93 Z3z + tg+ 1ty
14 t5 < Y1+ Z4 Function: MADD 68 ty < t5-14 94 th < Z3+ 1ty
15 X5+ Yo+ 25 41 ty +— X1 Xy 69 X3 < t3-X3 95 tg <ty + 12
16 t5 < t5- X3 2 1+ Y- Y, 70 X3 < X3 — 1t 96 ty < ty-t3
17 X3¢ t1+ 1> 43 t3 +— X+ Y, 71 tg 13- 97 Y3 < Y3+t
18 t5 + t5 — X3 4 ty+— X1+ 1 72 73+ t5-Z3 98 th«—Y-Z
19 Z3 <+ a- -ty 45 t3 < t3 -ty 73 Z3 +— Z3+ 1ty 99 tr <—tr 4+ 1o
20 X3¢ b3 -t 46 ty < tg+ 1 100 tg <t - 13
21 75+ X3+ 73 47 t3<—t3 — 14 Function: DBL 101 X3« X3 — 1y
22 X34 t1— 23 48 ty < Xp - 74 74 thp+— X - X 102 Z3z < tr - 1
23 Z3 <+ t1+ 23 49 ty — 4+ X4 75 11+ Y Y 103 Z3 < Z3+ Z3
24 Y3+ X373 50 t5 < Yr- 74 76 th «— Z -7 104 Z3 < Z3+ Z3
25 t; +to+ 1o 51 t5 < t5+Yq 77 t3 +— XY
26 t1 + t1 + 1t 52 Z3 < a-ty 78 t3 < t3+ 13
27 th <—a-ty 53 X3 < b3- 7 79 Z3+— X-Z

42 Chapter IlII. Complete Addition Formulas

Table 3. Operation counts for group op- Table 4. Operation counts for group op-
erations on the short Weierstrass curve erations on the short Weierstrass curve
E/Fy:y*=x3—3x+b. E/Fy:y? =x>+b.
M S m, a M S m3 a
ADD 12 0 2 29 ADD 12 0 2 19
MADD 11 O 2 23 MADD 11 O 2 13
DBL 8§ 3 2 21 DBL 6 2 1 9

2.2 The Casea = —3

Several standards (e.g. [Cer; Natl3; Kir+15; Agel4; Cer10; ECCO5]) adopt short
Weierstrass curves with the constant a being 4 = —3, which gives rise to faster ex-
plicit formulas for point doubling.® In this case, the complete formulas in (1) special-

ize to

X3 = (X1Ya + XoY1) (V1Yo + 3(X1Z0 + X2Zy — bZ17Z3))

—3N1Za+ Y2Z1)(b(X1Z + X2Z1) — X1 X — 37175),
Y3 = 3(3X1 X2 — 3Z122) (X122 + X2Z1) — X1 X — 3Z12Z5) +

(1Y, = 3(X1Zy + XoZ1 — bZ1 7)) (Y1Yo + 3(X1Zp + X271 — bZ1 7)),
Z3 = (1Za + YaZ1)(1Y2 — 3(X1Z2 + X2 Z1 — bZ173))

+ (X1Y2 + Xo Y1) (83X Xy — 372175) .

The doubling formulas simplify to

X3 = 2XY(Y? +3(2XZ — bZ?))
—6YZ(2bXZ — X* —377),

Ys = (Y2 = 3(2XZ — bZ?))(Y? + 3(2XZ — bZ?))
+3(3X% - 37%)(2bXZ — X* - 377%),

73 =8YZ.

We describe the costs of these algorithms in Table 3, and we refer to Algorithm 2 for
a (non-unique) way of achieving these operation counts.

8 When [, is a large prime field, the case a = —3 covers 1/2 resp. 1/4 of the isomorphism classes for
g =3 (mod 4) resp. g =1 (mod 4) — see [BJ03, §3].

2. Complete Addition Formulas

43

Algorithm 2. Group operations in the prime order group E(IF;) on the short Weier-
strass curve E/FF, : y?> = x3 —3x+ b

Function: ADD

1

O© 0 J SN Ul b= W iN

N NDNDNMNDNNDNND P e e e el pd e d el
O© W0 I N Ul b WIN M= OWOWONNSDNUTUT R WDNM=O

tg +— X1 - Xp
YY),
th < 71-7Z5
3+ X14+Yq
tp — X0+ Ys
I3 413 14

ty < to+ 11
313 —14
ts Y1+ 274
X3 Yo+ 275
ty <ty X3
X3+ t1+t
ty <ty — X3
X3+ X1+724
Y; < Xo +275
Xg(*Xg,'Yg
Y; — tg+ 1t
Y3<—X3—Y3
Z3 < b-t
X3<—Y3—Z3
Z3 +— X3+ X3
X3+ X3+ 73
Z3 +— thh — X3
X3<—t1+X3
Yg(—b'Yg,
<ty + 1o
t2<—t1+t2
Y;—Y;—1
Y; < Y3 — 1ty

30
31
32
33
34
35
36
37
38
39
40
41
42
43

< Y;+Y;3
Y5 t1+Y;
t1 < to+ 1o
tg < t1 + 1o
tg < tg— 1t
tl(—t4'Y3
th <ty Y3
Y; < X3-Z3
Y; < Y3+ 1
X3+ t3- X3
X3+ X3—1
L3ty 723
t1 < t3-1tp
Zs < Z3+ 1

Function: MADD

44
45
46
47
48
49
50
51
52
53
54
55
56
57

tg +— X1-Xp
t1<—Yl‘Y2
3+ Xo+Y,
b+ X1+
t3 < t3-14

ty < tog+ 11
t3<—t3—t4
ty Yo 74
by ts+ Y
Y3<—X2'Z1
Y; + Y3+ X3
Z3<—b~Zl
X3<—Y3—Z3
Z3 + X3+ X3

58 X3¢ X3+ Z3

59 Z3 <+t — X3
60 X3« t1+ X3
61 Y3<—b-Y3
62 t1 < Z1+ 74
63 th < t1+74
64 Y3+ Y;—1
65 Y3+ Y;— 1
66 t1 < Y3+ Y3
67 Y3+ t1+ Y3
68 t1 + tg+tp
69 ty) < t1 + 1o
70 ty < tg—to
71 t1 < t4- Y3
72 th <ty Y3
73 Y3 X3-Z3
74 Y3+ Y3+t
75 X3 < t3- X3
76 X3+ X3 — 1
77 Z3 <ty 73
78 t1 < t3 - tp
79 Z3 <+ Z3+H

Function: DBL
80 fH+— X-X
81 1+ Y Y
82 tHh+ 7Z-Z
83 t3<—X'Y
84 t3 + t3+1t3
85 Z3+— X-Z

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

73— I3+ 73
Y3 bty
Y3<—Y3—Z3
X3+ Y;+Y;3
Y; +— X5+ Y3
X3 tH—-Y;
Y5 t1+Y3
Y3<—X3-Y3
X3+ X313
I3 tr+ 1t
t) < tr) + 13
Z3<*b'Z3
Z3<—Zg—t7_
73+ Z3— by
t3 < Z3+ 73
Z3 — Z3+ 13
t3 < tg+ 1o
to < t3+ 1o
to <t —t2
to <ty Z3
Y; < Y3+ 1o
to<Y-Z

to < to+to
73+ ty-Z3
X3(—X3—Zg
34—ty hh
3+ 73+ 73
3+ 73+ 73

44 Chapter IlII. Complete Addition Formulas

23 TheCasea =0

Short Weierstrass curves with a = 0, i.e. with j-invariant 0, have also appeared in
the standards. For example, Certicom’s SEC-2 standard [Cer10] specifies three such
curves; one of these is secp256k1, which is the curve used in the Bitcoin protocol.
In addition, in the case that pairing-based cryptography becomes standardized, it is
possible that the curve choices will be short Weierstrass curves with a = 0, e.g. BN
curves [BN06]. In this case, the complete additions simplify to

X3 = (X1Y2 + XzYl)(Y1Y2 — 3blez) - 3b(Y1Zz + Yzzl)(xlzz + XzZ1) ,
Y; = (Y1Y2 + 3b21Z2)(Y1Y2 — 3bZ122) + 9bX1X2(X1Z2 + XzZl) ,
73 = (Y1Z2 + Yzzl)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1) .

The doubling formulas are

X3 = 2XY(Y? - 9bZ?),
Y3 = (Y? — 9bZ2)(Y? +3bZ%) + 24bY?72,
73 =8Y%Z.

The costs of these algorithms can be found in Table 4, while Algorithm 3 provides a
(non-unique) way of achieving these operation counts.

3 Some Intuition Towards Optimality

In this section we motivate the choice of the complete formulas in (1) that were taken
from Bosma and Lenstra [BL95], by providing reasoning as to why, among the many
possible complete addition laws on prime order curves, we chose the set correspond-
ing to the line Y = 0 in IP?(k) under the straightforward homogeneous projection.

We do not claim that this choice is truly optimal, since proving that a certain
choice of projective embedding and/or complete addition law for any particular
prime order curve is faster than all of the other choices for that curve seems extremely
difficult, if not impossible. We merely explain why, when aiming to write down ex-
plicit functions that will simultaneously be complete on all prime order short Weier-
strass curves, choosing the Bosma-Lenstra formulas makes sense.

Furthermore, we also do not claim that our explicit algorithms to compute the
addition law in (1) are computationally optimal. It is likely that trade-offs can be

advantageously exploited on some platforms (c.f. [His10, §3.6]) or that alternative

3. Some Intuition Towards Optimality

45

Algorithm 3. Group operations in the prime order group E(IF;) on the short Weier-

strass curve E/]Fq:y2 =x34+b

Function: ADD 21 ty < b3 -t 40 t3 + t3 —ty Function: DBL
1t X1-Xp 22 73+ t1+ 1 41 ty +— Yr - Z4 60 tg«—Y-Y
2H+Y1-Y, 23 t1 —t1 — 1o 42 ty +— 1 +Yq 61 Z3 + tg+ 1ty
3ty 717> 24 Y3 < b3-Y3 43 Y3+ X5 - 74 62 73 < Z3+ 73
4 3+ X1+Yq 25 X3 < t4-Y;3 4 Y3+ Y3+ X3 63 73+ Z3+ Z3
5+ X+Y, 26 ty) +t3 -1 45 X3+ tg+ 1o 64 t1 <Y -Z

6 t3 < t3-14 27 X3+ 1) — X3 46 ty + X3+ tp 65 tr) < Z-Z
7ty —to+ 1 28 Y3+ Y3t 47 ty) < b3 - 74 66 tr < b3 -t

8 t3+ 13— 14 29 ty +—t1-Z3 48 73+ t1 + 1 67 X3 <ty -Z3
9t YV1+274 30 Y3 t1+ Y3 49 t1 <t — 1t 68 Y3 < tg+ 1>
10 X5 <+ Yo+ 2> 31 tg «tg-t3 50 Y3 < b3-Y3 69 Z3 <+ t1-Z3
11 ty < t4- X3 32 Z3 <+ Z3- 1y 51 X3 t4-Y3 70 t1 < tr + 1
12 X3 < t1+ 17 33 Zs + Z3+ 1ty 52 t) < t3- 1 71 th <ty + 1t
13 ty + ty — X3 53 X3+ tp — X3 72 ty <ty —ty
14 X5+ X7+ 71 Function: MADD 54 Y3 < Y3-1t) 73 Yz ty- Y3
15 Y3+ Xp + 2> 34 tg+— X1-Xp 55 t1 < t1-Z3 74 Y3+ X3+ Y3
16 X3 <+ X3-Y;3 35tH Y1), 56 Y3+ t1+ Y3 75 1+~ XY
17 Y3+ tg+ b 36 t3— X+ Y, 57 tg < tp-t3 76 X3 <ty 1
18 Y3+ X5—Y;3 37 ty X1+ Y1 58 Z3 < Z3-14 77 X34+ X3+ X3
19 X3 tyg+tg 38 t3 < t3-1y 59 Z3 < Z3z+ty

20 tg <+ X3+ 1ty 39 ty +—to+ 1

46 Chapter IlII. Complete Addition Formulas

operation scheduling could reduce the number of field additions.’

3.1 Choice of Y = 0 for Bidegree (2,2) Addition Laws

Let L(, 4, denote the line given by aX + BY + yZ = 0 inside IP?(F,;), and, under
the necessary assumption that L, g) does not intersect the IF-rational points of the
curve E: Y?Z = X3 4+ aXZ% + bZ3, let A(a,p,y) denote the complete addition law of
bidegree (2,2) corresponding to L, g) given by [BL95, Theorem 2]. So far we have
given optimizations for A), but the question remains as to whether there are
other lines L(, g ,) which give rise to even faster addition laws A, g ..

We first point out that L (g o) is the only line that does not intersect E(IF;) inde-
pendently of 4, b and q. That is, it is easy to show that any other line in IP?(F,) that
does not intersect the group of IF;-rational points of any elliptic curve E such that
#E(IF;) is odd will have a dependency on at least one of a, b and g, and the resulting
addition law will therefore only be complete on a subset of prime order curves.

Nevertheless, it is possible that there is a better choice than A) for a given
short Weierstrass curve, or that there are special choices of prime order curves that
give rise to more efficient complete group laws. We now sketch some intuition as
to why this is unlikely. For A, 5, to be complete, it is necessary that, in particular,
L(ap,y) does not intersect E at the point at infinity (0 : 1: 0). This implies that g # 0.
From [LR85; BL95], we know that the space of all addition laws has dimension 3 and
that

Alapy) = 8A100 T BA©1L0) T YA001)

where Ay 00), A(g1,0) and A(g 1) are the three addition laws given in [BL95, p. 236-
239], specialized to short Weierstrass curves. Given that B # 0, our only hope of
finding a more simple addition law than A g ; o) is by choosing « and/or vy in a way
that causes an advantageous cross-cancellation of terms. Close inspection of the
formulas in [BL95] strongly suggests that no such cancellation exists.

Remark 1. Interestingly, both A(;90) and Agp1) vanish to zero when specialized
to doubling. This means that any doubling formula in bidegree (2,2) that is not
exceptional at the point at infinity is a scalar multiple of A1), i.e. the formulas
used in this chapter.

Remark 2. Although a more efficient addition law might exist for larger bidegrees,
it is worth reporting that our experiments to find higher bidegree analogues of the
Bosma and Lenstra formulas suggest that this, too, is unlikely. The complexity (and

9 Our experimentation did suggest that computing (1) in any reasonable way with fewer than 12
generic multiplications appears to be difficult.

3. Some Intuition Towards Optimality 47

computational cost) of the explicit formulas grows rapidly as the bidegree increases,
which is most commonly the case across all models of elliptic curves and projective
embeddings (c. f. [His10]). We could hope for an addition law of bidegree lower than
(2,2), but in [BL95, §3] Bosma and Lenstra prove that this is not possible under the
short Weierstrass embedding!” of E.

3.2 Jacobian Coordinates

Since first suggested for short Weierstrass curves by Miller in his seminal paper
[Mil86, p. 424], Jacobian coordinates have proven to offer significant performance
advantages over other coordinate systems. Given their ubiquity in real-world ECC
code, and the fact that their most commonly used sets of efficient point doubling for-
mulas turn out to be exception-free on prime order curves (see Table 1), it is highly
desirable to go searching for a Jacobian coordinate analogue of the Bosma-Lenstra
(homogeneous coordinates) addition law. Unfortunately, we now show that such
addition formulas in Jacobian coordinates must have a higher bidegree, intuitively

making them slower to compute.

For the remainder of this section only, let E(FF;) C IP(2,3,1)(IF;) have odd order.
If an addition law f = (fx : fy : fz) has fz of bidegree (u,v), then the bidegrees of
fx and fy are (2u,2v) and (3y,3v), respectively. Below we show that any complete
formulas must have p, v > 3.

Consider the addition of two points P = (X7 : Y7 : Z1) and Q = (X : Y2 : Z3),
using the addition law

f(P/Q) = (fX(P/Q) :fY(PIQ) :fZ(PIQ))/

with fz of bidegree (y,v). Suppose that f is complete, and that y < 3. Then fz,
viewed as a polynomial in Xj,Y,Z;, has degree y < 3, and in particular cannot
contain Y;. Now, since —P = (X; : —=Y; : Z1) on E, it follows that fz(P,Q) =
fz(—P, Q) for all possible Q, and in particular when Q = P. But given that P cannot
have order 2, we have f7(P,P) # 0and fz(—P, P) = 0, a contradiction. We conclude
that # > 3, and (by symmetry) that v > 3. It follows that fx and fy have bidegrees at
least (6,6) and (9, 9), respectively, which destroys any hope of comparable efficiency

to the homogeneous Bosma-Lenstra formulas.

10T ower bidegree addition laws are possible for other embeddings (i. e. models) of E in the case where
E has a k-rational torsion structure — see [Koh11].

48 Chapter IlII. Complete Addition Formulas

4 Using These Formulas in Practice

In this section we discuss the practical application of the complete formulas in this
chapter. We discuss how they can be used for both the prime order curves (§4.1)
and composite order curves (§4.2) in the standards. In §4.3, we give performance
numbers that shed light on the expected cost of completeness in certain software sce-
narios, before discussing why this cost is likely to be significantly reduced in many
other scenarios, e. g. in hardware.

4.1 Application to Prime Order Curves

Using the ADD function in Algorithm 1 as a black-box point addition routine, non-
experts now have a straightforward way to implement the standardized prime order
elliptic curves. So long as scalars are recoded correctly, the subsequent scalar multi-
plication routine will always compute the correct result.

Given the vulnerabilities exposed in already deployed ECC implementations (see
§1), we now provide some implementation recommendations, e.g. for an imple-
menter whose task it is to (re)write a simple and timing-resistant scalar multiplica-
tion routine for prime order curves from scratch. The main point is that branches
(e.g. if statements) inside the elliptic curve point addition algorithms can now be
avoided entirely. Our main recommendation is that more streamlined versions of
the ADD function should only be introduced to an implementation if they are guar-
anteed to be exception-free; subsequently, we stress that branching should never be
introduced into any point addition algorithms.

Assuming access to branch-free, constant-time field arithmetic in IFy, a first step is
to implement the ADD in Algorithm 1 to be used for all point (doubling and addition)
operations, working entirely in homogeneous projective space. The natural next step
is to implement a basic scalar recoding (e. g. [OT03; JT09]) that gives rise to a fixed,
uniform, scalar-independent main loop. This typically means that the main loop
repeats the same pattern of a fixed number of doublings followed by a single table
lookup/extraction and, subsequently, an addition. The important points are that this
table lookup must be done in a cache-timing resistant manner (c. f. [Kds12, §3.4]), and
that the basic scalar recoding must itself be performed in a uniform manner.

Once the above routine is running correctly, an implementer that is seeking fur-
ther performance gains can start by viewing stages of the routine where ADD can
safely be replaced by its specialized, more efficient variants. If the code is intended to
support only short Weierstrass curves with either 4 = —3 or a = 0, then Algorithm 1

4. Using These Formulas in Practice 49

should be replaced by (the faster and more compact) Algorithm 2 or Algorithm 3,
respectively. If the performance gains warrant the additional code, then at all stages
where the addition function is called to add a point to itself (i. e. the point doubling
stages), the respective exception-free point doubling routine(s) DBL in Algorithms 1-
3 should be implemented and called there instead.

Incomplete short Weierstrass addition routines (e. g. the prior works summarized
in Table 1) should only be introduced for further performance gains if the imple-
menter can guarantee that exceptional pairs of points can never be input into the al-
gorithms, and subsequently can implement them without introducing any branches.
For example, Bos et al. [Bos+16, §4.1] proved that, under their particular choice of
scalar multiplication algorithm, all-but-one of the point additions in a variable-base
scalar multiplication can be performed without exception using an incomplete ad-
dition function. The high-level argument used there was that such additions almost
always took place between elements of the lookup table and a running value that
had just been output from a point doubling, the former being small odd multiples
of the input point (e.g. P, [3]P, [5]P, etc.) and the latter being some even multiple.
Subsequently, they showed that the only possible time when the input points to the
addition algorithm could coincide with (or be inverses of) each other is in the final
addition, ruling out the exceptional points in all prior additions. On the other hand,
as we mentioned in §1 and as was encountered in [Bos+16, §4.1], it can be signifi-
cantly more complicated to rule out exceptional input points in more exotic scalar
multiplication scenarios like fixed-base scalar multiplications, multiscalar multipli-
cations, or those that exploit endomorphisms. In those cases, it could be that the
only option to rule out any exceptional points is to always call complete addition
algorithms.

Remark 3 (The best of both worlds?). We conclude this subsection by mentioning
one more option that may be of interest to implementers who want to combine the
fastest complete point addition algorithms with the fastest exception-free point dou-
bling algorithms. Recall from Table 1 that the fastest doubling algorithms for short
Weierstrass curves work in Jacobian coordinates and happen to be exception-free in
the prime order setting, but recall from §3.2 that there is little hope of obtaining rel-
atively efficient complete addition algorithms in Jacobian coordinates. This prompts
the question as to whether the doubling algorithms that take place in IP(2,3,1) (k)
can be combined with our complete addition algorithms that take place in P2 (k).
Generically, we can map the elliptic curve point (X : Y : Z) € P(2,3,1)(k) to
(XZ : Y : Z%) € P?(k), and conversely, we can map the point (X : Y : Z) € P?(k)
to (XZ : YZ? : Z) € IP(2,3,1)(k); both maps cost 2M + 1S. We note that in the

50 Chapter IlII. Complete Addition Formulas

first direction there are no exceptions: in particular, the point at infinity (1:1:0) €
IP(2,3,1)(k) correctly mapsto (0 : 1: 0) € IP?(k). However, in the other direction, the
point at infinity (0 : 1: 0) € IP?(k) does not correctly map to (1:1:0) € P(2,3,1)(k),
but rather to the point (0:0:0) ¢ P(2,3,1)(k).

For a variable-base scalar multiplication using a fixed window of width w, one
option would be to store the precomputed lookup table in P?(k) (or in A? (k) if nor-
malizing for the sake of complete mixed additions is preferred), and to compute
the main loop as follows. After computing each of the w consecutive doublings in
IP(2,3,1)(k), the running value is converted to IP?(k) at a cost of 2M + 1S, then the
result of a complete addition (between the running value and a lookup table ele-
ment) is converted back to IP(2,3,1) (k) at a cost of 2M + 1S. Even for small window
sizes that result in additions (and thus the back-and-forth conversions) occurring
relatively often, the operation counts in Table 1 suggest that this trade-off will be
favorable; and, for larger window sizes, the resulting scalar multiplication will be
significantly faster than one that works entirely in IP? (k).

The only possible exception that could occur in the above routine is when the
result of an addition is the point at infinity (0 : 1 : 0) € P?(k), since the conversion
back to IP(2,3,1) (k) fails here. Thus, this strategy should only be used if the scalar
multiplication routine is such that the running value is never the inverse of any el-
ement in the lookup table, or if the conversion from IP?(k) to IP(2,3,1) (k) is written
to handle this possible exception in a constant-time fashion. In the former case, if (as
in [Bos+16, §4.1]) this can only happen in the final addition, then the workaround is
easy: either guarantee that the scalars cannot be a multiple of the group order (which
rules out this possibility), or else do not apply the conversion back to IP(2,3,1) (k) af-
ter the final addition.

4.2 Interoperability With Composite Order Curves

The IRTF CFRG recently selected two composite order curves as a recommendation
to the TLS working group for inclusion in upcoming versions of TLS: Bernstein’s
Curve25519 [Ber06a] and Hamburg’s Goldilocks [Ham15b]. The current IETF inter-
net draft'! specifies the wire format for these curves to be the u-coordinate corre-
sponding to a point (1,v) on the Montgomery model of these curves Ey/FF,: v* =
u® + Au? + u. Curve25519 has g = 2%° — 19 with A = 486662 and Goldilocks has
g = 28 — 2224 _ 1 with A = 156326. Since our complete formulas are likely to be
of interest to practitioners concerned with global interoperability, e. g. those invest-

11 See https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/

4. Using These Formulas in Practice 51

ing a significant budget into one implementation that may be intended to support as
many standardized curves as possible, we now show that ADD in Algorithm 1 can
be adapted to interoperate with the composite order curves in upcoming TLS cipher-
suites. We make no attempt to disguise the fact that this will come with a significant
performance penalty over the Montgomery ladder, but in this case we are assuming
that top performance is not the priority.

A trivial map Ey; — E from the Montgomery curve to a short Weierstrass curve
is (u,0) — (x,y) = (u+ A/3,0); here the short Weierstrass curve is E: y> =
x> +ax +b,witha =1— A?/3 and b = A(2A%2 —9)/27. Thus, a dedicated short
Weierstrass implementation can interoperate with Curve25519 (resp. Goldilocks) as
follows. After receiving the u-coordinate on the wire, set x = u 4+ A/3 (i.e. add a
fixed, global constant), and decompress to compute the corresponding y-coordinate
on E via the square root y = v/x3 4 ax + b as usual; the choice of square root here
does not matter. Setting P = (x,y) and validating that P € E, we can then call ADD
to compute 3 (resp. 2) successive doublings to get Q. This is in accordance with the
scalars being defined with 3 (resp. 2) fixed zero bits to clear the cofactor [Ber0O6a]. The
point Q is then multiplied by the secret part of the scalar (using, e. g. the methods we
just described in §4.1), then normalized to give Q = (x/,'), and the Montgomery
u-coordinate of the result is output as u’ = x’ — A/3.

Note that the above routine is exception free: ADD only fails to add the points P;
and P, when P; — P, is a point of exact order 2. Thus, it can be used for point dou-
blings on all short Weierstrass curves (including those of even order). Furthermore,
the point Q is in the prime order subgroup, so the subsequent scalar multiplication
(which only encounters multiples of Q) cannot find a pair of points that are excep-
tional to ADD.

Finally, we note that although neither Curve25519 or Goldilocks are isomorphic
to a Weierstrass curve with a = —3, both curves have simple isomorphisms to Weier-
strass curves with small a values, e.g. @ = 2 and a = 1, respectively. Making use of
this would noticeably decrease the overhead of our complete formulas.

4.3 An OpenSSL Implementation

In Table 5 we report the factor slowdown obtained when substituting the MADD
and DBL functions in Algorithm 2 for OpenSSL’'s MADD (ec_GFp_simple_add) and
DBL (ec_GFp_simple_dbl) functions inside the OpenSSL scalar multiplication rou-
tine for the five NIST prime curves (which all have 2 = —3). We intentionally left

OpenSSL's scalar multiplication routines unaltered in order to provide an unbiased

52 Chapter IlII. Complete Addition Formulas

Table 5. Number of ECDH operations in 10 seconds for the OpenSSL implementation of the
five NIST prime curves, using complete and incomplete addition formulas. Timings were
obtained by running the “openssl speed ecdhpXXX” command on an Intel Core i5-5300 CPU
@ 2.30GHz, averaged over 100 trials of 10s each.

No. of ECDH operations (per 10s)

NIST curve Factor slowdown
Complete Incomplete
P-192 35274 47431 1.34x
P-224 24810 34313 1.38x
P-256 21853 30158 1.38x
P-384 10109 14252 1.41x
P-521 4580 6634 1.44x

upper bound on the performance penalty that our complete algorithms will intro-
duce. For the remainder of this subsection, we discuss why the performance differ-

ence is unlikely to be this large in many practical scenarios.

Referring to Table 6 (which, as well as the counts given in Table 1, includes the
operation counts for mixed additions), we see that the mixed addition formulas in
Jacobian coordinates (i.e. [CMQO98; BLb; HLX12]) are 4M + 1S faster than full ad-
ditions, while for our complete formulas the difference is only 1M + 6a. Thus, in
Jacobian coordinates, it is often advantageous to normalize the lookup table (using
one shared inversion [Mon87]) in order to save 4M + 1S per addition. On the other
hand, in the case of the complete formulas, this will not be a favorable trade-off and
(assuming there is ample cache space) it is likely to be better to leave all of the lookup
elements in IP2. The numbers reported in Table 5 use OpenSSL’s scalar multiplication
which does normalize the lookup table to use mixed additions, putting the complete

formulas at a disadvantage.

As we mentioned in §1, the slowdowns reported in Table 5 (which were ob-
tained on a 64-bit machine) are likely to be significantly less on low-end architectures
where the relative cost of field additions drops. Furthermore, in embedded scenarios
where implementations must be protected against more than just timing attacks, a
common countermeasure is to randomize the projective coordinates of intermediate
points [Cor99]. In these cases, normalized lookup table elements could also give rise
to side-channel vulnerabilities [FV12, §3.4-3.6], which would take mixed additions
out of the equation. As Table 6 suggests, when full additions are used throughout,
our complete algorithms will give much better performance relative to their incom-

plete counterparts.

We remark that runtime is not the only metric of concern to ECC practitioners;

5. Hardware Implementations 53

Table 6. Operation counts for the prior incomplete addition algorithms and our complete
ones, with the inclusion of mixed addition formulas. Credits for the incomplete formulas are
the same as in Table 1, except for the additional mixed formulas which are, in homogeneous
coordinates, due to Cohen, Miyaji and Ono [CMO98], and in Jacobian coordinates, due to
Hankerson, Menezes and Vanstone [HMVO06, p. 91].

ADD MADD DBL

a Ref.
MSmym aMSmgm, aMSm, m, a
This 20 3 2 23110 3 2 17 8 3 3 2 15
any [CMO9§;BLb] 12 4 0 0 7 8 3 0 0 7 3 6 1 0 13
[CMO98] 22 0 0 7 92 0 0 7 56 1 0 12
This 120 0 2 29110 0 2 23 8 3 0 2 21
-3 [CMO9%§;BLb] 12 4 0 0O 7 8 3 0 0 7 4 4 0 0 8
[CMO9g;LG10] 12 2 0O O 7 9 2 0 O 7 7 3 0 0 11
0 This 120 0 2 19110 0 2 13 6 2 0 1 9
[CMO98;HLX12] 12 4 0 O 7 8 3 0 O 7 3 4 0 0 7

in fact, there was wide consensus (among both speakers and panelists) at the recent
NIST workshop!? that security and simplicity are far more important in real-world
ECC than raw performance. While our complete algorithms are likely to be slower
in some scenarios, we reiterate that complete formulas reign supreme in all other
aspects, including total code size, ease of implementation, and issues relating to side-
channel resistance.

5 Hardware Implementations

In the setting of hardware implementations, different assumptions on the cost of op-
erations should be made. That is, hardware implementations of ECC typically rely
on using general field hardware multipliers that are often based on the algorithm of
Montgomery [Mon85]. These types of hardware modules use a multiplier for both
multiplications and squarings [CBC07; GP08], meaning that the squarings our addi-
tion algorithms save (over the prior formulas) are full multiplications. Moreover,
hardware architectures that are based on Montgomery multiplication can benefit
from modular additions/subtractions computed as non-modular operations. The
concept is explained in [BBMOO04], which is a typical ECC hardware architecture
using the “relaxed” Montgomery parameter such that the conditional subtraction

(from the original algorithm of Montgomery) can be omitted. In this way, the modu-

12 See https://www.nist.gov/itl/csd/ct/ecc-workshop.cfm.

https://www.nist.gov/itl/csd/ct/ecc-workshop.cfm

54 Chapter IlII. Complete Addition Formulas

Table 7. Dependencies of multiplications inside the complete addition formulas.

Stage Result Multiplication Dependent on
0 l X - X, —
0 0 Yy Y, _
0 0 71 7o —
0 3 (X1+Y1) - (X2+Y2) —
0 ly (X] + Z]) . (Xz + Zz) —
0 ls (Y1+2Zy) - (Ya+2Z3) —
1 L bs - 0> ly
1 67 a- 62 62
1 lg a-(ly—"Lo—4r) Lo, la, Ly
1 lg bz - (by — Lo — 1) o, 02,y
2 19 a-(lo—{7) o, b7
2 by (la—ALo—ty) - (by—Llg—Lg) Lo, 1,043,408
2 bz (L +lg+Ls) - (61— Ly —Ls) b1, l, ls
2 15 (b5 — by — o) - (01 +Lg+Lg) 1,02, 05,06, L3
2 16 (b3 — Lo —£1) - (Blo + {7) Lo, b1, 03,47
3 l1o (b5 — €1 —L2) - (Lro+Lg) £1,02,45,09,019
3 (14 (3lo + £7) - (£10+ L) o, U7, 49, Lo

lar addition/subtraction is implemented not just very efficiently, but also as a time-
constant operation. Using this approach implies the only cost to be taken into ac-
count is the one of modular multiplication, i.e. modular additions come almost for
free. Similar conclusions apply for multiplications with a constant as they can be
implemented very efficiently in hardware, assuming a constant is predefined and
hence “hardwired”.

A second benefit of implementing the algorithms in hardware is that one can
efficiently run multiple (say #) processors in parallel. Here we focus on the ADD
function in Algorithm 1, but an analogous analysis can be performed when a = —3

Table 8. Efficiency approximation of the number of Montgomery multipliers against the area
used.

Cost n x Cost Ref.

17M +23a 17M + 23a Alg. 1

9M; +12a, 18M +24a Appendix A
6M;3 +8a3 18M +24a Appendix A
5My +7a; 20M+28a Appendix A
4Ms +6as 20M +30a Appendix A
3Mg +6ag 18M +36a Appendix A

ANUT kWD~ (X

5. Hardware Implementations 55

ora = 0. As explained in the previous paragraph, we assume the cost of this function
to be 17M. These multiplications are of course not independent, but we can easily
work out their interdependencies (see Table 7). Using this table we can write down
algorithms for implementations running n processors in parallel. Denote by M,, resp.
a, the cost of doing n multiplications resp. additions (or subtractions) in parallel. In
Table 8 we present the costs for 1 < n < 6 (for n = 6 we assume to have the constant
a® precomputed). Note that typically M, > M and a, > a. For example, a larger
number of Montgomery multipliers can result in scheduling overhead. Verification

code in Magma for all algorithms can be found in Appendix A.

56 Chapter IlII. Complete Addition Formulas

A Magma Verification Code for Parallel ADD

function ADD_two(X1,Y1,Z1,X2,Y2,Z2,a,b3)

t0 := X1+Y1; tl = X2+Y2; // 1
t2 = Y1+Z1; t3 1= Y2+Z2; /2
t0 := tO*t1; t1 := t2%t3; // 3
t4 = X1%X2; t6 = Z1%Z2; // 4
t2 = X1+Z1; t3 = X2+Z2; // 5
t0 := t0-t4; tl := t1-t6; // 6
t5 1= Y1xY2; t2 1= t2%t3; /T
t7 = axt6; t8 := b3*t6; // 8
t9 = t4-t7; t10 := t4+t4; // 9
t11 1= t4+t7; t2 := t2-t4; // 10
t0 := t0-t5; tl := t1-t5; // 11
t2 = t2-t6; 10 := t10+t11; // 12
t9 := a*t9; t11 := b3%t2; // 13
t2 1= a¥t2; // 14
t9 := t9+tl1l; t8 := t2+t8; // 15
t6 := t5-t8; t5 := t5+t8; // 16
3 := t1%t9; t9 := t9%t10; // 17
t10 := tO0*t10; tO0 := tO*t6; // 18
t6 := t5*t6; tl := t1xt5; // 19
X3 := t0-t3; Y3 := t6+t9; // 20
Z3 := t1+t10; // 21
return X3,Y3,Z3;
end function;
function ADD_three(X1,Y1,Z1,X2,Y2,7Z2,a,b3);

t0 := X1%X2; t1l = Y1xY2; t2 = Z1%Z2; // 1
t3 := X1+Y1; t4 = X2+Y2; t5 := Y1+Z1; // 2
t6 1= Y2+Z2; t7 := X1+Z1; t8 := X2+72; // 3
t9 := t3%t4; t10 := t5%t6; t11 := t7*t8; // 4
t3 := t0+tl; t4 1= t1+t2; t5 = t0+t2; // 5
t6 := b3*t2; t8 := ax¥t2; // 6
t2 := t9-t3; t9 := t0+t0; t3 := t10-t4; // 7
t10 := t9+t0; t4 := t11-t5; t7 := t0-t8; // 8

A. Magma Verification Code for Paralle] ADD

t0 := axt4; t5 := b3%t4; t9 := ax¥t7; //
t4 := t0+t6; t7 := t5+t9; t0 := t8+t10; //
t5 := t1-t4; t6 := tl+t4; //
t1 := t5*t6; t4 = tO*t7; t8 := t3*t7; //
t9 1= t2%t5; t10 := t3%t6; t1l := t0*t2; //
X3 := t9-t8; Y3 := t1+t4; Z3 := t10+t11; //

return X3,Y3,7Z3;

end function;

function ADD_four(X1,Y1,Z1 ,X2 ,Y2 ,Z2,a,b3);

t0 := X1+Y1; tl := X2+Y2;
t2 = Y1+Z1; t3 = Y2+Z2; //
t0 := tO*t1; tl := t2*t3;
t4 = X1%X2; t6 = Z1%Z2; //
t2 := X1+Z1; t3 := X2+Z2;
t0 := t0-t4; tl := t1-t6; //
t5 = Y1%Y2; t2 = t2%t3;
t7 = a*t6;; t8 := b3*t6; //
t9 := t4-t7; t10 := t4+t4;
t11 := t4+t7; t2 := t2-t4; //
t0 := t0-tb; tl := t1-t5;
t2 = t2-t6; £10 := t10+t11; //
t9 := a*xt9; t11 := b3%t2; t2 := a*t2; //
t9 := t9+tll; //
t3 := t1*t9; t9 := t9*t10;
t10 := t0*t10; t8 := t2+t8; //
t6 := t5-t8; t5 := t5+t8; //
t0 := tO*t6; t6 := t5*t6; t1 := t1xt5; //
X3 := t0-t3; Y3 := t6+t9; Z3 := t1+t10; //

return X3,Y3,7Z3;

end function;

function ADD_five(X1,Y1,Z1,X2,Y2,Z2,a,b3);

t5 := X1+Y1; t6 := X2+Y2; t7 = X1+Z1;
t8 := X2+Z2; t9 := Y1+Z1; //
t0 := X1%X2; tl = Y1xY2; t2 = Z1%Z2;
t3 := t5*t6; t4 = t7*t8; //

58 Chapter IlII. Complete Addition Formulas

t10 := Y2+Z2; t3 := t3-t0; t4 := t4-t0;
t11 := t0+t0; // 3
t3 = t3-t1; t4 = t4-t2; t11 := t11+t0; // 4
t5 := t9%t10; t6 := b3*xt2; t7 = axt2;
t8 := axt4; t9 := b3%t4; // 5
t5 := t5-t1; t1l := t11+t7; t4 := t0-t7;
t10 := t6+t8; //
t0 := axt4; t6 := t3%tll; //
t0 := t0+t9; t7 := t1-t10; t10 := t1+t10;
t5 := t5-t2; // 8
tl = t3%t7; t2 := tbxt0; t4 = t10%t7;
t8 := t11*t0; t9 := t5*t10; // 9
X3 := t1-t2; Y3 := t4+t8; Z3 := t9+t6; // 10
return X3,Y3,Z3;

end function;

function ADD_six(X1,Y1,Z1,X2,Y2,Z2,a,b3)
t0 := X1+Y1; tl := X2+Y2; t2 := Y1+Z1;
t3 := Y2+Z2; t4 := X1+Z1; t5 = X2+Z2; // 1
t0 := tOxt1l; tl = t2%t3; t2 := t4dxth;
t3 := X1*X2; t4 := Y1*xY2; t5 = Z1%Z2; //
t0 := t0-t3; tl := t1-t4; t2 := t2-t5; //
t0 := t0-t4; tl := t1-t5; t2 = t2-t3; //
t6 := b3*th; t7 := axth; t8 := a*xt2;
t9 := b3*t2; t10 := a¥t3; tll := a~2%tb; // b
t6 := t6+t8; t7 = t3+t7; t8 := t3+t3;
t9 := t9+t10; // 6
t9 := t9-ti11; t8 := t8+t7; t7 := t4-t6;
t6 := t4+t6; /1T
t3 = tO*t7; t4 := t0*t8; t5 = t1%xt9;
t8 := t8%t9; t7 1= t6%t7; t6 := t1xt6; //
X3 := £3-t5; Y3 := t7+t8; Z3 := t6+t4; //

return X3,Y3,7Z3;

end function;

Chapter

uKummer: Efficient
Hyperelliptic Signatures and Key

Exchange on Microcontrollers

We describe the design and implementation of efficient signature and key-exchange
schemes for the AVR ATmega and ARM Cortex M0 microcontrollers, targeting the
128-bit security level. Our algorithms are based on an efficient Montgomery lad-
der scalar multiplication on the Kummer surface of Gaudry and Schost’s genus-2
hyperelliptic curve [GS12], combined with the Jacobian point recovery technique of
Chung, Costello, and Smith [CCS17]. Our results are the first to show the feasibil-
ity of software-only hyperelliptic cryptography on constrained platforms, and rep-
resent a significant improvement on the elliptic-curve state-of-the-art for both key
exchange and signatures on these architectures. Notably, our key-exchange scalar-
multiplication software runs in under 9520k cycles on the ATmega and under 2640k
cycles on the Cortex M0, improving on the current speed records by 32% and 75%
respectively.

1 Introduction

The current state of the art in asymmetric cryptography, not only on microcon-
trollers, is elliptic-curve cryptography; the most widely accepted reasonable secu-
rity is the 128-bit security level. All current speed records for 128-bit secure key

60 Chapter IV. yKummer

exchange and signatures on microcontrollers are held — until now — by elliptic-
curve-based schemes. Outside the world of microcontrollers, it is well known that
genus-2 hyperelliptic curves and their Kummer surfaces present an attractive alter-
native to elliptic curves [Ber0O6c; Bos+13]. For example, at Asiacrypt 2014 Bernstein,
Chuengsatiansup, Lange and Schwabe [Ber+14] presented speed records for timing-
attack-protected 128-bit-secure scalar multiplication on a range of architectures with
Kummer-based software. These speed records are currently only being surpassed by
the elliptic-curve-based FourQ software by Costello and Longa [CL15] presented at
Asiacrypt 2015, which makes heavy use of efficiently computable endomorphisms
(i.e. of additional structure of the underlying elliptic curve). The Kummer-based
speed records in [Ber+14] were achieved by exploiting the computational power of
vector units of recent “large” processors such as Intel Sandy Bridge, Ivy Bridge, and
Haswell, or the ARM Cortex-A8. Surprisingly, very little attention has been given to
Kummer surfaces on embedded processors. Indeed, this is the first work showing
the feasibility of software-only implementations of hyperelliptic-curve based crypto
on constrained platforms. There have been some investigations of binary hyperel-
liptic curves targeting the much lower 80-bit security level, but those are actually
examples of software-hardware co-design showing that using hardware accelera-
tion for field operations was necessary to get reasonable performance figures (see
e.g. [Bat+05; Hod+07]).

In this chapter we investigate the potential of genus-2 hyperelliptic curves for
both key exchange and signatures on the “classical” 8-bit AVR ATmega architec-
ture, and the more modern 32-bit ARM Cortex MO processor. The former has the
most previous results to compare to, while ARM is becoming more relevant in real-
world applications. We show that not only are hyperelliptic curves competitive, they
clearly outperform state-of-the art elliptic-curve schemes in terms of speed and size.
For example, our variable-basepoint scalar multiplication on a 127-bit Kummer sur-
face is 31% faster on AVR and 26% faster on the MO than the recently presented
speed records for Curve25519 software by Diill, Haase, Hinterwélder, Hutter, Paar,
Sénchez, and Schwabe [Diil+15]; our implementation is also smaller, and requires
less RAM.

We use a recent result by Chung, Costello, and Smith [CCS17] to also set new
speed records for 128-bit secure signatures. Specifically, we present a new signature
scheme based on fast Kummer surface arithmetic. It is inspired by the EADSA con-
struction by Bernstein, Duif, Lange, Schwabe, and Yang [Ber+12]. On the ATmega,
it produces shorter signatures, achieves higher speeds and needs less RAM than the
Ed25519 implementation presented in [NLD15].

2. High-level Overview 61

Table 1. Cycle counts and stack usage in bytes of all functions related to the signature and key
exchange schemes, for the AVR ATmega and ARM Cortex M0 microcontrollers.

AVR ARM
Func.
Cycles Stack Cycles Stack
KEYGEN 10206181 812B 2774087 1056 B
SIGN 10404033 926B 2865351 1360B
VERIFY 16240510 992B 4453978 1432B

DH_EXCHANGE 9739059 429B 2644604 584 B

Our routines handling secret data are constant-time, and are thus naturally resis-
tant to timing attacks. These algorithms are built around the Montgomery ladder,
which improves resistance against simple power analysis (SPA) attacks. Resistance
to DPA attacks can easily be added to the implementation by randomizing the scalar
and/or Jacobian points. Re-randomizing the latter after each ladder step would also
guarantee resistance against horizontal types of attacks.

Organization. We begin by describing the details of our signature and key exchange
schemes, explaining the choices we made in their design. Concrete implementation
details appear in §3 and §4 below. Experimental results and comparisons follow
in §5.

2 High-level Overview

2.1 Signatures

Our signature scheme, defined at the end of this section, adheres closely to the pro-
posal of [CCS15, §8], which in turn is a type of Schnorr signature [Sch90]. There are
however some differences and trade-offs, which we discuss below.

Group structure. We build the signature scheme on top of the group structure from
the Jacobian J,(IF,) of a genus-2 hyperelliptic curve C. More specifically, C is the
Gaudry-Schost curve over the prime field F, with p = 2127 — 1 (c.f. §3.2). The
Jacobian is a group of order #.J,(F,) = 2*N, where

N = 2250 _ 0x334D69820C75294D2C27FCOF9A154FFA7730B4B840COSBD

is a 250-bit prime. For more details on the Jacobian and its elements, see §3.3.

62 Chapter IV. yKummer

Hash function. We may use any hash function H with a 128-bit security level. For
our purposes, H(M) = SHAKE128(M, 512) suffices [Dwo15]. Although SHAKE128
has variable-length output, we only use the 512-bit output implementation.

Encoding. At the highest level, we operate on points Q in J,(IF,). To minimize
communication costs, we compress the usual 508-bit representation of Q into a 256-
bit encoding O (see §3.3). (This notation is the same as in [Ber+12].)

Public generator. The public generator can be any element P of J,(IF,) such that
[N]P = 0. In our implementation we have made the arbitrary choice P = (X? +
ur X + ug, 11 X + Z)()), where

u1 = 0x7D5D9C3307E959BF27B8C76211D35E8A,
up = 0x2703150F9C594E0CATE8302F93079CES,
U1 = 0x444569AF177A9C1C721736D8F288C942,
vg = 0x7F26CFB225F42417316836CFFSAEFB11 .

This is the point which we use the most for scalar multiplication. Since it remains
fixed, we assume we have its decompressed representation precomputed, so as to
avoid having to perform the relatively expensive decompression operation when-
ever we need a scalar multiplication; this gives a low-cost speed gain. We further
assume we have a “wrapped” representation of the projection of P to the Kummer
surface, which is used to speed up the XDBLADD function. See §4.1 for more details
on the XWRAP function.

Public keys. In contrast to the public generator, we assume public keys are com-
pressed: they are communicated much more frequently, and we therefore benefit
much more from smaller keys. Moreover, we include the public key in one of the
hashes during the SIGN operation [KW03; MRa99], computing h» = H(R || Q || M)
instead of the h = H(R || M) originally suggested by Schnorr [Sch90]. This protects
against adversaries attacking multiple public keys simultaneously.

Compressed signatures. Schnorr [Sch90] mentions the option of compressing signa-
tures by hashing one of their two components: the hash size only needs to be b/2
bits, where b is the key length. Following this suggestion, our signatures are 384-bit
values of the form (hysg || s), where hyg means the lowest 128 bits of # = H(R ||
Q || M), and s is a 256-bit scalar. The most obvious upside is that signatures are

2. High-level Overview 63

smaller, reducing communication overhead. Another big advantage is that we can
exploit the half-size scalar to speed up signature verification. On the other hand, we
lose the possibility of efficient batch verification.

Verification efficiency. The most costly operation in signature verification is the two-
dimensional scalar multiplication T = [s]P + [h128]Q. In [CCS17], the authors pro-
pose an algorithm relying on the differential addition chains presented in [Ber06b].
However, since we are using compressed signatures, we have a small scalar /1153. Un-
fortunately the two-dimensional algorithm in [CCS17] cannot directly exploit this
fact, therefore not obtaining much benefit from the compressed signature. On the
other hand, we can simply compute [s|P and [h1,3]Q separately using the fast scalar
multiplication on the Kummer surface and finally add them together on the Jacobian.
Here [s]P is a 256-bit scalar multiplication, whereas [h125]Q is only a 128-bit scalar
multiplication. Not only do we need fewer cycles compared to the two-dimensional
routine, but we also reduce code size by reusing the one-dimensional scalar multi-

plication routine.

The scheme. We now define our signature scheme, taking the above into account.

Key generation (KEYGEN). Let d be a 256-bit secret key, and P the public generator.
Compute (d' || d”) < H(d) (with d’ and d” both 256 bits), then Q <« [164']P.
The public key is Q.

Signing (SIGN). Let M be a message, d a 256-bit secret key, P the public generator,
and Q a compressed public key. Compute (d’ || d”) < H(d) (with d’ and d”
both 256 bits), then r + H(d" || M), then R « [r]P, thenh < H(R || Q || M),
and finally s < (r — 16h128d") mod N. The signature is (125 || s).

Verification (VERIFY). Let M be a message with a signature (h1,5 || s) corresponding
to a public key Q, and let P be the public generator. Compute T < [s|P +
[h128]Q, then ¢ <— H(T || Q || M). The signature is correct if g108 = h12g, and
incorrect otherwise.

Remark 1. We note that there may be faster algorithms to compute the “one-and-a-
half-dimensional” scalar multiplication in VERIFY, especially since we do not have
to worry about being constant-time. One option might be to adapt Montgomery’s
PRAC [Sta03, §3.3.1] to make use of the half-size scalar. But while this may lead to
a speedup, it would also cause an increase in code size compared to simply re-using
the one-dimensional scalar multiplication. We have chosen not to pursue this line,

preferring the solid benefits of reduced code size instead.

64 Chapter IV. yKummer

2.2 Diffie-Hellman Key Exchange.

For key exchange it is not necessary to have a group structure; it is enough to have
a pseudo-multiplication. We can therefore carry out our the key exchange directly
on the Kummer surface K, = J, /4, gaining efficiency by not projecting from and
recovering to the Jacobian J,. If Q is a point on 7, then its image in K is +Q. The
common representation for points in K, (IF,) is a 512-bit 4-tuple of field elements.
For input points (i. e. the generator or public keys), we prefer the 384-bit “wrapped”
representation (see §3.5). This not only reduces key size, but it also allows a speedup
in the core XDBLADD subroutine. The wrapped representation of a point +Q on &,
is denoted by Q.

Key exchange (DH_EXCHANGE). Let d be a 256-bit secret key, and £P the public
generator (respectively public key). Compute £Q <« =£[d]P. The generated
public key (respectively shared secret) is £0.

Remark 2. While it might be possible to reduce the key size even further to 256 bits,
we would then have to pay the cost of compressing and decompressing, and also
wrapping for XDBLADD (see the discussion in [CCS15, App. A]). We therefore choose
to keep the 384-bit representation, which is consistent with [Ber+14].

3 Algorithms and Their Implementation

We begin by presenting the finite field F5127_; in §3.1. We then define the curve C
in §3.2, before giving basic methods for the elements of 7, in §3.3. We then present

the fast Kummer K, and its differential addition operations in §3.4.

3.1 The Field le

We work over the prime finite field IF,, where p is the Mersenne prime p = 2127 1.
For complete field arithmetic we implement modular reduction, addition, subtrac-
tion, multiplication, and inversion. We comment on some important aspects here,
giving cycle counts in Table 2. We can represent elements of IF;, as 127-bit values; but
since the ATmega and Cortex MO work with 8- and 32-bit words, respectively, the
obvious choice is to represent field elements with 128 bits. That is, an element ¢ € IF,,
is represented as ¢ = Z}io 228 on the AVR ATmega platform and as ¢ = Z?:o g;2%%
on the Cortex MO, where g; € {0,...,28 —1},§; € {0,...,2% —1}.

Working with the prime field IF,, we need integer reduction modulo p; this is
implemented as BIGINT_RED. Reduction is very efficient because 2! = 2 (mod p),

3. Algorithms and Their Implementation 65

which enables us to reduce using only shifts and integer additions. Given this re-
duction, we implement addition and subtraction operations for IF, (as GFE_ADD
and GFE_SUB, respectively) in the obvious way.

The most costly operations in IF, are multiplication (GFE_MUL) and squaring
(GFE_SQR), which are implemented as 128 x 128-bit big integer operations (named
BIGINT_MUL and BIGINT_SQR) followed by a call to BIGINT_RED. Since we are work-
ing on the same platforms as [Diil+15] in which both of these operations are already

highly optimized, we took the necessary code from those implementations:

— On the AVR ATmega the authors of [HS15] implement a 3-level Karatsuba
multiplication of two 256-bit integers, representing elements f of Fyss5_19 as
f=Y3, f28 with f; € {0,...,28 — 1}. Since the first level of Karatsuba relies
on a 128 x 128-bit integer multiplication routine named MUL128, we simply
lift this function out to form a 2-level 128 x 128-bit Karatsuba multiplication.
Similarly, their 256 x 256-bit squaring relies on a 128 x 128-bit routine SQR128,
which we can (almost) directly use. Since the 256 x 256-bit squaring is 2-level
Karatsuba, the 128 x 128-bit squaring is 1-level Karatsuba.

— On the ARM Cortex MO0 the authors of [Diil+15] use optimized Karatsuba mul-
tiplication and squaring. Their assembly code does not use subroutines, but
fully inlines 128 x 128-bit multiplication and squaring. The 256 x 256-bit mul-
tiplication and squaring are both 3-level Karatsuba implementations. Hence,
using these, we end up with 2-level 128 x 128-bit Karatsuba multiplication and

squaring.

The function GFE_INVERT computes inversions in [, as exponentiations, using
the fact that g~! = ¢P~2 for all g in IF,. To do this efficiently we use an addition
chain for p — 2, doing the exponentiation in 10M + 126S. Finally, to speed up our
Jacobian point decompression algorithms, we define a function GFE_POWMINHALF
which computes ¢ — ¢~1/2 for g in IF}, (up to a choice of sign). To do this, we note
that g71/2 = ¢~ (Pt1)/4 = 4o(p=5)/4 jp IFp,; this exponentiation can be done with
an addition chain of length 136, using 11M + 125S. We can then define a function
GFE_SQRTINV, which given (x,y) and a bit b, computes (/x,1/y) as (+xyz, xyz?)
where z = GFE_POWMINHALF(xy?), choosing the sign so that the square root has
least significant bit b. Including the GFE_POWMINHALF call, this costs 15M + 126S +
Ineg.

66 Chapter IV. yKummer

Table 2. Cycle counts of field arithmetic (including function-call overhead) on the AVR AT-
mega and ARM Cortex MO platforms.

AVR ARM Symbolic cost

BIGINT_MUL 1654 410

BIGINT_SQR 1171 260

BIGINT_RED 438 71

GFE_MUL 1952 502 M
GFE_SQR 1469 353 S
GFE_MULCONST 569 83 mc
GFE_ADD 400 62 a
GFE_SUB 401 66 s
GFE_INVERT 169881 46091 I
GFE_POWMINHALF 169881 46294 11M + 1258
GFE_SQRTINV 178041 48593 15M + 126S + lneg

3.2 The Curve C and Its Theta Constants

We define the curve C “backwards”, starting from its (squared) theta constants
a=-11, b=22, c=19, and d=3 inF,.
From these, we define the dual theta constants

A=a+b+c+d=33, B=a+b—c—d=-11,
C=a—btc—d=-17, D=a—-b—c+d=—-49.

Observe that projectively, (1/a : 1/b : 1/c : 1/d) = (114 : =57 : —66 : —418)
and (1/A : 1/B : 1/C : 1/D) = (—833 : 2499 : 1617 : 561). Crucially, all of
these constants can be represented using just 16 bits each. Since Kummer arithmetic
involves many multiplications by these constants, we implement a separate 16 x
128-bit multiplication function GFE_MULCONST. For the AVR ATmega, we store the
constants in two 8-bit registers. For the Cortex M0, the values fit into a halfword; this
works well with the 16 x 16-bit multiplication. Multiplication by any of these 16-bit

constants costs me.

Continuing, we define e/ f := (1 +a)/(1 — a), where a> = CD/ AB (we take the

3. Algorithms and Their Implementation 67

square root with least significant bit 0), and thus

A :=ac/bd = 0x15555555555555555555555555555552,
u:=ce/df = 0x73E334FBB315130E05A505C31919A746,
v:=ae/bf = 0x552AB1B63BF799716B5806482D2D21F3.

These are the Rosenhain invariants of the curve C, found by Gaudry and Schost [GS12],
which we are (finally!) ready to define as

C:Y2=fo(X):=X(X-1)(X - A (X—pu)(X—v).
The curve constants are the coefficients of fo(X) = Y2, fiX’;s0 fo =0, f5 = 1,

f1 = 0x1EDD6EE48EOC2F16F537CD791E4A8D6E ,
f» = 0x73E799E36DIFCC210C9CD1B164C39A35,
f3 = 0x4B9E333F48B6069CC47DC236188DF6ES,
fa = 0x219CC3F8BBIDFE2B39ADIEIF6463E172.

We store the squared theta constants (a: b :c:d), alongwith (1/a:1/b:1/c:1/d)
and (1 /A :1/B:1/C:1/D); the Rosenhain invariants A, y, and v, together with
Ay and Av; and the curve constants f1, f2, f3, and f4 for use in our Kummer and
Jacobian arithmetic functions. Obviously, none of the Rosenhain or curve constants
are small; multiplying by these costs a full M.

3.3 Compressed and Decompressed Elements of 7,

Our algorithms use the usual Mumford representation for elements of 7,(IF,); they
correspond to pairs (u(X),v(X)), where u and v are polynomials over IF, with u
monic, degv < degu < 2, and v(X)? = fe(X) (mod u(X)). We compute the
group operation + in J,(IF,) using a function ADD, which implements! the algo-
rithm found in [HC14] (after a change of coordinates to meet their Assumption 1) at
a cost of 28M + 2S + 11a + 24s + I. For transmission, we compress the 508-bit Mum-
ford representation to a 256-bit form. Our functions COMPRESS and DECOMPRESS
(Algorithm 1) implement Stahlke’s compression technique (see [Sta04] and [CCS15,
App. A] for details).

1 We only call ADD once in our algorithms, while its very cumbersome to write down. We refer to the
code (on either platform) for its implementation.

68 Chapter IV. yKummer

Algorithm 1. Point (de)compression on 7.

Function: COMPRESS
Input: (X?+ 11X +ug, X +09) =P € T,
Output: A string by - - - boss of 256 bits
Cost: 3M + 1S 4 2a+2s
1 w<—4((u1~vo—u0-vl)~vl—v%)
2 by < LEASTSIGNIFICANTBIT(v)
3 bypg < LEASTSIGNIFICANTBIT(w)
4 return by || ug || biog |[11

Function: DECOMPRESS
Input: A string by - - - bpss of 256 bits.
Output: (X2 + u1 X+ ug, 01X +v9) =P € J,
Cost: 46M + 2558 + 17a + 12s + 6neg
5 Uy = biog - - - bosg as an element of IF),

6 Uy = by - - - b1p7 as an element of IF),
7 Ty« U2

8 Th«—Uy—Th

9 T3 Uy+ T,

10 Ty + U0~(T3'f4+(ll1'f3—2f2))
11 T3 + —1T3

12 T1 + T3 — Uy

13 Ty < 2(Ty+ (T1 - Up + f1) - Un)

14 T; + Z(Tl — U()))

15 Ts < ((Uo — (f3 + Uy - (Uy — f3))) - Uo + f1)?
16 T5 < T7 —2T5- Ty

17 (T4, T5) < GFE_SQRTINV(T5, Ty, by)

18 Ty < (T5 — T4) - Tg

19 Ts5 —fo Th—((Tz—f3)-Uh) + o+ T4

20 T¢ = GFE_POWMINHALF(4Tj)

21 Vi « 2T5 - Tq

22 if by # LEASTSIGNIFICANTBIT(V;) then (V1, Tg) < (—V1, —Tp)
23 Tg5 + (Ul 'f4 + (T2 —fg)) - Uy

24 Vy (Ul . T4+T5+f1) - Tg

25 return (X2 + Uy X + Uy, V1 X + V)

3. Algorithms and Their Implementation 69

3.4 The Kummer Surface ICC

The Kummer surface of C is the quotient K, = J./=; points on K. correspond to
q c c p Y p
points on J, taken up to sign. If P is a point in J,,, then we write

+P = (xp:yp:zp:tp)

for its image in K. To avoid subscript explosion, we make the following convention:
when points P and Q on jc are clear from the context, we write

i(P+Q):(X@Iy@IZ@It@> and i(P—Q):(XQI]/@iZ@It@).

The Kummer surface of this C has a “fast” model in P defined by

2
2,20 242
K¢ E-xyzt = 4y 27+ 1)
—F-(xt+yz) —G-(xz+yt) — H- (xy +zt)
where
F_a27b2fcz+d2 G_a27b2+czfd2 at b —d?
o ad — bc ! o ac — bd ! o ab — cd !

and E = 4abcd (ABCD/((ad — be)(ac — bd)(ab — cd)))? (see e. g. [CC86], [Cosll]
and [Gau07]). The identity point (1,0) of J, maps to £07, = (a : b : ¢ : d). The
PROJECT function (Algorithm 2) maps general points from 7, (IF,) into C,. The “spe-
cial” case where u is linear is treated in [CCS15, §7.2]; this is not implemented, since

PROJECT only operates on public generators and keys, none of which are special.

3.5 DPseudo-addition on ICC

While the points of K, do not form a group, we have a pseudo-addition operation
(differential addition), which computes (P + Q) from +P, +Q, and +(P — Q). The
function XADD (Algorithm 3) implements the standard differential addition. The
special case where P = Q yields a pseudo-doubling operation. To simplify the
presentation of our algorithms, we define three operations on points in IP3. First,
M : P3 x IP? — IP3 multiplies corresponding coordinates. That is, it takes as input a
pair of vectors (xq : i1 : z1 : t1) and (xp : y2 : 22 : f) and returns the coordinate-wise
product vector (x1x2 : Y1y @ 2122 : t1tp). The special case (x1 : y1 : 21 : t1) = (xp ¢
Yo :zp:ty)isdenoted by S: (x:y:z:t) — (x?:y?: 2% t?). Finally, the Hadamard

70 Chapter IV. yKummer

Algorithm 2. Projection from 7, to K, and point (un)wrapping on K.

Function: PROJECT

Input: (X?>+ 11X +ug, X +09) =P € J,

Output: (xp:yp:zp:tp) =+Pc K,

Cost: 8M + 1S +4m. + 7a +4s
1 (T, To, T3, Ty) < (4 — uo, AV — 1o, v — ug, At — 1)
2 Ts A4 ug
3 T7 4« up- ((Ts +p) - T)
4 Ts«up (Ts+v) Th)
5 (Te, Tg) < (uo - ((p+u1) o+ Ta),ug - (v +uy) - Ty + Ty))
6 Ty U%
7 (T5,Te, T7,Ts) < (Ts — T1, Te — Ty, T7 — T1, Ts — Th)
8return (a-T5:b-Tg:c-Ty:d-Tg)

Function: XWRAP
Input: (x:y:z:t)€P3
Output: (x/y,x/z,x/t) €]F‘Z
Cost: 7TM +1
9 Vi+y- -z
10 V, + x/(Vl 1)
11 V3« Vo -t
12 return (V3 -z, V3 -y, Vi - V)

Function: XUNWRAP

Input: (u,v,w) € ng s.t. u = xp/yp,v = xp/zp,w = xp/tp for P € K,
Output: (£[m]P, +[m+1]P) € K2 (xp:yp:zp:tp) € P

Cost: 4M

13 (T, T2, T3) + (v-w,u-w,u-0)

14 return (T3 -w: Ty : To : T3)

4. Scalar Multiplication 71

transform? is defined by

xX+yt+z+t:x+y—z—t:)

H:(x:y:z:t)—
(iy:z:t) (X—y+z—t:x—y—z+t

Clearly M and S cost 4M and 4S, respectively. The Hadamard transform can easily
be implemented with 4a + 4s. However, the additions and subtractions are relatively
cheap, making function call overhead a large factor. To minimize this we inline the
Hadamard transform, trading a bit of code size for efficiency.

Lines 6 and 7 of Algorithm 3 only involve the third argument, £(P — Q); es-
sentially, they compute the point (yozote : xozots @ XeVsts @ XoYoze) (which
is projectively equivalent to (1/xs : 1/ys : 1/z5 : 1/tg), but requires no inver-
sions; note that this is generally not a point on KC;;). In practice, the pseudoadditions
used in our scalar multiplication all use a fixed third argument, so it makes sense
to precompute this “inverted” point and to scale it by x¢ so that the first coordinate
is 1, thus saving 7M in each subsequent differential addition for a one-off cost of
1I. The resulting data can be stored as the 3-tuple (xo/ys, xo /25, x5 /ts), ignor-
ing the trivial first coordinate: this is the wrapped form of £(P — Q). The function
XWRAP (Algorithm 2) applies this transformation. The differential double-and-add
XDBLADD (Algorithm 3) combines the pseudo-doubling with the differential addi-
tion, sharing intermediate operands. This is the fundamental building block of the
Montgomery ladder.

4 Scalar Multiplication

All of our cryptographic routines are built around scalar multiplication in J, and
pseudo-scalar multiplication in K;. We implement pseudo-scalar multiplication us-
ing the classic Montgomery ladder in §4.1. In §4.2, we extend this to full scalar
multiplication on J, using the point recovery technique proposed in [CCS17].

4.1 Pseudomultiplication on /C,

Since [m](—P) = —[m]P for all m and P, we have a pseudo-scalar multiplication op-
eration (m, £P) ~— %[m]P on K, which we compute using Algorithm 4 (the Mont-
gomery ladder), implemented as CRYPTO_SCALARMULT. The loop of Algorithm 4

2Notethat (A:B:C:D)=H((a:b:c:d))and (a:b:c:d) =H((A:B:C:D)).

72

Chapter IV. yKummer

Algorithm 3. Doubling and differential addition on ;.

Function: XADD

Input: (+P,+Q,+(P — Q))
Output: £(P+Q) € K,
Cost: 14M +4S +4m, + 12a+ 12s
(V1, V2) <= (H(£P), H(+Q))

2 Vj M(Vl, Vz)

3V« M(V,(1/A:1/B:1/C:1/D))
4 Vl <— H(Vl)

5 V1 < S(Vl)
6
7
8

Jury

(C1,Ca) + (25 - te, xo ye)
Vo= M((C1:C1:Co: Co), (Yo x5 1 ts 1 20))
return M (Vy, V;)

Function: XDBLADD

Input: (+P,+0Q, (xo/ye,xo/26,x0/ts)) € K3 x IFL;’7

Output: (£[2]P,£(P+Q)) € K3
Cost: 7M + 12S + 12m. + 16a + 16s

9 (V1,V2) « (S(£P),S(+Q))
0 (V1,V2) « (H(V1), H(V2))
1 (V1,V2) + (S(V1), M(V1, V2))
2 (Vi,Va) (MO, (h s s), MV (5
3 (Vi,Va) « (H(W), H(W))
14 return(M(Vl,(%:%:% %))IM(VLO:% ;;

€ IC?Z for some P and Q on J,.

4. Scalar Multiplication 73

maintains the following invariant: at the end of iteration i we have
(V1,Va) = (£[K]P, £[k +1]P) where k= yF""m;2f-1-1.

Hence, at the end we return +[m]P, and also £[m + 1]P as a (free) byproduct. We
suppose we have a constant-time conditional swap CSWAP defined as

CSWAP : (b, (V1,V2)) = (Vi4p, Vaos) -

This makes the execution of Algorithm 4 uniform and constant-time, and thus suit-
able for use with secret m.

Algorithm 4. Uniform and constant-time scalar multiplication on K, and 7.

Function: CRYPTO_SCALARMULT
Input: (m = 253;01 m;2t, (xp/yp,xp/zp,xp/tp)) € [0,2P) x IF; for £P in K,
Output: (+[m]P,+[m +1]P) € K3
Cost: (78 +4)M +12S + 12fm + 16Ba + 16s
1 Vi< (a:tb:c:d)
2 V, <~ XUNWRAP(xp/yp,Xxp/zp, xp/tp)
3 fori = —1downtoOdo
4 (V1, Vo) < CcSWAP(m;, (V1, V2))
5 (V4, V) <= XDBLADD(Vy, Vo, (xp/yp, xp/zp, xp/tp))
6 (V1, V) <= cswar(m;, (V1, V2))
7 return (Vy, 1))

Function: JACOBIAN_SCALARMULT

Input: (m, P, (xp/yp,xp/zp, xp/tp)) € [0,28) x T, x IF?,

Output: [m|P € J,

Cost: (78+143)M+(12+12)S+ (128 +4)m.+(168+70)a+ (168+22)s+3neg+1
8 (Xo, X1) < CRYPTO_SCALARMULT(m, (xp/yp,xp/zp,Xp/tp))
9 V < XUNWRAP((xp/yp,xp/zp, xp/tp))

10 return RECOVERFAST(P,V, Xy, X1)

Our implementation of CRYPTO_SCALARMULT assumes that its input Kummer
point =P is wrapped. This follows the approach of [Ber+14]. Indeed, many calls
to CRYPTO_SCALARMULT involve Kummer points that are stored or transmitted in
wrapped form. However, CRYPTO_SCALARMULT does require the unwrapped point
internally—if only to initialize one variable. We therefore define a function XUN-
WRAP (Algorithm 2) to invert the XWRAP transformation at a cost of only 4M.

74 Chapter IV. yKummer

4.2 Point Recovery from K, to J

Point recovery means efficiently computing [m]P on J, given &[m|P on K, and
some additional information. In our case, the additional information is the base point
P and the second output of the Montgomery ladder, £[m + 1]P. The RECOVERFAST
function (Algorithm 5) implements the point recovery described in [CCS17]. This is
the genus-2 analogue of the elliptic-curve methods in [LD99; OS01; BJ02]. We refer

Algorithm 5. Recovery from K, to 7.

Function: RECOVERFAST
Input: (P,+P,+Q,+(P+ Q)) € J, x K3 for some P,Q in 7.
Output: Q € J,
Cost: 139M + 128 + 4m + 70a + 22s + 3neg + I
1 gp < FAST2GENPARTIAL(Z£P)
2 g + FAST2GENFULL(%Q)
3 gs < FAST2GENPARTIAL(%(P + Q))
4 xp < XADD(£P,£Q,£(P+ Q))
5 ¢p FAST2GENPARTIAL(xp)
6 return RECOVERGENERAL(P, ¢p,80,8s,8D)

Function: FAST2GENFULL
Input: £P € K,
Output: +Pe IEC
Cost: 15M + 12a
7 Xp < xp + (L12/L11)yp + (L13/L11)zp + (L14/L11)tp
8 yp < (L21/L11)xp + (L22/L11)yp + (L23/L11)zp + (Loa/ L11)tp
9 zZp < (L31/L11)xp + (L32/L11)yp + (L3s/L11)zp + (Las/ L11)tp
10 fp < (Lg1/L11)xp + (~L42/L11)yp + (Lg3/L11)zp + (Laa/ L11)tp
11 return (Xp:yp:zp:tp)

Function: FAST2GENPARTIAL

Input: £P € K,

Output: (¥p : yp : zp) € P?

Cost: 11M +9a

12 Xp < xp + (L12/L11)yp + (L13/L11)zp + (L14/ L11)tp

13 yp < (Lo1/L11)xp + (Lo2/L11)yp + (Los/L11)zp + (Laa/L11)tp
14 Zp < (La1/L11)xp + (L32/L11)yp + (L33/L11)zp + (L3a/ Ly1)tp
15 return (Xp:yp:zp)

4. Scalar Multiplication 75

the reader to [CCS17] for technical details on this method, but there is one important
mathematical detail that we should mention (since it is reflected in the structure of
our code): point recovery is more natural starting from the general Flynn model
IEC of the Kummer, because it is more closely related to the Mumford model for
J;- The RECOVERFAST function (Algorithm 5) therefore proceeds in two steps: first
the functions FAST2GENFULL and FAST2GENPARTIAL map the problem into I%C, and
then we recover from /EC to J, using RECOVERGENERAL (Algorithm 6).

Since the general Kummer I%C only appears briefly in our recovery procedure
(we never use its relatively slow arithmetic operations), we will not investigate it
in detail here—but the curious reader may refer to [CF96] for the general theory.
For our purposes, it suffices to recall that IEC is, like ICC, embedded in IP3; and the
isomorphism K, — IEC is defined (ine. g. [CCS15, §7.4]) by the linear transformation

(XPZypZZp:tp)H(fp:yp:Zp:?p) ::(XPZypZZp:tp)L,

where L is (any scalar multiple of) the matrix

atv—A) a (v —A) a 1)\1/(1) a "Av(uv — 1)
b (p—1) b (pv—A) b —A) b (v —A)
ctA—p) cHA—p) C_l)\ﬂ(v) e IAp(A =)
dl(1-v) d ' A—pv) dwv(A—p) dv(A—pv)

which we precompute and store. If =P is a point on K/, then +P denotes its image
on IEC ; we compute +P using the function FAST2GENFULL (Algorithm 5). Some-
times we only require the first three coordinates of +P. We save 4M + 3a per point
in the function FAST2GENPARTIAL (Algorithm 5) by not computing fp.

4.3 Full Scalar Multiplication on J,

We now combine the pseudo-scalar multiplication CRYPTO_SCALARMULT with the
point-recovery function RECOVERFAST to define a full scalar multiplication function
JACOBIAN_SCALARMULT (Algorithm 4) on 7.

Remark 3. The function JACOBIAN_SCALARMULT takes not only a scalar m and a Ja-
cobian point P in its Mumford representation, but also the wrapped form of £P as an
auxiliary argument: that is, we assume that xp <— PROJECT(P) and XWRAP(xp) have
already been carried out. This saves redundant PROJECT and XWRAP calls when
operating on fixed base points, as is often the case in our protocols. Nevertheless,
JACOBIAN_SCALARMULT could easily be converted to a “pure” Jacobian scalar mul-

76 Chapter IV. yKummer

Algorithm 6. A map from IEC to jc.

Function: RECOVERGENERAL

Input: (P, +P,+Q,+(P+Q),£(P—Q)) € J, x K4 for some P and Q in ..
Output: Q € J,

Cost: 77M + 8S +19a + 10s + 3neg + 1

(Z1,2Z5) < (yp - Xg — Xq " Yp,Xp - ZQ — Zp - XQ)
T (—Z1~zp

Zg<—Z2'yvp+T1

D« Z% - Xp+2Z3-Z

T2<—Zl~Z2

T3<—J?p~fQ
E«Ts3-(T3-(f2- 23— fi-Ta) +tqg- D)
E<—E+Zg'%'(f3'22'fp+f4'Z3)
E(—E+Z3~fQ~(Z3'gQ—Z2'fp'ZQ)

X1 < Xp- (Zo-v1(P) = Zy - vo(P))

Ty Zy-yp+2Za-Xp
Xz(—Tl'Ul(P)+T4'U()(P)
C5<*Z%*T4'5CVQ

C6%T1-55Q+T2

Ts < Zg - Xg — Xg * Zo

O© W0 N & Ul b W N =

U G
Ul bk W N RO

Xz X1 Ts = Xo- (X¥a - Yo — Yo - Xo)

(X5, Xe) <+ (X3 C5, X3 Cg)
X4<—T3‘(Xl‘(Z@'ye—y@-29)+T5'X2)
(X7,X8) — (X5 + 21 X4, Xg+ 725 - Z4)

T6 < f@))7@

E¢ —Tg-Ts- (E- %5 + (X1 - T3)?)

(X9, X10) = (E- X7, E - Xs)

F+ Xo- (X Yo + Yo Xo) + X1+ (2o - Xo + Xa - Z0)
F+ Xq-F+2(X3-Te)

F+ —2(F-D-Ts-T5- T3 - Xp)

(U, Up) < (—F -y, F-zq)

(uy, uy, vy, v) < (Fi - Uy, F; - Uy, F; - Xo, F; - Xq)
return (X2 + u X + uf), v} X + v})

N NN DN DNDNNDNNDN B - -
O© 0 3 O Ul b W N = O O W

5. Results and Comparison 77

Table 3. Operation and cycle counts of basic functions on the Kummer and Jacobian.

| M S m¢ a s neg I| AVR ARM
ADD 28 2 0 11 24 0 1| 228552 62886
PROJECT 8 1 4 7 8 0 0 20205 5667
XWRAP 7 0 0O 0 O 0 1| 182251 49 609
XUNWRAP 4 0 0O 0 O 0 0 7297 2027
XADD 14 4 4 12 12 0 0 34774 9598
XDBLADD 7 12 12 16 16 0 0 36706 9861
RECOVERGENERAL 77 8 0 19 10 3 1 | 318910 88414
FAST2GENPARTIAL 11 0 0 9 0 0 0 21339 6110
FAST2GENFULL 15 0 0 12 0 0 0| 29011 8333
RECOVERFAST 139 12 4 70 22 5 1| 447176 124936
COMPRESS 3 1 o 2 2 0 0 8016 2186
DECOMPRESS 46 255 0 17 12 6 0| 386524 106013

tiplication function (with no auxiliary input) by inserting appropriate PROJECT and
XWRAP calls at the start, and removing the XUNWRAP call at Line 2, increasing the
total cost by 11M + 1S + 4m. + 7a + 8s + 1L

5 Results and Comparison

The high-level cryptographic functions for our signature scheme are named KEY-
GEN, SIGN and VERIFY. Their implementations contain no surprises: they do exactly
what was specified in §2.1, calling the lower-level functions described in §3 and §4
as required. Our Diffie-Hellman key generation and key exchange use only the func-
tion DH_EXCHANGE, which implements exactly what we specified in §2.2: one call
to CRYPTO_SCALARMULT plus a call to XWRAP to convert to the correct 384-bit rep-
resentation. Table 1 (in the introduction) presents the cycle counts and stack usage
for all of our high-level functions.

Code and compilation. For our experiments, we compiled our AVR ATmega code
with avr-gcc -02, and our ARM Cortex M0 code with clang -02 (the optimization
levels -03, -01, and -0s gave fairly similar results). The total program size is 20 242
bytes for the AVR ATmega, and 19 606 bytes for the ARM Cortex MO. This consists
of the full signature and key-exchange code, including the reference implementation
of the hash function SHAKE128 with 512-bit output.®

3 We used the reference C implementation for the Cortex M0, and the assembly implementation for
AVR; both are available from [Ber+16]. The only change required is to the padding, which must take
domain separation into account according to [Dwol5, p.28].

78 Chapter IV. yKummer

Table 4. Comparison of scalar multiplication routines on the AVR ATmega architecture at the
128-bit security level. S denotes signature-compatible full scalar multiplication; DH denotes
Diffie-Hellman pseudo-scalar multiplication. The code size and stack size are measured in
bytes. The implementation marked * also contains a fixed-basepoint scalar multiplication
routine, whereas the implementation marked t does not report code size for the separated
scalar multiplication.

Implementation Object Clock cycles Code size Stack

DH [LWGI14] 256-bit curve ~ 21078200 *14700B 556 B
S,DH [WUW13] NIST P-256 =~ 34930000 16112B 590 B
DH [HS13] Curve25519 22791579 f— 677B
DH [Diil+15] Curve25519 13900397 17710 B 494 B
DH This Ke 9513536 ~9490B 99 B

S This Je 9968127 ~16516B 735B

Basis for comparison. As we believe ours to be the first genus-2 hyperelliptic curve
implementation on both the AVR ATmega and the ARM Cortex MO architectures,
we can only compare with elliptic curve-based alternatives at the same 128-bit se-
curity level: notably [LWG14; HS13; WUW13; Diil+15]. This comparison is not
superficial: the key exchanges in [LWG14; HS13; Diil+15] use the highly efficient
x-only arithmetic on Montgomery elliptic curves, while [WUW13] uses similar tech-
niques for Weierstrass elliptic curves, and x-only arithmetic is the exact elliptic-curve
analogue of Kummer surface arithmetic. To provide full scalar multiplication in a
group, [WUW13] appends y-coordinate recovery to its x-only arithmetic (using the
approach of [B]J02]); again, this is the elliptic-curve analogue of our methods.

Results for AVR ATmega. Looking at Table 4, on the AVR ATmega architecture we
reduce the cycle count for Diffie-Hellman by about 32% compared with the current
record [Diil+15], again roughly halving the code size, and reducing stack usage by
about 80%. The cycle count for Jacobian scalar multiplication (for signatures) is re-
duced by 71% compared with [WUW13], while increasing the stack usage by 25%.

Finally we can compare to the current fastest full signature implementation by
Nascimento, Lépez and Dahab [NLD15], shown in Table 5. We almost halve the
number of cycles, while reducing stack usage by a decent margin (code size is not
reported in [NLD15]).

Results for ARM Cortex M0. As we see in Table 6, genus-2 techniques give great
results for Diffie-Hellman key exchange on the ARM Cortex M0 architecture. Com-
pared with the current fastest implementation [Diil+15], we reduce the number of

5. Results and Comparison

79

Table 5. Comparison of signature schemes on the AVR ATmega architecture at the 128-bit

security level. The stack size is measured in bytes.

Implementation Object Function Clockcycles Stack

[NLD15] Ed25519 Sig. Gen. 19047706 1473 B
This Je SIGN 10404 033 926 B
[NLD15] Ed25519 Sig. Ver. 30776942 1226B
This ~7c VERIFY 16240510 992 B

clock cycles by about 27%, while roughly halving code size and stack space. For

signatures, the state-of-the-art is [WUW13]: here we reduce the cycle count for the

underlying scalar multiplications by a very impressive 75%, at the cost of an increase

in code size and stack usage.

Table 6. Comparison of scalar multiplication routines on the ARM Cortex MO architecture at
the 128-bit security level. S denotes signature-compatible full scalar multiplication; DH de-
notes Diffie-Hellman pseudo-scalar multiplication. The code size and stack size are measured

in bytes.
Implementation Object Clock cycles Code size Stack
S,DH [WUW13] NIST P-256 =~ 10730000 7168B 540 B
DH [Dil+15] Curve25519 3589850 7900B 548B
DH This Ke 2633662 ~4328B 248B
S This T 2709401 ~9874B 968B

80

Chapter IV. yKummer

Chapter

qDSA: Small and Secure Digital
Signatures with Curve-based

Diffie-Hellman Key Pairs

The gDSA protocol is a high-speed, high-security signature scheme that facilitates im-
plementations with a very small memory footprint, a crucial requirement for embed-
ded systems and IoT devices, and that uses the same public keys as modern Diffie—
Hellman schemes based on Montgomery curves (such as Curve25519) or Kummer
surfaces. It resembles an adaptation of EADSA to the world of Kummer varieties,
which are quotients of algebraic groups by £1. Interestingly, gDSA does not require
any full group operations or point recovery: all computations, including signature
verification, occur on the quotient where there is no group law. We include details
on four implementations of gDSA, using Montgomery and fast Kummer surface arith-
metic on the 8-bit AVR ATmega and 32-bit ARM Cortex MO platforms. We find that
gDSA significantly outperforms state-of-the-art signature implementations in terms
of stack usage and code size. We also include an efficient compression algorithm
for points on fast Kummer surfaces, reducing them to the same size as compressed

elliptic curve points for the same security level.

82 Chapter V. gDSA

1 Introduction

Modern asymmetric cryptography based on elliptic and hyperelliptic curves [Kob87;
Mil86] achieves two important goals. The first is efficient key exchange using the
Diffie-Hellman protocol [DH76], using the fact that the (Jacobian of the) curve car-
ries the structure of an abelian group. But in fact, as Miller observed [Mil86], we
do not need the full group structure for Diffie-Hellman: the associated Kummer va-
riety (the quotient by 1) suffices, which permits more efficiently-computable arith-
metic [Mon87; Gau07]. A well-known example is Curve25519 [Ber(06a], which offers
fast scalar multiplications based on x-only arithmetic.

The second objective is efficient digital signatures, which are critical for authen-
tication. There are several group-based signature schemes, the most important of
which are ECDSA [Acc99a], Schnorr [Sch90], and now EdADSA [Ber+12] signatures.
In contrast to the Diffie-Hellman protocol, all of these signature schemes explicitly
require the group structure of the (Jacobian of the) curve. An unfortunate side-effect
of this is that users essentially need two public keys to support both curve-based
protocols. Further, basic cryptographic libraries need to provide implementations
for arithmetic on both the Jacobian and the Kummer variety, thus complicating and
increasing the size of the trusted code base. For example, the NaCl library [BLS12]
uses Ed25519 [Ber+12] for signatures, and Curve25519 [Ber06a] for key exchange.
This problem is worse for genus-2 hyperelliptic curves, where the Jacobian is signif-
icantly harder to use safely than its Kummer surface.

There have been several partial solutions to this problem. By observing that ele-
ments of the Kummer variety are elements of the Jacobian up to sign, one can build
scalar multiplication on the Jacobian based on the fast Kummer arithmetic [OS01;
CCS17]. This avoids the need for a separate scalar multiplication on the Jacobian,
but does not avoid the need for its group law; it also introduces the need for project-
ing to and recovering from the Kummer. In any case, it does not solve the problem
of having different public key types. Another proposal is XEADSA [Per], which uses
the public key on the Kummer variety to construct EADSA signatures. In essence,
it creates a key pair on the Jacobian by appending a sign bit to the public key on
the Kummer variety, which can then be used for signatures. In [Ham12] Hamburg
shows that one can actually verify signatures using only the x-coordinates of points
on an elliptic curve, which is applied in the recent STROBE framework [Ham17]. We
generalize this approach to allow Kummer varieties of curves of higher genera, and
naturally adapt the scheme by only allowing challenges up to sign. This allows us

to provide a proof of security, which has thus far not been attempted (in [Ham12]

2. The gDSA Signature Scheme 83

Hamburg remarks that verifying up to sign does “probably not impact security at
all”). Similar techniques have been applied for batch verification of ECDSA signa-
tures [KD14], using the theory of summation polynomials [Sem04].

In this chapter we show that there is no intrinsic reason why Kummer varieties
cannot be used for signatures. We present gDS4, a signature scheme relying only on
Kummer arithmetic, and prove it secure in the random oracle model. It should not
be surprising that the reduction in our proof is slightly weaker than the standard
proof of security of Schnorr signatures [PS96], but not by more than we should ex-
pect. There is no difference between public keys for qgDSA and Diffie-Hellman. We
also provide an efficient compression method for points on fast Kummer surfaces,
solving a long-standing open problem [BerO6c]. Our technique means that qgDSA pub-
lic keys for g = 2 can be efficiently compressed to 32 bytes, and that gDSA signatures
fit into 64 bytes; it also finally reduces the size of Kummer-based Diffie-Hellman
public keys from 48 to 32 bytes. Finally, we provide constant-time software imple-
mentations of genus-1 and genus-2 gDSA instances for the AVR ATmega and ARM
Cortex MO platforms. The performance of all four gDSA implementations comfort-
ably beats earlier implementations in terms of stack usage and code size.

Organization. After an abstract presentation in §2, we give a detailed description
of elliptic-curve gDSA instances in §3. We then move on to genus-2 instances based
on fast Kummer surfaces, which give better performance. The necessary arithmetic
appears in §4, before §5 describes the new verification algorithm. The method for
compression of points on fast Kummer surfaces appears in §6, and the performance

results for our implementations appear in §7.

2 The gDSA Signature Scheme

In this section we define qDS4, the quotient Digital Signature Algorithm. We start by
recalling the basics of Kummer varieties in §2.1 and defining key operations in §2.2.
The rest of the section is dedicated to the definition of the gDSA signature scheme,
which is presented in full in Algorithm 1, and its proof of security, which follows
Pointcheval and Stern [PS96; PS00]. The qDSA scheme closely resembles the Schnorr
signature scheme [Sch90], as it results from applying the Fiat-Shamir heuristic [FS87]
to an altered Schnorr identification protocol, together with a few standard changes
as in EADSA [Ber+12]. We comment on some special properties of gDSA in §2.5.
Throughout, we work over finite fields IF, with p > 3.

84 Chapter V. gDSA

2.1 The Kummer Variety Setting

Let C be a (hyper)elliptic curve and 7 its Jacobian.! The Jacobian is a commutative
algebraic group with group operation +, inverse — and identity 0. We assume J has
a subgroup of large prime order N. The associated Kummer variety K is the quotient
K = J/=£. By definition, working with K corresponds to working on J up to sign.
If P is an element of J, we denote its image in K by £P. In this chapter we take
log, N = 256, and consider two important cases.

Genus 1. Here 7 =C/ IF,, is an elliptic curve with log, p ~ 256, while K = Plisthe
x-line. We choose C to be Curve25519 [Ber06a], which is the topic of §3.

Genus 2. Here J is the Jacobian of a genus-2 curve C/IF,, where log, p ~ 128, and
KC is a Kummer surface. We use the Gaudry-Schost parameters [GS12] for our
implementations. The Kummer arithmetic, including some new constructions
we need for signature verification and compression, is described in §4-6.

A point =P in I(IF;) is the image of a pair of points {P, —P} on J. It is important
to note that P and —P are not necessarily in 7 (IF,); if not, then they are conjugate
pointsin J (F), and correspond to points in J'(F), where J" is the quadratic twist
of J. Both J and J' always have the same Kummer variety; we return to this fact,
and its implications for our scheme, in §2.5 below.

2.2 Basic Operations

While a Kummer variety K has no group law, the operation that maps {+P, +Q} —
{£(P+Q),£(P—Q)} is well-defined. We can therefore define a pseudo-addition
operation by XADD : (£P,+Q,£(P —Q)) — =£(P + Q). The special case where
+(P — Q) = =0 is the pseudo-doubling XDBL : =P +— =£[2|P. In our applications
we can often improve efficiency by combining two of these operations in a single
function XDBLADD : (P, £Q,+(P —Q)) — (£[2]P,+£(P+ Q)). For any integer
m, the scalar multiplication [m] on J induces the key cryptographic operation of
pseudomultiplication on K, defined by LADDER : (m, £P) — £[m]P. As its name sug-
gests, we compute LADDER using Montgomery’s famous ladder algorithm [Mon87],
i.e. as a uniform sequence of XDBLADDs and constant-time conditional swaps.? This

! In what follows, we could replace J by an arbitrary abelian group and all the proofs would be com-
pletely analogous. For simplicity we restrict to the cryptographically most interesting case of a Jacobian.

2 In contemporary implementations such as NaCl, the LADDER function is sometimes named
CRYPTO_SCALARMULT.

2. The gDSA Signature Scheme 85

constant-time nature will be important for signing. Our signature verification re-

quires a function CHECK on K defined by

T if tRe{£(P+Q),£(P—-
CHECK : (P, £Q, +R) — rue 1 {£(P+Q),£(P-Q)} .
False otherwise

Since we are working with projective points, we need a way to uniquely represent
them. Moreover, we want this representation to be as small as possible, to mini-
mize communication overhead. For this purpose we define the function COMPRESS :
K(F,) — {0,1}?° and, writing =P = COMPRESS(+P), the function

DECOMPRESS : {0,1}%® — K(F,) U {L}

such that DECOMPRESS(+P) = +P for +P in K(FF,) and DECOMPRESS(X) = L for
X € {0,1}?° \ Im(COMPRESS). For the remainder of this section we assume that
LADDER, CHECK, COMPRESS, and DECOMPRESS are defined. Their implementation
depends on whether we are in the genus 1 or 2 setting; we return to this in later
sections.

2.3 The qID Identification Protocol

Let P be a generator of a prime order subgroup of J of order N, and let =P be its
image in K. Let Z}; denote the subset of Zy with zero least significant bit (where
we identify elements of Zy with their representatives in [0, N — 1]). Note that since
N is odd, LsB(—x) = 1 —LSB(x) for all x € Z};. The private key is an element
d € Zy. Let Q = [d]P and let the public key be Q. Now consider the following

Schnorr-style identification protocol, which we call qID:
1. The prover sets r < Z3%;,, =R + %[r]P and sends %R to the verifier;
2. The verifier sets ¢ <—p ZE and sends c to the prover;
3. The prover sets s < (r — cd) mod N and sends s to the verifier;
4. The verifier accepts only if £R € {£([s]P + [c]Q), £([s]P — [c]Q) }.

There are some important differences between qID and the basic Schnorr identifica-
tion protocol in [Sch90].

Scalar multiplications on K. It is well-known that one can use K to perform the
scalar multiplication [OS01; CCS17] within a Schnorr identification or signa-

86 Chapter V. gDSA

ture scheme, but with this approach one must always lift back to an element of

a group. In contrast, in our scheme this recovery step is not necessary.

Verification on /C. The original verification [Sch90] requires checking R = [s]P +
[c]Q for some R, [s]P, [c]Q € J. Working on K, we only have these values up
to sign (i.e. £R, £[s]P and £[c]Q), which is not enough to check that R =
[s]P + [c]Q. Instead, we only verify whether £R = + ([s]P + [c]Q).

Challenge from Zx. A Schnorr protocol using the weaker verification above would
not satisfy the special soundness property: although the transcripts (£R, ¢, s)
and (£R, —¢, s) are both valid, they do not allow us to extract a witness. Choos-
ing ¢ from Z; instead of Z eliminates this possibility, and allows a security
proof (this is the main difference with Hamburg’s STROBE [Ham17]).

Proposition 1. The qID identification protocol is a sigma protocol.
Proof. We prove the required properties (see [HL10, §6]).

Completeness. If the protocol is followed, then ¥ = s+ cd, and therefore [r]P =
[s]P + [c]Q on J. Mapping to K, it follows that £R = £([s]P + [c]Q).

Special soundness. Let (£R,cq,s9) and (£R,c1,51) be two valid transcripts such
that ¢ # c¢1. By verification, each s; = #£r & ¢;d mod N, so that sy +51 =
(co £c1)d mod N, where the signs are chosen to cancel . Now ¢g £ ¢1 #
0 mod N because cy and c; are both in Z7;, so we can extract a witness d =
(so+s1) (cocq) ' mod N.

Honest-verifier zero-knowledge. A simulator S generates ¢ < Zj; and sets s g
Zy and® R « [s]P +[c]Q. If R = O, it restarts. It outputs (£R,c,s). As
in [PS00, Lemma 5], we let

§={(£Rcs):cERZY,r ERZN,*R=%[r]P,s =r—cd},
8" ={(£R,c,s) :c ER Z};,s ER ZN,R = [s]P + [c]Q,R # O}

be the distributions of honest and simulated signatures, respectively. The ele-
ments of 6 and ¢’ are the same. First, consider é. There are exactly N — 1 choices
for r, and exactly (N + 1)/2 for c; all of them lead to distinct tuples. There are
thus (N2 — 1)/2 possible tuples, all of which have probability 2/(N? — 1) of
occurring. Now consider &’. Again, there are (N + 1) /2 choices for c. We have

3 As we only know Q up to sign, we may need two attempts to construct S.

2. The gDSA Signature Scheme 87

N choices for s, exactly one of which leads to R = O. Thus, given ¢, there
are N — 1 choices for s. We conclude that ¢’ also contains (N? — 1) /2 possible
tuples, which all have probability 2/ (N? — 1) of occurring.

This concludes the proof. O

2.4 Applying Fiat-Shamir

Applying the Fiat-Shamir transform [FS87] to qID yields a signature scheme gSIG.
We will need a hash function H : {0,1}* — Z,, which we define by taking a hash
function H : {0,1}* — Zy and then setting H by

— H(M) ifLSB(H(M)) =0
—H(M) ifLSB(H(M)) =1

The gSIG signature scheme is defined as follows:

1. To sign a message M € {0,1}* with private key d € Zy and public key £Q €
K, the prover sets r < Z%, =R + %[r]R, h + H(xR || M), and s +
(r —hd) mod N, and sends (£R || s) to the verifier.

2. To verify a signature (£R || s) € K X Zy on a message M € {0,1}* with
public key +Q € K, the verifier sets h <~ H(£R || M), Ty < =+[s]P, and
+Ty < £[h]Q, and accepts only if £R € {£(Tp + Ty), £(Top — T1) }

Proposition 2 asserts that the security properties of qID carry over to qSIG.

Proposition 2. In the random oracle model, if an existential forgery of the qSIG signature
scheme under an adaptive chosen message attack has non-negligible probability of success,
then the DLP in J can be solved in polynomial time.

Proof. This is the standard proof of applying the Fiat-Shamir transform to a sigma
protocol: see [PS96, Theorem 13] or [PS00, §3.2]. O

2.5 The gDSA Signature Scheme

Moving towards the real world, we slightly alter the qSIG protocol with some prag-
matic choices, following Bernstein et al. [Ber+12].

1. We replace the randomness r by the output of a pseudo-random function,
which makes the signatures deterministic.

88 Chapter V. gDSA

2. We include the public key =Q in the generation of the challenge, to prevent
attackers from attacking multiple public keys at the same time.

3. We compress and decompress points on K where necessary.

The resulting signature scheme, qDSA, is summarized in Algorithm 1.

Unified keys. ~Signatures are entirely computed and verified on X, which is also the
natural setting for Diffie-Hellman key exchange. We can therefore use identical key
pairs for Diffie-Hellman and for gDSA signatures. This significantly simplifies the
implementation of cryptographic libraries, as we no longer need arithmetic for the
two distinct objects J and K. Technically, there is no reason not to use a single key
pair for both key exchange and signing; but one should be very careful in doing so,
as using one key across multiple protocols could potentially lead to attacks. The
primary interest of this aspect of qDSA is not necessarily in reducing the number of
keys, but in unifying key formats and reducing the size of the trusted code base.

Security level. The security reduction to the discrete logarithm problem is almost
identical to the case of Schnorr signatures [PS96]. Notably, the challenge space has
about half the size (Z;\r, versus Zy) while the proof of soundness computes either
sp 451 or sp — s1. This results in a slightly weaker reduction, as should be expected by
moving from J to K and by weakening verification. By choosing log, N ~ 256 we
obtain a scheme with about the same security level as state-of-the-art schemes (e. g.
EdDSA combined with Ed25519). This could be made more precise (c. f. [PS00]), but
we do not provide this analysis here.

Key and signature sizes. Public keys fit into 32 bytes in both the genus 1 and genus 2
settings. This is standard for Montgomery curves; for Kummer surfaces it requires
a new compression technique, which we present in §6. In both cases log, N < 256,
which means that signatures (£R || s) fit in 64 bytes.

Twist security. Rational points on K correspond to pairs of points on either J or its
quadratic twist. As opposed to Diffie-Hellman, in qDSA scalar multiplications with
secret scalars are only performed on the public parameter P, which is chosen as the
image of large prime order element of J. Therefore J is not technically required
to have a secure twist, unlike in the modern Diffie-Hellman setting. But if K is also
used for key exchange (which is the whole point!), then twist security is crucial. We

therefore strongly recommend twist-secure parameters for gDSA implementations.

2. The gDSA Signature Scheme 89

Algorithm 1. The qDSA signature scheme

Function: KEYPAIR
Input: ()
Output: (£Q || (4’ || d")): a compressed public key +Q € {0,1}*° where £Q € K,
and a private key (d’' || d”) € ({0, 1}256)2
1 d < Random({0,1}2%)
2 (d'|| d") + H(d)
3 +£Q < LADDER(d, £P) >+Q = £[d']P
4 +Q + COMPRESS(£Q)
5 return (£Q || (4" [| d"))

Function: SIGN
Input: d’,d"” € {0,1}?°, £Q € {0,1}?%°, M € {0,1}*
Output: (£R || s) € ({0,1}256)2
6 r< H(d" || M)
7 £R < LADDER(r, £P) >+R = £[r]P
8 +£R <+ COMPRESS(£R)
9 h H(ER || ZQ || M)
10 s + (r—hd’) mod N
11 return (£R || s)

Function: VERIFY

Input: M € {0,1}*, the compressed public key £Q € {0,1}?°, and a putative
signature (£R || s) € ({0,1}256)2

Output: True if (R || s) is a valid signature on M under +Q, False otherwise

12 +Q < DECOMPRESS(%Q)

13 if £Q = L then return False

14 1+ H(ER || TQ || M)

15 +Ty < LADDER(s, £P) > +Ty = £[s]P

16 +T; < LADDER(h, +Q) >+Ty = +[h]Q

17 £R < DECOMPRESS(%R)

18 if £R = L then return False

19 v + CHECK(+Ty, +T;, £R) bis £R = & (T £ Ty)?

20 return v

90 Chapter V. gDSA

Hash function. The function H can be any hash function with a security level of at
least log, v/N bits and at least 21log, N-bit output. Throughout this chapter we take
H to be the extendable output function SHAKE128 [Dwo15] with fixed 512-bit output.
This enables us to implicitly use H as a function mapping into either Zy x {0,1}?%
(e.g. Line 2 of Algorithm 1), Zy (e.g. Line 6 of Algorithm 1), or ZK, (e.g. Line 9 of
Algorithm 1, by combining it with a conditional negation) by appropriately reducing
(part of) the output modulo N.

Signature compression. Schnorr already mentions in [Sch90] that signatures (R || s)
may be compressed to (H(R || Q || M) || s), taking only the first 128 bits of the hash,
thus reducing signature size from 64 to 48 bytes. This is possible because we can
recompute R from P, Q, s, and H(R || Q || M). However, on K we cannot recover
+R from £P, £Q, s, and H(£R || £Q || M), so Schnorr’s compression technique is

not an option for us.

Batching. Proposals for batch signature verification commonly rely on the group
structure, verifying random linear combinations of points [Nac+95; Ber+12]. Since
IC has no group structure, these batching algorithms are not possible.

Scalar multiplication for verification. Instead of computing the full point [s]P + [c]Q
with a two-dimensional multiscalar multiplication operation, we have to compute
+[s]P and +[c|Q separately. As a result we are unable to use standard tricks for
speeding up two-dimensional scalar multiplications (e. g. [EIG85]), resulting in in-
creased run-time. On the other hand, it has the benefit of relying on the already
implemented LADDER function, mitigating the need for a separate algorithm, and is
more memory-friendly. Our implementations show a significant decrease in stack

usage, at the cost of a small loss of speed (see §7).

3 Implementing qDSA with Elliptic Curves

Our first concrete instantiation of gDSA uses the Kummer variety of an elliptic curve,
which is just the x-line P!

3.1 Montgomery Curves

Consider the elliptic curve in Montgomery form Eap/F, : By? = x(x? + Ax + 1),
where A% # 4 and B # 0. The map Eqp — K = P! defined by P = (X : Y :

3. Implementing gDSA with Elliptic Curves 91

Z) — (X : Z) gives rise to efficient x-only arithmetic on P! (see [Mon87]). We use
the LADDER specified in [Diil+15, Alg. 1]. Compression uses the map COMPRESS :
PY(F,) — F, such that (X : Z) +— XZP~2 defined by Bernstein, while decompres-
sion is the near-trivial function DECOMPRESS : F, — P1(IF,) given by x — (x : 1).
Note that DECOMPRESS never returns 1, and that

DECOMPRESS(COMPRESS((X : Z))) = (X : Z)

whenever Z # 0. However, the points (0 : 1) and (1 : 0) should never appear as

public keys or signatures.

3.2 Signature Verification

It remains to define the CHECK operation for Montgomery curves. In the final step
of verification we are given &R, P, and £Q in P!, and we need to check whether
+R € {£(P+Q),£(P—Q)}. Proposition 3 reduces this to checking a quadratic
relation in the coordinates of +R, &P, and £Q.

Proposition 3. Write (XT : ZT) = £T for any T in Ezp. If P, Q, and R are points on
Eap, then £R € {£(P+ Q),£(P — Q) } if and only if

Bzz(XR)? — 2By XRZR + Bxx(Z®)* =0, 1
where
Bxx = (XPXQ - zP7Q)?,
Bxz = (XPXQ +2Pz9)(xPZR + zPXQ) +24x"ZzPxRz<,
By, = (X720 — ZPXxQ)?.
Proof. Let S = (X° : Z%) = £(P+Q)and D = (XP : ZP) = £(P - Q). If we
temporarily assume +0 # +P # +Q # 40 and put xp = X'/ZP, etc., then

the group law on E4p gives us xsxp = (xpxg — 1)%/(xp — xQ)2 and x5 + xp =
2((xpxg +1)(xp + xq) + 2Axpxg). Homogenizing, we obtain

(XSXD . XS7P 4+ 75xD . ZSZD) = (ABxx : A2Bxz : AByz) .)

One readily verifies that Equation (2) still holds even when the temporary assump-
tion does not (that is, when £P = +Q or £P = £0 or +Q = +0). Having degree
2, the homogeneous polynomial ByzX? — BxzXZ + BxxZ? cuts out two points in

92 Chapter V. gDSA

P! (which may coincide); by Equation (2), they are &(P + Q) and +(P — Q), so if
(XR : ZR) satisfies Equation (1) then it must be one of them. O

Algorithm 2. Checking the verification relation for P!

Function: CHECK
Input: £P, +Q, R = (x : 1) in P! images of points of E 45(F,)
Output: Trueif £R € {£(P+ Q), (P — Q)}, False otherwise
Cost: 8M + 3S + 1m, + 8a + 4s

1 (BXX/ Bxz, Bzz) — BVALUES(:EP, :l:Q)

2 if Bxxx? — Bxzx + Bzz = 0 then return True

3 else return False

Function: BVALUES
Input: £P = (X :ZP), £Q = (X9 : Z9) in K(F,)
Output: (Bxx(£P,+Q),Bxz(£P,+Q),Bzz(£P,£Q)) in IF%
Cost: 6M +2S +1m. + 7a + 3s
4 // See Algorithm 8 and Proposition 3

3.3 Using Cryptographic Parameters

We use the elliptic curve E/F, : y* = x> + 486662x> + x where p = 2%° — 19,
which is commonly referred to as Curve25519 [Ber0O6a]. Let P € E(IF,) be such that
+P = (9:1). Then P has order 8N, where

N = 222 4 27742317777372353535851937790883648493

is prime. The XDBLADD operation requires us to store (A + 2)/4 = 121666, and we
implement optimized multiplication by this constant. In [BerO6a, §3] Bernstein sets
and clears some bits of the private key, also referred to as “clamping”. This is not
necessary in qDSA, but we do it anyway in KEYPAIR for compatibility.

4 Implementing qDSA with Kummer Surfaces

A number of cryptographic protocols that have been successfully implemented with
Montgomery curves have seen substantial practical improvements when the curves
are replaced with Kummer surfaces. From a general point of view, a Kummer surface

is the quotient of some genus-2 Jacobian J by *1; geometrically it is a surface in

4. Implementing qDSA with Kummer Surfaces 93

IP3 with sixteen point singularities, called nodes, which are the images in K of the
2-torsion points of 7 (since these are precisely the points fixed by —1). From a cryp-
tographic point of view, a Kummer surface is just a 2-dimensional analogue of the
x-coordinate used in Montgomery curve arithmetic. The algorithmic and software
aspects of efficient Kummer surface arithmetic have already been covered in great
detail elsewhere (see e.g. [Gau07; Ber+14] and Chapter 1V). Indeed, the Kummer
scalar multiplication algorithms and software that we use in our signature imple-
mentation are identical to those described in Chapter IV, and use the cryptographic
parameters proposed by Gaudry and Schost [G512].

This chapter includes two entirely new Kummer algorithms that are essential for
our signature scheme: verification relation testing (CHECK, see Algorithm 3) and
compression/decompression (COMPRESS and DECOMPRESS, see Algorithms 4 and
5). Both of these new techniques require a fair amount of technical development,
which we begin in this section by recalling the basic Kummer equation and con-
stants, and deconstructing the pseudo-doubling operation into a sequence of sur-
faces and maps that will play important roles later. Once the scene has been set, we
will describe our signature verification algorithm in §5 and our point compression
scheme in §6. The reader primarily interested in the resulting performance improve-
ments may wish to skip directly to §7 on first reading. The CHECK, COMPRESS, and
DECOMPRESS algorithms defined below require the following subroutines:

— The function M : IF;L, X]F‘;, —]Ff, implements a 4-way parallel multiplica-
tion. It takes a pair of vectors (x1, x2, x3, x4) and (y1, Y2, y3,y4) and returns the
coordinate-wise product vector (x1x2 : y1y2 : 2122 © t1t2).

— The function § :]F‘;, —]F‘;, implements a 4-way parallel squaring. It maps
(x1,x2,x3,%4) to (x%, x%, x%, x2).

— The function H :]F‘;, —]F% is a Hadamard transform. It maps (x1, x2, X3, x4) to
(x1+ X2+ X3+ Xg, X1 + X2 — X3 — Xg, X1 — Xp + X3 — X4, X7 — X2 — X3 + Xg).

— The function Dot : IF‘;7 X]F;l7 — IF, computes the sum of a 4-way multiplication.
Given (x1,x2,x3,x4) and (y1, Y2, Y3, Ya), it returns x1y1 + X2y2 + X3Y3 + XaY/a.

4.1 Constants

Our Kummer surfaces are defined by four fundamental constants a1, a3, a3, &g and
four dual constants @1, ¥y, ¥3, and @4, which are related by
202 = a3 + a5 +ad+ a3, 283 = a2 + a3 —af —aF,

283 = % — a3 +af — o, 205 = af — a3 —af +al.

94 Chapter V. gDSA

Table 1. Relations between our theta constants and others in selected related work.

Source Fundamental constants Dual constants
[Gau07; Ber+14] (wq:ap:aziay) (W1:0p:W3:0y)
[Bos+13] (dq:p:o3:0g) (;zl :;zz :‘123 : ;24)
[Cos11] (H1:paipz:pa) (F1: i : i fha)
Chapter IV (M1:p2:p3:Ha) (1:p2 i3 fg)

We require all of the ; and ®; to be nonzero. The fundamental constants determine
the dual constants up to sign, and vice versa. These relations remain true when we

exchange the &; with the @;; we call this “swapping x with X" operation “dualizing”.
To make the symmetry in what follows clear, we define

Hy = ag, €1 1= UaH3l4, K1 =€1+ €+ €3+ €y,
jo = a3, € 1= ppizia, Ky = €1+ € — €3~ €,
Uz 1= a%, €3 1= UMy, K3 := €] — €+ €3 — €4,
Uy 1= aﬁ, €4 1= H1MoM3, Kg = €] — €y — €3+ €4,

along with their respective duals Ji;, €;, and ;. Note that

(e1:€x:€3:€4) = (1/p1:1/pp 1/ pz = 1/ pg)

and pip; — ppy = fili — gl for {i,j,k, 1} = {1,2,3,4}. There are many clashing
notational conventions for theta constants in the cryptographic Kummer literature;
Table 1 provides a dictionary for converting between them.

Our applications use only the squared constants y; and ji;, so only they need be
in]Fp. In practice we want them to be as “small” as possible, both to reduce the cost
of multiplying by them and to reduce the cost of storing them. In fact, it follows from
their definition that it is much easier to find simultaneously small y; and ji; than it
is to find simultaneously small «; and &; (or a mixture of the two); this is ultimately
why we prefer the squared surface for scalar multiplication. We note that if the y;
are very small, then the €; and «; are also small, and the same goes for their duals.
While we will never actually compute with the unsquared constants, we need them
to explain what is happening in the background below. Finally, the Kummer surface

equations involve some derived constants

1601 a4 717 o fl3 s
(rapa — pops) (paps — popa) (Hipa — pspa)’

4. Implementing qDSA with Kummer Surfaces 95

and

YTl V. T P T
Hipa — P23 M3 — M2Ma 1ty — H3liy

and their duals E, l?, G and H. We observe that E2 = F2 + G2 + H? + FGH — 4 and
that E2 = F2+ G2+ H? + FGH — 4.

4.2 Fast Kummer Surfaces

We compute all of the pseudoscalar multiplications in gDSA on the so-called squared

Kummer surface

2
2 2 2 2
ICSqr:4E2~X1X2X3X4—< XT+ Xy + X5+ X§ — F(X1 Xy + X2X3))

— G(X1X3 + X2Xy) — H(X1Xo + X3Xy)

which was proposed for factorization algorithms by the Chudnovskys [CC86], then
later for Diffie-Hellman by Bernstein [BerO6c]. Since E only appears as a square,
K59 is defined over F,. The zero point on K% is 0 = (p1 : po : p3 : pa). In
our implementations we used the XDBLADD and Montgomery ladder exactly as they
were presented in Algorithm IV.3 and IV.4 (see also Algorithm 9). The doubling

XDBL on K54 is £P = (XP: X : XD : XP) — (XPI3 : ng]P : ng]P : XA[LZ]P), where

XEZ]P =e1(Uy + Uy + Uz + Uy)?, XEZ]P = e(Uy + Uy — Uz — Uy)?, 3)
ng]p =e3(Uy — Uy + Uz — Uy)?, Xz[LZ]P = ey(Us — U — Us + Us)?,

with
uy =& (X7 + x5+ x5+ x0)?, U, =& (X7 + x5 — x5 — xP)?,
Us = & (X7 — xF + x5 — xP)?, Uy = éy(xt — xb — x0 4+ x5)2.

for +P with all XIP # 0; more complicated formulee exist for other £P (c.f. §5.1).

4.3 Deconstructing Pseudo-doubling

In Figure 1 we deconstruct the pseudo-doubling on K5 from §4.2 into a cycle of
atomic maps between different Kummer surfaces, which form a sort of hexagon.
Starting at any one of the Kummers and doing a complete cycle of these maps carries
out pseudo-doubling on that Kummer. Doing a half-cycle from a given Kummer

around to its dual computes a (2, 2)-isogeny, splitting pseudo-doubling. Six different

96 Chapter V. gDSA

JCSar

]Clnt

K Sar (22) JCCan

S

Figure 1. Decomposition of pseudo-doubling on fast Kummer surfaces into a cycle of mor-
phisms. Here, K5 is the “squared” surface we mostly compute with; KCan ig the related
“canonical” surface; and K is a new “intermediate” surface which we use in signature veri-
fication. (The surfaces /GSqr, I@Cf"n, and Kt are their duals.)

Kummer surfaces may seem like a lot to keep track of (even if there are really only
three, together with their duals). However, the new surfaces are important, because
they are crucial in deriving our CHECK routine (of course, once the algorithm has
been written down, the reader is free to forget about the existence of these other

surfaces).

The cycle actually begins one step before X%, with the canonical surface

T+ T3 + T3 + Ty — F(T?T; + T2 T3)

K . 2FE . Ty T T3 Ty =
V2T G(T2T2 4 T2T2) — H(T2T2 + T2T2).

This was the model proposed for cryptographic applications by Gaudry in [Gau07];
we call it “canonical” because it is the model arising from a canonical basis of theta
functions of level (2,2). Now we can begin our tour around the hexagon, moving
from K to K59 via the squaring map S (as defined above) which corresponds to
a (2,2)-isogeny of Jacobians. Moving on from K5, the Hadamard transform isomor-
phism H maps (X7 : Xp : X3: Xy4) — (Y7 : Y2 : Y3:Yy), where

Y1 = X1+ X+ X3+ Xy, Yo = X1+ Xp — X3 — Xy,
Ys=X1 —Xo+ X3 — Xy, Yo =X —Xo — X3+ Xy

4. Implementing qDSA with Kummer Surfaces 97

It takes us into a third kind of Kummer, which we call the intermediate surface

vi Yi Y2Y?2 Y2 Y?
ZE =+ + + + —F(rtl 4 Bl
Int & Plz }l 144 M1 M4 M2 M3
: V1Y2Y3Yy = 22 22 . [y2y2 22
Q0304 _G(haxn un) _g(hin By
M1 H3 H2 M4 M1 M2 M3 Mg |

We will use K™ for signature verification. Now the dual scaling isomorphism
C: (Y1 Y, Y53 Y4) —> (Tl : fz : Tg : T4) = (Yl/&l Yo /% i Y3/05 Y4/@4)
takes us into the dual canonical surface
N T} + T3+ T+ T} — F(T?T2 + T3T2)
~ G(T2T} + T3T3) — H(T? T3 + T3T2).

We are now halfway around the hexagon; the return journey is simply the dual of
the outbound trip. The dual squarmg map S: KCan 5 KSU that maps (T; : Ty : T :
Ty) — (T2 T2 T2 T2) (X1 : Xy : X3 : X;) is another (2,2)-isogeny and carries
us into the dual squared surface
RS 4B, o %%, = (Xi+ X3+ X3+ X3 - FO0Xy + Xa o))2 ,
— G(X1 X3+ XpXy) — H(X 1 Xy + X3Xy)

and the dual Hadamard transform 7 : (Xy X3 }?4) > (171 Y : Y5 174), where

?1:)?1+}?2+X3+)?4, i/\2:)?1"’}?2_)?3_564/
?32)?1—)?24—)?3_24, ?4:551_)?2_)?3_._24

takes us into the dual intermediate surface

v 272 22
" B+B+5+5-r(22-25
Clnt Y Yo YaY = T R B T 1 Fa 213
’ 1521314 = 2y2 922 292 9292
X030 _(Hin _nY) _g(hin _uY

M1 M3 M2 M4 K1 H2 K3 H4 |

A final scaling isomorphism
C: (?1:?22Y3 Y4) (T : T3) (Yl/le ?2/0(22?3/0(3:?4/0(4)

takes us from KMt back to KCan where we started.

98 Chapter V. gDSA

The canonical surfaces ¢ resp. KCan are only defined over]Fp(oqoczocga4)
resp. [F,(@;@,a304), while the scaling isomorphisms C resp. C are defined over
IFp(@1,®p, &3, 84) resp. Fp(a1, ap, a3, 4). Everything else is defined over IF,,. We con-
firm that one cycle around the hexagon starting and ending on K59 computes the
pseudo-doubling of Equation (3). Similarly, one cycle around the hexagon starting
and ending on K" computes Gaudry’s pseudo-doubling from [Gau07, §3.2].

5 Signature Verification on Kummer Surfaces

To verify signatures in the Kummer surface implementation, we need to supply a
CHECK algorithm which, given £P, £Q, and £R on K59, decides whether +R €
{£(P+ Q),£(P — Q)}. For the elliptic version of qDSA described in §3, we saw that
this came down to checking that =R satisfied one quadratic relation whose three
coefficients were biquadratic forms in &P and +Q. The same principle extends to
Kummer surfaces, where the pseudo-group law is similarly defined by biquadratic
forms; but since Kummer surfaces are defined in terms of four coordinates (as op-
posed to the two coordinates of the x-line), this time there are six simple quadratic

relations to verify, with a total of ten coefficient forms.

5.1 Biquadratic Forms and Pseudo-addition

Let K be a Kummer surface. If =P is a point on K, then we write (ZF': zl': Z2 . ZP)
for its projective coordinates. The classical theory of abelian varieties tells us that
there exist biquadratic forms Bj; for 1 < i,j < 4 such that for all =P and +Q, if
+S=+(P+Q)and £D = £(P — Q) then

4

:A(Bij(szzéj/ZgzszZ?rZZQ'ZB»Q’ZE)) @

4
i i,j=1

S—~D S—~D
(zi zP + 787]);,;:1
where A € k* is some common projective factor depending only on the affine rep-
resentatives chosen for £P, £Q, £(P + Q) and (P — Q). These biquadratic forms
are the foundation of pseudo-addition and doubling laws on K: if the “difference”
+D is known, then we can use the B;; to compute +S.

Proposition 4. Let {B;; : 1 < i,j < 4} be a set of biquadratic forms on K x K satisfying
Equation (4) for all £P, £Q, £(P + Q), and £(P — Q). Then

+R = (zR.z} . 78 . ZR) e {(£(P+ Q), (P - Q)}

5. Signature Verification on Kummer Surfaces 99

if and only if (writing By; for Bj(ZY,..., Z3)) we have

B

1

i (Z8)? = 2By - ZRZR + By - (Z2])* =0 forall1 <i<j<4. (5)
Proof. Looking at Equation (4), we see that the system of six quadratics from Equa-
tion (5) cuts out a zero-dimensional degree-2 subscheme of K. That is, the pair of
points {£(P + Q), £(P — Q)} (which may coincide). Hence, if (Z} : zZ§ : z& .
ZR) = LR satisfies all of the equations, then it must be one of them. O

5.2 Deriving Efficiently Computable Forms

Proposition 4 is the exact analogue of Proposition 3 for Kummer surfaces. All that
we need to turn it into a CHECK algorithm for gDSA is an explicit and efficiently

computable representation of the B;;. These forms depend on the projective model
BSqr
ij
canonical, squared, and intermediate surfaces. On the canonical surface, the forms

of the Kummer surface. Hence we write Bgan, and BZI.;"‘ for the forms on the

Bga“ are classical (see e. g. [Bai62, §2.2]). The on-diagonal forms BZ.CI-an are

Can
= l=+t=+=+=
AN T CO S

pCan 1(E_E+E_ﬁ>, pCan _ <V1 Vo V3 Y4>/

B T4\ fo Mz g

1(V1 V, V3 V4>’

=3

while the off-diagonal forms B;; with {i,], k, I} = {1,2,3,4} and i # j are

B%ﬂﬂ —)

~~

2 wa (TPTPTOTS + TPTF TPTY)
Hillj — Hxh

PP 1Q7Q PP QrQ
—ockoc,(Ti Tka T=+T, T,T, T])

All of these forms can be efficiently evaluated. The off-diagonal Bgan have a par-
ticularly compact shape, while the symmetry of the on-diagonal B;" makes them

particularly easy to compute simultaneously. Indeed, that is exactly what we do in

100 Chapter V. gDSA

Gaudry’s fast pseudo-addition algorithm for K [Gau07, §3.2].

Ideally, we would like to evaluate the BZ-S]-qr on K5, since that is where our inputs
£P, £Q, and £R live. We can compute the BZ.S].qr by dualizing the B%ar‘, then pulling
the Ega“ on K back to K59 via C o H. But while the resulting on-diagonal Bisl.qr
maintain the symmetry and efficiency* of the Bicia“, the off-diagonal ijqr turn out
to be much less pleasant, with less apparent exploitable symmetry. For our appli-
cations, this means that evaluating BZ.S]-qr for i # j implies taking a significant hit in
terms of stack and code size, not to mention time. We could avoid this difficulty by
mapping the inputs of CHECK from K59 into K€, and then evaluating the E\%an.
But this would involve using (and therefore storing) the four large unsquared &;,
which is an important drawback.

One can wonder why the nice ﬁ%an become so ugly when pulled back to 59",
The map C : Kt — K€ has no impact on the shape or number of monomials,
so most of the ugliness is due to the Hadamard transform # : K5 — KMt In
particular, if we only pull back the §§an as far as K", then the resulting Bll-;‘t retain
the nice form of the Bgan but do not involve the @;. This fact prompts our solution:
we map £P, +Q, and £R through A onto K™, and verify using the forms B}]r.‘t.

Theorem 5. Up to a common projective factor, the on-diagonal biquadratic forms on the
intermediate surface K™t are

B = 7y (iy Fy + 2 Fs + k3F5 + 14 Fy)
B! = iy (koFy + K1 F> + 14 F3 + x3Fy) ,
;gt = i3 (k3F1 + x4 F) + k1 F3 +10Fy) ,

)

(
Int -~
fiy (k4Fy +13F + x0F3 +11Fy) ,

where

=P1Q1 + P,Q2 + P3Q3 + P4Qy4, b =PiQy+ P01 + P3Q4 + P4Q3,
= P1Q3 + P3Q1 + P,Qs + P4Q2, Fy = P1Q4 + P4Q1 + P2Q3 + P3Q2,

and where P; = & (YF)? and Q; = El-(YiQ)2 for 1 < i < 4. Up to the same common
projective factor, the off-diagonal forms for {i,j,k,1} = {1,2,3,4} are

BInt C. C (,uk,ul(Ykl) (YQ YQ) + (]/llﬁ] - ﬁkﬁl)YEYle) ’ ©)

* As they should, since they are the basis of the efficient pseudo-addition on A54'!

5. Signature Verification on Kummer Surfaces 101

where Cij = fift(Aiflx — Aifn) (it — i), Y5 = Y'Y, YQ YQYQ and
c— 8(p1papiapta) (P fizfisfia) _
(fi1fi2 — Hiafia) (P fis — fafis) (i1 fla — fiafls)

Proof. By definition, T?]A"].D +]A"]-S TP = §Sa“(ff ey TQ) Pulling back via C using
Ti = Yi /&1 yields

BI(YL, . YQ) = YIYP + P YP =aa (TP TP + T7TP)

BY = fir/ (4papopiapes(afiofizfis)?) - (k1 Fy + 2By + 13F3 + 14 Fy)
BY' = fia/ (4pa papiapia(f fiafiafia)) - (i2Fy + 11 Fa + 14 F3 + 163Fy)

BY' = fis/ (4 popapia (i fiafisfia)?) - (k3Fi + kaFa + k1F3 + KoFy) ,
B = fia/ (4prpopiapes(afiafizfis)?) - (kaFy + x3F2 + 10F3 + 61 Fy)

while the off-diagonal forms B;; with i # j are

B 2 i (Y ng)(YQ Yg)
P g (i — i) <ylu]—ukm> YS

for {i,j,k,1} = {1,2,3,4}. Multiplying all of these forms by a common projective

factor of 4(p1papaps) (1 Mafisfis)? eliminates the denominators in the coefficients,
and yields the forms of the theorem. O

5.3 Signature Verification

We are now finally ready to implement the CHECK algorithm for K59, Algorithm 3
does this by applying H to its inputs, then using the biquadratic forms of Theorem 5.
Its correctness is implied by Proposition 4.

5.4 Using Cryptographic Parameters

The surface defined by Gaudry and Schost [GS12] uses p = 2% — 1 and (y1 : y2 :
Hz : pg) = (=11 : 22 : 19 : 3). We also need the constants (ji1 : jip : iz : Jig) =

102

Chapter V. gDSA

Algorithm 3. Checking the verification relation for points on 59"

Function: CHECK

Input: +£P, £Q, +R in K5 (FF,)

Output: Trueif £R € {£(P+ Q), (P — Q)}, False otherwise
Cost: 76M + 8S + 88m, + 42a + 42s

(Y7, YQ) « (H(£P), H(£Q))

2 (By1, Bap, B33, Bas) < BuVALUES(Y?, YQ)

3 YR« H(£R)

4 for (i,j) in {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} do

5 LHS ¢ By (V) +Bj-(Y[)

6 Bjj < ByVALUE(Y?,YC, (i,]))
7
8
9

[y

RHS < 2B;; - Y[- Y}
if LHS # RHS then return False
return True

Function: BIIVALUES

Input: +£P, +Q in K(F,)

Output: (BjM(+P,+Q))i_, inF,

Cost: 16M + 8S + 28m, + 24a

10 // See Algorithm 13 and Theorem 5

Function: BIJVALUE

Input: +P, +Q in K™ (F,) and (i,j) with1 <i,j < 4and i # j
Output: B};ﬂf(ip, +Q)inF,

Cost: 10M + 10m. + 1a + 5s

11 // See Algorithm 12 and Theorem 5

6. Kummer Point Compression 103

(=33 : 11 : 17 : 49), (k1 : k2 : k3 : kg) = (—4697 : 5951 : 5753 : —1991), and
(€1:€:€65:€) = (—833:2499 : 1617 : 561).5 In practice, where these constants are
“negative”, we reverse their sign and amend the formule above accordingly. All of
these constants are small, and fit into one or two bytes each (and the €; are already
stored for use in LADDER). We store one large constant

C = 0x40F50EEFA320A2DD46F7E3DS8CDDDA843

and recompute the C;; on the fly.

6 Kummer Point Compression

Our public keys are points on K59, and each signature includes one point on 59"
Minimizing the space required by Kummer points is therefore essential. A projec-
tive Kummer point is composed of four field elements. Normalizing by dividing
through by a nonzero coordinate reduces us to three field elements (this can also be
achieved using Bernstein’s “wrapping” technique [Ber06c], as in [Ber+14] and Chap-
ter IV). But we are talking about Kummer surfaces (i. e. two-dimensional objects) so
we might hope to compress to two field elements, plus a few bits to enable us to
correctly recover the whole Kummer point. This is analogous to elliptic curve point
compression, where we compress projective points (X : Y : Z) by normalizing to
(x,y) = (X/Z,Y/Z), then storing (x,0), where ¢ is a bit indicating the “sign” of y.
Decompressing the datum (x,0) to (X : Y : Z) = (x : y : 1) then requires solving a
simple quadratic to recover the correct y-coordinate.

For some reason, no such Kummer point compression method has explicitly ap-
peared in the literature. Bernstein remarked in 2006 that if we compress a Kummer
point to two coordinates, then decompression appears to require solving a compli-
cated quartic equation [Ber06c]. This would be much more expensive than com-
puting the single square root required for elliptic decompression. This has perhaps
discouraged implementers from attempting to compress Kummer points. But while
it may not always be obvious from their defining equations, the classical theory tells
us that every Kummer surface is in fact a double cover of IP?, just as elliptic curves
are double covers of IP1. We use this principle below to show that we can always
compress any Kummer point to two field elements plus two auxiliary bits, and then
decompress by solving a quadratic. In our applications, this gives us a convenient

5 Following the definitions of §4.1, the i; are scaled by —2, the & by 1/11, and C by 2/11%. These
changes influence the B};‘t, but only up to the same projective factor.

104 Chapter V. gDSA
packaging of Kummer points in exactly 256 bits.

6.1 The General Principle

First, we sketch a general method for Kummer point compression that works for any
Kummer presented as a singular quartic surface in IP?. Recall that if N is any point in
IP3, then projection away from N defines a map 7ty : P — IP? sending points in IP3
on the same line through N to the same point in IP2. (The map 7ty is only a rational
map, and not a morphism; the image of N itself is not well-defined.) Now, let N be
anode of a Kummer surface K. That is, N is one of the 16 singular points of K. The
restriction of 71y to K forms a double cover of IP2. By definition, 71y maps the points
on K that lie on the same line through N to the same point of IP2. Now K has degree
4, so each line in IP? intersects K in four points. But since N is a double point of K,
every line through N intersects IC at N tfwice, and then in two other points. These
two remaining points may be “compressed” to their common image in IP?> under
7tn, plus a single bit to distinguish the appropriate preimage.

To make this more concrete, let Lj, Ly, and L3 be linearly independent linear
forms on IP® vanishing on N. Then N is the intersection of the three planes in IP* cut
out by the L;. We can now realize the projection 71y : K — IP? as

TIN - (Pl D P4) — (Ll(Pl,...,P4) : Lz(Pl,...,P4) : L3(P1,...,P4)) .

Replacing (L, Ly, L3) with another basis of (Lq, Ly, L3) yields another projection,
which corresponds to composing 71y with a linear automorphism of IP2.

If Ly, Ly, and L3 are chosen as above to vanish on N, and L, is any linear form not
in (Lq, Ly, L3), then the fact that 7ty is a double cover of the (L1, Ly, L3)-plane implies

that the defining equation of K can be rewritten in the form
K : Ky(Ly, Ly, L3) L — 2K3(Ly, Lg, L3) Ly + Ky(Ly, Lp, L3) = 0

where each K; is a homogeneous polynomial of degree i in Ly, Ly, and Lz. This form,
quadratic in Ly, allows us to replace the L4-coordinate with a single bit indicating the
“sign” in the corresponding root of this quadratic. The remaining three coordinates
can be normalized to an affine plane point. The net result is a compression to two
field elements, plus one bit indicating the normalization, plus another bit to indicate
the correct value of Ly.

Remark 6. Stahlke gives a compression algorithm in [Sta04] for points on genus-2

Jacobians in the usual Mumford representation. The first step can be seen as a pro-

6. Kummer Point Compression 105

jection to the most general model of the Kummer (as in [CF96, Chapter 3]), and then
the second is an implicit implementation of the principle above.

6.2 From Squared Kummers to Tetragonal Kummers

We want to define an efficient point compression scheme for 59", The general prin-
ciple above makes this possible, but it leaves open the choice of node N and the
choice of forms L;. These choices determine the complexity of the resulting K;, and
hence the cost of evaluating them. This in turn has a non-negligible impact on the
time and space required to compress and decompress points, as well as the number

of new auxiliary constants that must be stored.

In this section we define a choice of L; reflecting the special symmetry of 59, A
similar procedure for K" appears in more classical language® in [Hud05, §54]. The
trick is to distinguish not one node of K59, but rather the four nodes forming the
kernel of the (2,2)-isogeny S o C o H : K5 — K59, namely

+0=No= (p1:p2: Y3 : pa), Ny = (po:p1:pa:ps),
Ny = (p3:pg:p1:p2), N3 = (pa:ps:po:p).

We are going to define a coordinate system where these four nodes become the ver-
tices of a coordinate tetrahedron; then, projection onto any three of the four coor-
dinates will represent a projection away from one of these four nodes. The result
will be an isomorphic Kummer K™ whose defining equation is quadratic in all four
of its variables. This might seem like overkill for point compression (quadratic in
just one variable would suffice) but it has the agreeable effect of dramatically reduc-
ing the overall complexity of the defining equation, saving time and memory in our
compression and decompression algorithms.

The key is the matrix identity

Ky ®3 Ko K1\ (M1 M2 M3 4 0 001
B R R R loo1o0
K A4 A1 Az B2 P P4 M3 | _ AT)
Ky K1 Ky K3 | |p3s pa p1 M2 0100
K1 Ko K3 Ka) \Ma M3 M2 I 1000

6 The analogous model of KCCan in [Hud05, §54] is called “the equation referred to a Rosenhain tetrad”,
whose defining equation “...may be deduced from the fact that Kummer'’s surface is the focal surface of
the congruence of rays common to a tetrahedral complex and a linear complex.” Modern cryptographers
will understand why we have chosen to give a little more algebraic detail here.

106 Chapter V. gDSA

which tells us that the projective isomorphism 7 : IP3 — IP3 defined by

X3 Ly K4 X1 +K3Xp + K2 X5 + %1 X4

T : Xp s) _ | K3 X1 + K4 Xo + K1 X3 + 12Xy
1 X3 : L3 (KX + 10 Xo + K4 X3 + K3 Xy

1 Xy 1Ly 11Xy F 10Xy + 13 X3 + K4 Xy

maps the four “kernel” nodes to the corners of a coordinate tetrahedron. That is,

T(Np)=(0:0:0:1), T(N;)=(0:1:0:0),
T(N;)=(0:0:1:0), T(N3)=(1:0:0:0).

The image of K59 under 7 is the tetragonal surface

r2(L1Ly + LgLa)? + r3(L1Ls 4+ LoLg)? + r3(L1Ls + LyL3)?
—2r151((L2 + L3)LaLg + L1 Ly (L3 + L3))
—2rp55((L3 + L) LoLg + Ly L3(L3 + L7))
— 2r353((L3 + L3)LoLs + Ly Ls(L3 + L3))

Kot 4t LyL5Ly =

where t = 161 popuzpajis o pzjis and

r1 = (u1ps — popa) (P1pa — pops), s1= (pip2 — papa) (Papo + Hapa) ,
ry = (2 — papa) (P1pa — paps), s2 = (pips — papa) (Baps + Hopa) ,
13 = (u1p2 — papa)(Pips — papa), s3= (Hipa — pops) (Hapa + pops) -

As promised, the defining equation of KT is quadratic in all four of its variables. For
compression, we project away from 7 (£0) = (0:0:0: 1) onto the (L : Lp : L3)-

plane. Rewriting the defining equation as a quadratic in Ly gives
KT : Ky(Ly, Ly, L3) — 2K3(Ly, Lo, L3) L + Ka(Ly, Ly, L3) L5 = 0
where

Ky = r3L% + 1315 + r1L3 — 2 (r3s3LaLs + rasoLi Ly + 1151 L1 Lo) ,
K = r151(L3 + L3)La + 1250 (L2 + L3) Ly + r3s3(L3 + L3) Ly
+ (2t = (1} + 13 +13)) L LaLs,
Ky = 31313 + 31213 + 121213 — 2 (r3s3Lq + rasply + 1151L3) LiLoLs.

6. Kummer Point Compression 107

Lemma 7. If (I : I : I3 : 1y) is a point on K¢, then
KZ(llIZZI 13) = K3(11112/ 13) = K4(11112/ 13) =0 <= ll = l2 = l3 =0.

Proof. Write k; for K;(I1,1p,13). If (I1,15,13) = 0 then (kp, k3,k4) = 0, because each K;
is non-constant and homogeneous. Conversely, if (ky, k3,ks) = 0 and (I1,12,13) # 0
then we could embed a linein K™ via A+ (I; : I, : I3 : A); but this is a contradiction,

because KTt contains no lines. O

6.3 Compression and Decompression for K59

In practice, we compress points on K5 to tuples (11,1, T,0), where I and I, are field
elements and 7 and ¢ are bits. The recipe is

1. Map (X1 : Xp : X3 : X4) through 7 toa point (L; : Ly : L3 : Ly) on KTt

2. Compute the unique (I,15,13,14) in a form (x,%,1,%), (x,1,0,%), (1,0,0, %), or
(0,0,0,1) such that (I; : Ip : I3 : ly) = (L1 : Lp : L3 : Lyg).

3. Compute ko = Kz(ll, I, 13), ks = K3(ll,lz, 13) and k4 = K4(ll,lz, 13)

4. Define the bit ¢ = Sign(koly — k3), so that (13,1, 13,0) determines I;. Indeed,
q(ly) = 0, where q(X) = ko X? — 2k3X + k4 and Lemma 7 tells us that g(X) is
either quadratic, linear, or identically zero.

- If g is a nonsingular quadratic, then I4 is determined by (I3, 1,13) and o,
because o = Sign(R) where R is the correct square root in the quadratic
formula Iy = (ks £ /K3 — koka) /ko.

— If g is singular or linear, then (1, I, I3) determines l4, and ¢ is redundant.
- If g =0then (I1,15,13) = (0,0,0), so Iy = 1. Again, ¢ is redundant.

Setting o = Sign(kyly — k3) in every case, regardless of whether or not we need
it to determine Iy, avoids ambiguity and simplifies code.

5. The normalization in Step 2 forces I3 € {0, 1}, so encode I3 as a single bit 7.

The datum (I3, I, T, o) completely determines (I, I, 13,14), and thus determines (Xj :
Xp:X3:Xg) =T (4 : I : I : ly)). Conversely, the normalization in Step 2 en-
sures that (11,1, T,0) is uniquely determined by (Xj : X5 : X3 : X4), and is indepen-
dent of the representative values of the X;. Algorithm 4 carries out the compression

108 Chapter V. gDSA

process above. The most expensive step is the computation of an inverse in [F,. Al-
gorithm 5 is the corresponding decompression algorithm, and its cost is dominated
by computing a square root in IF,.

Algorithm 4. Kummer point compression for 59"

Function: COMPRESS
Input: £P in K5 (F,)
Output: (I;,lp,7,0) withl;,l, € Fyand o, T € {0,1}
Cost: 8M +5S + 12m, + 8a + 5s + 11
1 (L1, Ly) < (Dot(=£P, (K4, K3,K2,%1)), Dot (£P, (K3,%4,K1,%2)))

2 (L3, Ly) < (Dot (=P, (K, K1, K4, %3)), Dot (£P, (K1, K2, K3,K4)))

3 if L3 # Othen (T,A) < (1,L31) > Normalize to (x : % : 1: %)
4 elseif L # 0 then (7,A) + (0,L; ') > Normalize to (x :1:0: %)
5 elseif L # 0 then (7,A) + (0,L7) > Normalize to (1:0:0: %)
6 else (T,A) + (0,L; ") > Normalize to (0 : 0 :0: 1)
7 (11,12,14)(—(Ll'/\,Lz'/\,L4-A) D(111122T114):(L1)
8 (kz, k3) — (Kz(ll, I, T), K3(l1, Iy, T)) > See Algorithm 14 and 15
9 R ky-ly — ks

10 ¢ < Sign(R)
11 return (I3, 1, 7,0)

Proposition 8. Algorithms 4 (COMPRESS) and 5 (DECOMPRESS) satisfy the following
properties: given (11,15, T,0) in]F% x {0,1}2, DECOMPRESS always returns either a valid
point in KS¥(IFp,) or L, and for every +P in K% (IF,) we have

DECOMPRESS(COMPRESS(£P)) = +P.

Proof. In Algorithm 5 we are given (I1,lp,7,0). We can immediately set I3 = T,
viewed as an element of IF,. We want to compute an Iy in IFp, if it exists, such that
k212 — 2k3ly + k4 = 0 and Sign(kyly — I3) = o where k; = K;(l1,1p,13). If such an Iy
exists, then we will have a preimage (1 : I : I3 : I4) in KT®(IF,)), and we can return
the decompressed 71 ((I : I : I3 : 13)) in K5,

— If (ky, k3) = (0,0) , then ky = 2k3ly — kzli =0,s0ly =l =7=0DbyLemma?7.
The only legitimate datum in this formis (l; : [: T:0) = (0:0:0: Sign(0)).
If this was the input, then the preimage is (0: 0 : 0 : 1). Otherwise, we return
L.

— If kp = 0but k3 # 0, then k4 = 2k3l4 and (ll T l4) = (2](311 : 2ksln 2 2kaT :

6. Kummer Point Compression 109

Algorithm 5. Kummer point decompression to K59

Function: DECOMPRESS
Input: (I1,1p,7,0) withIj,l, € Fyand 7,0 € {0,1}
Output: The point +P in K59 (IF,) such that COMPRESS(£P) = (I3, 1, T,0), or L if
no such £P exists
Cost: 10M +9S + 18m. + 13a + 8s + 1E
1 (kz, k3, k4) — (Kz(ll, 12, ’L’),K3(11, lz, T),K4(11, 12, T)) > Alg 14,15,16
2 if ky = 0 and k3 = 0 then

3 if (I1,15,7,0) # (0,0,0,Sign(0)) then
4 return L > Invalid compression
5 L+ (0,0,0,1)
6 else if ky = 0 and k3 # 0 then
7 ifo # Sign(—k3) then
8 return L > Invalid compression
9 L(—(2-11'k3,2‘lz-k3,2-T-k3,k4) >k4:2k3l4
10 else
11 A< k3 —koky
12 R < HasSquareRoot(A,) >R=1lorR?>=A,sign(R)=0c
13 if R = 1 then
14 return | > No preimage in KT¢(F,)
15 L« (ky-11,ky-Ip,kp-7,k3+ R) > k3 + R =koly

16 (X1, X2) < (Dot(L, (pa, p3, B2, 1)), Dot (L, (u3, pa, 1, H2)))
17 (X3, Xq) < (Dot(L, (2, p1, pha, #3)), Dot (L, (p1, p2, 43, Ha)))
18 return (Xl : Xz : X3 : X4)

110 Chapter V. gDSA

ky). The datum is a valid compression unless ¢ # Sign(—k3), in which case
we return L. Otherwise, the preimage is (2k3zly : 2k3lp : 2k3T : kyg).

— If ky # 0, then the quadratic formula tells us that any preimage satisfies kply =

ks & 1/ k3 — koky, with the sign determined by Sign(kaly — k3). If k3 — koky is
not a square in [, then there is no such l4 in [F,; the input is illegitimate, so we

return L. Otherwise, we have a preimage (kply : kolp = kals : I3 + ,/k% — koky).

Lines 16 and 17 map the preimage (/1 : I : I3 : I4) in K™(F,) back to K% (FF,) via
T 1, yielding the decompressed point (X7 : X5 : X3 : Xy). O

6.4 Using Cryptographic Parameters

Our compression scheme works out particularly nicely for the Gaudry-Schost Kum-
mer over [Fy107_ . First, since every field element fits into 127 bits, every compressed
point fits into exactly 256 bits. Second, the auxiliary constants are small. We have
(K1 : K2 : K3 : ka) = (=961 : 128 : 569 : 1097), each of which fits into well under 16
bits. Computing the polynomials K,, K3, K4 and dividing them all through by 112

(which does not change the roots of the quadratic) gives

Ko(l1, I, T) = (g511)% + (q3l2)* + (9a7)* — 293 (921112 + T(q011 — 1l2)) , (10)
K3(ll,lz, T) =43 (QQ(Z% + T)lz — qlll(l% + T) + Q2(l% + l%)T) — q6Q7lllzT, (11)
Ky(h, I, 7) = ((g3h)% + (g512)* — 23112 (qolo — q1ly + 42)) T + (qsh12)*, (12)

where (qo,...,q7) = (3575,9625,4625,12259,11275,7475,6009,43991). Each of the
g; fits into 16 bits. In total, the twelve new constants we need for COMPRESS and
DECOMPRESS together fit into less than two field elements” worth of space.

7 Implementation

In this section we present the results of the implementation of the scheme on the
AVR ATmega and ARM Cortex M0 platforms. We have a total of four implementa-
tions. On both platforms we implemented both the Curve25519-based scheme and
the scheme based on a fast Kummer surface in genus 2. The benchmarks for the
AVR software are obtained from the Arduino MEGA development board contain-
ing an ATmega2560 MCU, compiled with GCC v4.8.1. For the Cortex M0, they are
measured on the STM32F051R8 MCU on the STMFODiscovery board, compiled with

7. Implementation 111

Table 2. Cycle counts for the four key functions of qDSA at the 128-bit security level on the
AVR ATmega and ARM Cortex MO0 architectures.

Genus Function Ref. AVR ARM
LADDER Alg.6 12539098 3338554

1 CHECK Alg.2 46 546 17044
COMPRESS §3.1 1067004 270867
DECOMPRESS §3.1 694 102

LADDER Alg.9 9624637 2683371

) CHECK’ Alg. 3 84424 24249

COMPRESS Alg. 4 212374 62165
DECOMPRESS Alg. 5 211428 62471

Clang v3.5.0. We refer to the (publicly available) code for more detailed compiler
settings. For both Diffie-Hellman and signatures we follow the eBACS API [BLa].

7.1 Core Functionality

The arithmetic of the underlying finite fields is well-studied and optimized, and
we do not reinvent the wheel. For field arithmetic in Fys5_;9 we use the highly
optimized functions presented by Hutter and Schwabe [HS13] for the AVR ATmega,
and the code from Diill et al. [Diil+15] for the Cortex MO0. For arithmetic in Fy17_4
we use the functions from Chapter IV, which in turn rely on [HS13] for the AVR
ATmega, and on [Diil+15] for the Cortex MO.

The SHAKE128 functions for the ATmega are taken from [Ber+16], while on the
Cortex M0 we use a modified version from [AJS16]. Cycle counts for the main func-
tions defined in the rest of this chapter are presented in Table 2. Notably, the LADDER
routine is by far the most expensive function. In genus 1 the COMPRESS function is
relatively costly (it is essentially an inversion), while in genus 2 CHECK, COMPRESS
and DECOMPRESS have only minor impact on the total run-time. More interestingly,
as seen in Table 3 and Table 4, the simplicity of operating only on the Kummer vari-
ety allows smaller code and less stack usage.

7.2 Comparison to Previous Work

There are not many implementations of full signature and key exchange schemes
on microcontrollers. On the other hand, there are implementations of scalar multi-

7 The implementation decompresses &R within CHECK, while Algorithm 3 assumes =R to be decom-
pressed. We have subtracted the cost of the DECOMPRESS function once.

112 Chapter V. gDSA

Table 3. Performance comparison of the gDSA signature scheme against the best implementa-
tions, on the AVR ATmega architecture. The code size and stack size are measured in bytes.

Ref. Object Func. Cycles Stack Code size®
SIGN 19047706 1473 B

[NLD15] Ed25519 VERIFY 30776942 1226B o

[Liu+17] FourQ SIGN 5174800 1572B 25354 B

VERIFY 11003800 4957B 33372 B
. SIGN 14067 995 512 B

This Curve25519 VERIFY 25355140 644 B 21347 B
Gaudry- SIGN 10404 033 926 B
Schost J VERIFY 16240510 992 B
Gaudry- SIGN 10477 347 417 B
Schost VERIFY 20423937 609 B

Chapter IV 20242 B

This 17880 B

plication on elliptic curves. The fastest on our platforms are presented by Diill et
al. [Diil+15], and since we are relying on exactly the same arithmetic, we have essen-
tially the same results. Similarly, the records for scalar multiplication on Kummer
surfaces are presented in Chapter IV. Since we use the same underlying functions,
we have similar results.

More interestingly, we compare the speed and memory usage of signing and ver-
ification to best known results of implementations of complete signature schemes.
To the best of our knowledge, the only other works are the Ed25519-based scheme
by Nascimento et al [NLD15], the FourQ-based scheme (obtaining fast scalar mul-
tiplication by relying on easily computable endomorphisms) by Liu et al [Liu+17],
and the genus-2 implementation from Chapter IV.

AVR ATmega. As we see in Table 3, our implementation of the scheme based on
Curve25519 outperforms the Ed25519-based scheme from [NLD15] in every way. It
reduces the number of clock cycles needed for SIGN resp. VERIFY by more than 26%
resp. 17%, while reducing stack usage by more than 65% resp. 47%. Code size is not
reported in [NLD15]. Comparing against the FourQQ implementation of [Liu+17], we
see a clear trade-off between speed and size: FourQ has a clear speed advantage, but
gDsA on Curve25519 requires only a fraction of the stack space.

The implementation based on the Kummer surface of the genus-2 Gaudry-Schost
Jacobian does better than the Curve25519-based implementation across the board.
Compared to Chapter IV the stack usage of SIGN resp. VERIFY decreases by more

8 All reported code sizes except those from [Liu+17, Table 6] include support for both signatures and
key exchange.

7. Implementation 113

Table 4. Performance comparison of the qDSA signature scheme against the current best im-
plementations, on the ARM Cortex MO platform. The code size and stack size are measured
in bytes.

Ref. Object Func. Cycles Stack Code size’

. SIGN 3889116 660 B
This Curve25519 VERIEY 6793695 738 B 18443 B
Gaudry- SIGN 2865351 1360B
Schost J VERIFY 4453978 1432B
Gaudry- SIGN 2908215 580 B
Schost IC VERIFY 5694414 808 B

Chapter IV 19606 B

This 18064 B

than 54% resp. 38%, while decreasing code size by about 11%. On the other hand,
verification is about 26% slower. This is explained by the fact that in Chapter IV the
signature is compressed to 48 bytes (following Schnorr’s suggestion), which means
that one of the scalar multiplications in verification is only half length. Comparing to
the FourQ implementation of [Liu+17], again we see a clear trade-off between speed
and size, but this time the loss of speed is less pronounced than in the comparison
with Curve25519-based gDSA.

ARM Cortex M0. In this case there is no elliptic-curve-based signature scheme to
compare to, so we present the first. As we see in Table 4, it is significantly slower than
its genus-2 counterpart in this chapter (as should be expected), while using a similar
amount of stack and code. The genus-2 signature scheme has similar trade-offs on
this platform when compared to the implementation of Chapter IV. The stack usage
for SIGN resp. VERIFY is reduced by about 57% resp. 43%, while code size is reduced
by about 8%. For the same reasons as above, verification is about 28% slower.

% In this chapter 8448 bytes come from the SHAKE128 implementation, while in Chapter IV we use
6938 bytes. One could probably reduce this significantly by optimizing the implementation, or by using
a more memory-friendly hash function.

114 Chapter V. gDSA

A Elliptic Implementation Details

The algorithms in this section complete the description of elliptic gDSA in §3.

A.1 Pseudoscalar Multiplication

The KEYPAIR, SIGN, and VERIFY functions all require LADDER, which we define be-
low. Algorithm 6 describes the scalar pseudomultiplication that we implemented
for Montgomery curves, closely following our C reference implementation. To make
our LADDER constant-time, we use a conditional swap procedure CSWAP. This takes a
single bit and a pair of items as arguments, and swaps those items if and only if the
bit is 1.

Algorithm 6. The Montgomery ladder for elliptic pseudo-multiplication on P!, us-
ing a combined differential double-and-add (Algorithm 7)

Function: LADDER

Input: m = Y29 m2' € Zand +P = (x: 1) € PY(F,), x #0

Output: +[m]|P

Cost: 1280M + 1024S + 256m. + 1024a + 1024s

1 prevbit +— 0

(Vo, V1) < ((1:0), %P)

for i = 255 down to 0 do
(bit,prevbit,swap) < (m;, bit, bit @ prevbit)
CSWAP(swap, (Vp, V1))
XDBLADD(Vj, V1, x)

CSWAP(bit, (Vp, V1))

return Vj

W g S Ul R WN

Algorithm 7 implements XDBLADD for Montgomery curves in the usual way.
Note that the assumption that (P — Q) ¢ {(1:0),(0: 1)} implies that XDBLADD
will always return the correct result.

A.2 The BVALUES Subroutine for Signature Verification

The elliptic version of the crucial CHECK subroutine of VERIFY (Algorithm 2) used
a function BVALUES to calculate the values of the biquadratic forms Bxx, Bxz, and
Bzz. This function can be implemented in a number of ways, with different opti-
mizations for speed or stack usage. Algorithm 8 illustrates the approach we used for
BVALUES, motivated by simplicity and stack minimization.

A. Elliptic Implementation Details 115

Algorithm 7. Combined pseudo-addition and doubling on P!

Function: XDBLADD

Input: +P = (X : ZP) and £Q = (X? : Z9) in P!(F,), and x € [F7 such that
(x:1) = +(P-Q)

Output: (£[2]P,+=(P+Q))

Cost: 5M +4S + 1m. + 4a + 4s

1 (Uo Uy) (X", ZP) 8 (Wo, Uo) + (W7, W5)

2 (Vo, V1) + (X9,29) 9 Uy « Uy — W

3 (W(),Wl) %(UO+U1,UO*U1) 10 Uy < Wy - Uy

4 (UO,U1)<— (V0+V1,V0—V1) 11 Wl%%‘ul

5 (Vo,ul) — (Wo-ul,wl-llo) 12 W1 <—W0~W1

6 (Uo,vl) (—(VQ+U1,V0—U1) 13 Uy < Wy - Uy

7 (Uy, Vo, V1) + (U3, VZ,x- Up) 14 return ((Up, Uy), (Vo, V1))

Algorithm 8. Evaluates Bxx, Bxz, and Bzz on P!

Function: BVALUES

Input: £P = (X :ZP), +Q = (X9 : Z9) in K(F,)

Output: (Bxx(+P,+Q),Bxz(£P,+Q), Bzz(£P,+Q)) in]Ff;
Cost: 6M +2S +1m¢ + 7a + 3s

1 (Tp, Ty) «+ (XP-XQ,zP . zQ) 7Ty« 4-T1-Th
2 U+ (Ty—Ty)? 8 Ty < 2T
3Ty« To+Th 9T« 42.Ty

4 (T}, Tr) « (XP-2Q,XQ.zP) 10 V+V+T1—Tp
5 W< (Ty — Tr)? 11 return (U, V, W)

6 V%To‘(Tlﬁ*Tz)

116 Chapter V. gDSA

B Kummer Surface Implementation Details

The algorithms in this section complete the description of Kummer gDSA in §§4-6.
They follow our C reference implementation very closely. Recall that we have the

following subroutines:

— The function M : IF‘;, X]F‘;, —]F‘f, implements a 4-way parallel multiplica-
tion. It takes a pair of vectors (x1, x2, x3, x4) and (1, Y2, y3,y4) and returns the
coordinate-wise product vector (x1x2 : Y12 : 2122 : t1t2).

— The function S :]F‘;, —]F‘;, implements a 4-way parallel squaring. It maps
(x1, %2, x3, X4) to (x7, %3, 33, 7).

— The function H :]F‘;, —]F% is a Hadamard transform. It maps (x1, x2, X3, X4) to
(X1 + X2+ X3+ X4, X1 + Xp — X3 — Xg,X] — X3 + X3 — Xgq,X] — X2 — X3 + Xg).

— The function Dot : IF‘;, X IF;L, — IF,, computes the sum of a 4-way multiplication.
Given (x1, x2, x3,%4) and (y1, Y2, Y3, Y4), it returns x1y1 + Xoy2 + X3Y3 + X4Y4.

B.1 Scalar Pseudomultiplication

The Montgomery LADDER for scalar pseudomultiplication on K59 is implemented
in Algorithm 9, replicating the approach in Chapter IV. It relies on the XWRAP and
XDBLADD functions, implemented in Algorithm 10 respectively 11. The function
XWRAP takes a Kummer point £P in cSar (Fp) and returns w,, w3, and wy in IF, such
that (1 : wp : w3 : wy) = (1/Xf : 1/Xéj : 1/X§ : 1/Xf). The resulting values
are required in every XDBLADD within LADDER; the idea is to compute them once
with a single inversion at the start of the procedure, thus avoiding further expensive
inversions. We note that this “wrapped” form of the point &P was previously used
as a compressed form for Kummer point transmission, but since it requires three full

field values it is far from an optimal compression.

B.2 Subroutines for Signature Verification

The crucial CHECK function for K% (Algorithm 3) calls subroutines BITVALUES and
BIJVALUE to compute the values of the biquadratic forms on K™, Algorithm 12
and 13 are our simple implementations of these functions. We choose to only store
the four constants jiy, ji, ji3 and jig, but clearly one can gain some efficiency by
pre-computing more constants (e.g. fi1ji2, }i1jia — jiaji3, etc.). As the speed of this
operation is not critical, it allows us to reduce the number of necessary constants.

B. Kummer Surface Implementation Details 117

Algorithm 9. The Montgomery ladder for pseudomultiplication on 59", based on a
combined differential double-and-add (Algorithm 11)
Function: LADDER
Input: m = Y >y m;2' € Zand £P € K59 (IF)
Output: £[m|P
Cost: 1799M + 3072S + 3072m, + 4096a + 4096s + I
1 prevbit < 0
2 W <+ XWRAP(+P)
(Vo, Vi) <= ((p1: p2 = p3 = pa), £P)
for i = 255 down to 0 do
(bit,prevbit,swap) < (m;, bit,bit @ prevbit)
CSWAP(swap, (Vp, V1))
XDBLADD(Vp, V1, W)
CSWAP(bit, (Vp, V1))
return V)

O© 0 J O Ul B W

Algorithm 10. Precomputes inverted Kummer point coordinates

Function: XWRAP
Input: +P € K5 (F,)
Output: (wp, w3, wy) €]F% such that (1 : wp : w3 : wy) = (/XY : 1/XF : 1/X5 -
1/X%)
Cost: 7M +1
1V« XxP-xt
2 Vo XP/(v-XD)
3 Vi Vo -XP
4 return (V- X3, V3 - Xp, V1 - V3)

118 Chapter V. gDSA

Algorithm 11. Combined pseudo-addition and doubling on K54

Function: XDBLADD
Input: £P,+Q in K5 (F,), and (wy, w3, ws) = XWRAP(+(P — Q)) in IF;
Output: (£[2]P,£(P+ Q)) € K5¥(F,)?
Cost: 7M + 12S + 12m. + 16a + 16s
1 (Vi,V2) = (H(V1), H(V2))

2 (1, V2) « (S(V1), M (W1, 12))

3 (V1, V2) < (M(V1, (€1,€2,€3,€4)), M(V2, (€1,€2,€3,€4)))

4 (V1,V2) < (H(V1), H(V2))

5 (W1, V2) + (8(W1),S(V2))

6 (V1, Vo) < (M(V4, (€1,€2,€3,€4))), M(Va, (1, wa, w3, wy))))

7 return (V1, V3)

The four values of Byj, By, B3z, and By are computed simultaneously, since many
of the intermediate operands are shared (as is clear from Equation (8)).

Algorithm 12. Evaluates one of the off-diagonal B;; on Knt

Function: BIJVALUE
Input: +£P, +Q in K™ (F,) and (7, /) such that {i,j, k,1} = {1,2,3,4}
Output: B}]m(ip, +Q)inF,
Cost: 10M + 10m. + 1la + 5s

1 (Vo, Va, Vo, V3) = (Y- Y2 Y0 - YP, YR Y2 Y2 - YR)
(VO, Vz) — (VO — Vi, Vo — V3)
3 (Vo,V1) « (Vo- Vo, V1-V3)
4 (Vo,V1) < (Vo - pigdiy, Vi - (Bafitj — fixtin))
5 Vo Vo+W;
6
7
8

N

Vo < Vo - it (i — fin) (il — fifix)
Vo Vp- C
return Vj

B.3 Subroutines for Compression and Decompression

The COMPRESS and DECOMPRESS functions in Algorithms 4 and 5 require the evalua-
tion of the polynomials K5, K3, and Ky. We used the simple strategy in Algorithms 14,
15, and 16 (GET_K2, GET_K3, and GET_K4 respectively), which prioritizes low stack
usage over speed (which is again not critical here).

B. Kummer Surface Implementation Details

119

Algorithm 13. Evaluates Byq, By, B33, and By on CInt

Function: BIIVALUES
Input: £P, +Q in KM(F,)
Output: (BM(+P,+Q)){, inF;
Cost: 16M + 8S + 28m. + 24a

1 (V,W) < (£P,£Q)

2 (V,W) «+ (S(V),S(W))

3 (V,W) < (M(V,(&1,€,86,€1)), M(W, (€1,€,86,€1)))

4 U« < DOt(V/ <W1/W2/W3/W4>)/D0t(vr (WZ/W]/W4/W3))/)
DOt(V, (W3,W4,W1,W2)),Dot(v, (W4,W3,W2,W1))

5V (Dot (U, (§1,§2,§3,§4)),D0t(,(f §1,§4,§3)),)
DOt(u/ (K3/K4/K1/K2))rDOt(/(K rK3rK2/K]))

6 V<« M(V, (ji1, 2, i3, fig))
7 return V

Algorithm 14. Evaluates the polynomial K, at (I3, 1, T)

Function: GET_K2

Input: (ll, Iy, T) with [, € IFP and T € {0,1}
Output: Ky(I1,1p,7) in [Fp, as in Equation (10)
Cost: 1M + 3S 4 6m, + 4a + 2s

1V<«1Ii-q 8 end if 15 W« W2

2V 1V 9 V<«—V-q3 16 V+— W+V

3 if T = 1 then 10 V«—V+4+V 17 if T = 1 then
4 W<1li-q 11 W< +gs 18 W+ g

5 V«V4+W 12 W« W? 19 VW4V
6 W(—lz'ql BV—W-V 20 end if

7 V«V-W 14 W1l -gq3 21 return V

120 Chapter V. gDSA

Algorithm 15. Evaluates the polynomial K3 at (I1,1, T)

Function: GET_K3

Input: (Iy,lp, 7) withl;,l, € Fyand T € {0,1}
Output: K3(I1,1p,7) in [Fp, as in Equation (11)
Cost: 3M + 2S 4 6m, +4a + 2s

1U<+ I3 9 U+~ U-L 17 V+ Vg3
2V 12 10 V<Vl 18 if T = 1 then
3 if T =1 then 11 U<—Uq1 19 U(—ll‘lz
4 W«Uu+v 12 V<< V-q9 20 U<+ U-ge
5 W< W-q BV~V-U 21 U<«u-gqy
6 U+—~u+1 14 if T = 1 then 22 V«V-u
7 V—V+1 15 V—V+W 23 end if

8 end if 16 end if 24 return V

Algorithm 16. Evaluates the polynomial Ky at (I3, 1, T)

Function: GET_K4

Input: (I,lp, 7) with 1,1, € Fyand T € {0,1}
Output: Ky(ly, I, 7) in [Fy as in Equation (12)
Cost: 3M + 3S + 6m, + 4a + 2s

1 if T =1 then 9 W W+W 17 V<11 - q4

2 W(—lz-qo 10 V(—ll-qg 18 V(—V'l2

3 Velh-q 11V« V2 19 V « V2

4 W+ W-V 12 W+ V-W 20 if T = 1 then
5 W< W+qo 13 Vlp-gs 21 V«V+W
6 W«W-L 14 V< V2 22 end if

7 W+ W-1I 15 W V+W 23 return V

8 W< W-qg;3 16 end if

e V1

On Kummer Lines with Full
Rational 2-torsion and Their

Usage in Cryptography

A paper by Karati and Sarkar [KS17] has pointed out the potential for Kummer lines
in genus one, by observing that its SIMD-friendly arithmetic is competitive with
the status quo. A more recent preprint explores the connection with (twisted) Ed-
wards curves. In this chapter we extend this work and significantly simplify their
treatment. We show that their Kummer line is the x-line of a Montgomery curve
translated by a point of order two, and exhibit a natural isomorphism to a twisted
Edwards curve. Moreover, we show that the Kummer line presented by Gaudry and
Lubicz can be obtained via the action of a point of order two on the y-line of an Ed-
wards curve. The maps connecting these curves and lines are all very simple. As a
result, a cryptographic implementation can use the arithmetic that is optimal for its
instruction set at negligible cost.

1 Introduction

A decade after the introduction of public-key cryptography by Diffie and Hellman
[DH76] it was observed (independently) by Miller [Mil86] and Koblitz [Kob87] that
one can instantiate protocols based on the hardness of the discrete logarithm prob-

lem with the group of rational points of an elliptic curve E defined over a finite field.

122 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Moreover, it was immediately noted by Miller that one can do a full key exchange by
solely relying on the line of x-coordinates of points. That is, one can identify points
with their inverses and as a result only work with points up to sign. In other words,
one can work on the corresponding Kummer line K = E/{+£1}, possibly simplify-
ing the arithmetic. One can also directly use K for digital signatures very efficiently
with the gDSA scheme (c.f. §V.2). In short, Kummer lines are a very interesting
topic of study from a cryptographic perspective.

Because a reduction in the number of field operations needed for a scalar mul-
tiplication directly affects the efficiency of the cryptographic scheme, there have
been multiple proposals for Kummer lines. Probably the most available example
is Curve25519 [BerO6a], which is the Kummer line of a Montgomery curve. One can
show that every Montgomery curve is birationally equivalent to a twisted Edwards
curve [Ber+08, Theorem 3.2], which currently needs the least number of field oper-
ations to perform group operations [His+08] and underlies the very efficient FourQ
curve [CL15]. As a result, the Kummer lines of Montgomery and twisted Edwards
curves are strongly related, and one can move easily from one to the other [Ber+08;
CGF08]. Through the usage of theta functions Gaudry and Lubicz [GL09, §6] de-
rived yet another Kummer line. We shall refer to this as the canonical Kummer line,
following the terminology of the genus-2 analogue presented in §V .4. By squaring its
coefficients we arrive on a different variety, which we refer to as the squared Kummer
line (again c.f. the genus-2 analogue [CC86; Ber0O6c]). Although Gaudry and Lubicz
only presented arithmetic on the canonical line, the differential addition formulae
on the squared Kummer line are well-known [BLb]. The squared Kummer line has
the advantage that it is easier to find suitable small parameters, and it was shown by
Karati and Sarkar [KS17] that its arithmetic leads to very efficient implementations
when single-instruction multiple-data (SIMD) instructions are available. In a follow-
up paper [KS19] the same authors present connections to twisted Edwards curves.
This requires the associated Legendre curve to be put in Montgomery form or have
a rational point of order 4, or otherwise relies on the usage of a 2-isogeny. Conse-
quently, there are case distinctions and one must deal with the doubling induced by
moving through a 2-isogeny and its dual. In [KS19, Table 7] they present the possibil-
ity of birational maps and isogenies between the Legendre form for certain choices
of small constants.

In this chapter we significantly simplify the connections between the various
Kummer lines. Since the field of definition of the canonical and squared Kummer
lines corresponds to their rational 2-torsion, we shall assume all points of order 2

to be rational. In that case, we show that the squared (resp. canonical) Kummer

2. Notation 123

arises as the x-line (resp. y-line) of a Montgomery (resp. Edwards) curve translated
by a suitable point of order 2. Moreover, a third Kummer line (referred to as the
intermediate Kummer) appears as the y-line of a twisted Edwards curve via a trans-
lation by a point of order 2. These observations induce very simple isomorphisms
between them. Furthermore, the respective translations by a point of order 2 lead
to fast isomorphisms (in fact, involutions) with the well-known x-lines (or y-lines)
of Montgomery, Edwards and twisted Edwards curves. As a result, we unify the
most popular Kummer lines in the literature and conclude that their usage is com-
pletely interchangeable on an implementation level. For example, we can directly
use the squared Kummer line in the qDSA scheme through its connection with a
Montgomery curve (see §V.3). Moreover, although there exist efficient implementa-
tions of Montgomery curves based on 4-way SIMD parallelization by optimizing the
field arithmetic [FHL15], it is unclear how to optimally parallelize instructions 4-way
on the level of the x-line [Chol5]. This is straightforward on the squared Kummer
line, and therefore by extension becomes trivial on Montgomery curves with full
rational 2-torsion by moving through the isomorphism. Of course, if desired, one
can also do arithmetic on the full group of points of the twisted Edwards curve (as
also noted by Karati and Sarkar [KS19]). In particular, we provide isomorphic Mont-
gomery and twisted Edwards models for all the Kummer lines present in [KS19,
Table 7] (see Table 1 in §3.2).

Organization. We establish notation in §2, while the main contribution appears as
Theorem 5 in §3. In §4 we count the number of Kummer lines up to isomorphism.

2 Notation

We begin by fixing notation, referring back for preliminaries to §1.2.1. For simplicity
and readability of this chapter we recall some notions.

As usual, we let k be a field. Throughout the whole document we assume that
char(k) # 2 unless mentioned otherwise. An elliptic curve is a smooth projective
curve C of genus 1 with specified base point O¢. We denote it by (C, O¢), or simply
by C if the base point is implicit. For example, the Weierstrass form! y? + a1 xy + azy =
x3 + apx? + agx + ag C IP? has implicit base point O = (0 : 1 : 0), but the curves we

1 We shall in many cases talk about affine curves and maps for simplicity, but always mean their pro-
jective counterparts. This depends on the particular embedding of the affine curve into projective space,
but the embedding should be clear from context. In particular, we always embed Montgomery curves
into IP? while (twisted) Edwards curves are embedded into IP? (as opposed to P! x P!, which is also
commonplace).

124 Chapter VI. On Kummer Lines with Full Rational 2-torsion

consider in this chapter are not necessarily in this standard model.

Montgomery form. For A, B € k such that B(A2 — 4) # 0, we denote by
M/k:By? = x® + Ax® 4 x

an elliptic curve in Montgomery form, with base point Op; = (0: 1 : 0). We have the
usual projection map x : M — P! mapping (X : Y : Z) onto (X : Z) on its Kummer
line denoted by KOm, inheriting a pseudo-group structure from (M, Oyy).

Suppose that T € (M, Oy) is a point such that [2]T = O). Then the translation-
by-T map tr : (M, Op) — (M, T) that maps P — P+ T is an isomorphism of elliptic
curves. Moreover, the map x is again well-defined on M and we denote its Kummer
line by KI,. Note that ICSIM = KT, as algebraic varieties (i.e. they are the projective
line P!), but that they have a different pseudo-group structure. That is, we have a
commutative diagram

(M, Op) <25 (M,T)
| [
KoM KT

where Tt is the induced isomorphism (again, involution) between the corresponding
Kummer lines. For example, we obtain the map T(gg) : (X : Z) — (Z : X). Since
#(M, Op) (2] = 4, there are at most two other points of order 2. This gives rise to
only a single non-trivial action on the Kummer line IC](?/IM, since the other is simply
the composition with T (g o).

(Twisted) Edwards form. Given ¢ € k such that ¢® # ¢, the elliptic curve defined
by the equation € : x> + y? = ¢?(1 + x2y?) with base point Og = (0,c) is said to be
in Edwards form. The projection map y : £ — P! onto the y-coordinate gives rise
to the Kummer line denoted IC?E. Any point R € (&, O¢)[2] induces a commutative
diagram
(£,0¢) 5 (£,R)
v v M
Ko —R KX

In particular, for R = (0 : 0 : —c : 1) the induced map Ty is simply given by
TR : (Y : Z) — (=Y : Z). The two other non-trivial 2-torsion points induce one

other non-trivial translation (similar to the Montgomery model).

3. Maps between Kummer Lines 125

Completely analogously, for «,0 € k such that aé(a —) # 0, we denote by
E: ax® +y? = 1+ dx%y? an elliptic curve in twisted Edwards form with base point
Or = (0,1). Forany S € (E, O)[2] we obtain a commutative diagram as in (1). In
particular, the point S = (0: 0: —1 : 1) induces the action Tg : ICgE — IC% that maps
(Y:Z2)— (=Y:2Z).

Rationality and quadratic twists. Suppose that g is a prime power and k = F; is
a finite field. Then any elliptic curve C defined over IF; will have a quadratic twist,
i.e. an elliptic curve C' which is IF 2-isomorphic but not IF;-isomorphic to C. This is
unique up to Fg-isomorphism (hence why we talk about the quadratic twist).

In all the curve models (c.f. the above) that we consider there is an immediate
connection between IF;-rational points on the Kummer line K¢ of C, and IF;-rational
points of C and C'. As such, when thinking about Kummer lines it is natural not to
distinguish these (i.e. to consider everything up to IF »-isomorphism). As a result,
although some maps may only be defined over [, this will at most induce a twist.
Since we are only concerned with the IF;-rational points of the Kummer line, this is
not an issue. In all that follows we could easily make everything defined over IF;, but
as we shall see in §4 this may limit us when finding instantiations.

3 Maps between Kummer Lines

In this section we present the theoretical basis. We observe first that many Kummer
lines have appeared in the literature; the work of Gaudry and Lubicz [GL09] present
the so-called canonical Kummer line, while Karati and Sarkar use? the squared Kum-
mer line [KS17]. Moreover, there is the x-line of Montgomery curve (e. g. Curve25519
[BerO6a] by Bernstein) and the y-line of a (twisted) Edwards curve [CGF08; FH17].
It is not immediately clear how these are all connected, in particular the relation be-
tween the (canonical and squared) Kummer lines and Montgomery and (twisted)
Edwards curves is not clear. Though a recent paper by Karati and Sarkar [KS19] pro-
vides some connections, this is not completely satisfying. For instance, it relies on
having rational points or using 2-isogeny, and does not give a unique connection.

In this section we settle this and, in essence, show that they are all the same up to
isomorphism. These isomorphisms are natural and simple (including computation-
ally) and lead to natural connections between all the above Kummer lines. The core
of the section is summarized in Theorem 5.

2 The formulas for this model had already appeared in the Explicit-Formulas Database [BLb] referring
to a discussion between Bernstein, Kohel and Lange and contributing the main idea to Gaudry [Gau06].

126 Chapter VI. On Kummer Lines with Full Rational 2-torsion

3.1 Models with Rational 2-torsion

It is immediate (through their description via theta functions) that the canonical and
squared Kummer lines are projections of curves that have full rational 2-torsion. As
such, we shall always assume to have this. We begin by showing that this allows a

nice parametrization of Montgomery curves.

Proposition 1. Let k be a field such that char(k) # 2 and let (M4 , Op) be a Montgomery
curve such that Mg g[2] C My (k). Then there exist a,b € k* such that ab(a* — b*) # 0
and a? /b? € k such that

at + b

_ _ 6
A=—", Au=16B8""

(a4 _ b4)2
atb*

Moreover, its points of order 2 are (0:0: 1), (a® : 0: b?) and (b : 0 : a?).

Proof. As M p[2] C Mpyp(k), the polynomial x2 + Ax + 1 splits over k and thus
VA2 —4 € k. Now fix any b € k* and take a € k* such that a>/b> = (VA2 —4 —
A)/2. Note that VA2 —4 — A # 0,42 because char(k) # 2. Moreover a* — b* =
0 — a*/b*—-1 =0 <= a2/b? = +1. Again, this is not possible since
char(k) # 2. The statements for A, Ay; and the 2-torsion points are simple calcu-
lations, recalling that M has discriminant Ay; = 16B%(A? — 4). O

For simplicity we would like to have B = 1. Note that the curve M4 p is iso-
morphic to the curve My : y?> = x> + Ax? + x over k, but not necessarily over
k. Therefore, by making the assumption that B = 1 we are working up to twist. In
what follows this shall not give rise to any issues, and as remarked earlier it does
not impact the k-rational points of the Kummer line (even though it does change the
k-rational point of the curve itself). So from this point on we consider

4 4
a +b 2
252 x*+x,

M/k:y* =2 —

where a,b € k* such that ab(a* — b*) # 0 and a?/b? € k.
Given this model we can define a dual curve. For this purpose, we define 4, b € k*
such that
20 =a®> + b, 20* =a>— 7.

It is easily checked that 42/b? € k* and that ab(a* — b*) # 0. Therefore

o, 74 A4 14)\2
.23 AT+ b 5 L (b*)
M:y =x"— 272 x“+x, Apg=16 pYTE

3. Maps between Kummer Lines 127

is a Montgomery curve whose elements of order 2 are (0 : 0 : 1), (4% : 0 : b?) and
(B2 : 0 : 4%). We call M the dual of M. More generally, for any curve model we
call the action of swapping a resp. b by @ resp. b (and vice versa) dualizing (c.f.
§V.4.1). The curves M and M are 2-isogenous via a 2-isogeny ¢ : M — M, and the
kernel of both ¢ and ¢ is generated by the point (0 : 0 : 1) on the respective curves
(see Remark VIIL.11). This leads to a decomposition of the doubling map [2], which

we use to construct the following sequence of maps.
Proposition 2. Let a,b € k* with ab(a* — b*) # 0 and a®/b* € k* and

a* + bt

2
———X "+ Xx.
a2b?

M/k:y2:x3—

Then there exists a commutative diagram? of isogenies (over k)

5 ; \"”0)
(E,Op) f (E, OF))
o “n

(> =b*)?* 5 5) 2_”2*172
(a2+b2)2xy , Elkx"+y -2

where

E/k:—x2+y2:1—

(1 + x2y2)
and E and & are their respective duals. The maps ¢y and ¢s are 2-isogenies with
ker(¢p) = ((0:0: —b:4a)), ker(ps) = ((0:0:—b:a)),

while the maps ¢o, ¢1, ¢3 and ¢4 are isomorphisms.

Proof. We define

. 2i%x x+1 1 y+1 282(y+1)

Note that this is a priori only a birational map, but naturally becomes an isomor-
phism when (canonically) extended to the smooth P? model, see e. g. [5il09, Propo-

3 The diagram is drawn in the shape of a hexagon because its induced diagram on the Kummer lines
after translations by points of order 2 is the genus-1 analogue of the hexagon in genus 2 in Figure V.1.

128 Chapter VI. On Kummer Lines with Full Rational 2-torsion

sition I1.2.1]. In particular, ¢g : Opp — Op,(0:0:1) — (0:0: —1:1).Itis
similar to the maps used by Bernstein et al. [Ber+08, Theorem 3.2(i)] and by Castryck
et al [CGFO08], but composed with the map by Hisil et al. [His+08, §3.1] to ensure a
twisted Edwards curve E, ; with « = —1 that is well-defined everywhere. Moreover,
we tweak it such that it acts as an involution (i.e. a Hadamard transformation) on

the Kummer line. We define the isomorphism ¢; as

¢r1:(xy) = (— %x Z}/) o1l (ny) o (%x %y)

where i € kis such that i = —1. Then we set ¢ = p o @ 1o o1 ! Tt follows that

ker(¢2) = (¢1¢0(0,0)) = ((0:0: ~b:).

A completely analogous construction can be made for ¢, ¢4 and ¢s. O

Remark 3. Note that one can argue that the above construction can be done for any
sequence of isomorphisms starting at M. Indeed this is the case, but the above choice
is a natural one and gives rise to nice arithmetic on the Kummer lines. Moreover, it
is a choice that allows to explain the connection between Montgomery curves and
the genus-1 Kummer lines arising from theta functions (i. e. [GL09, §6.2] and [KS17,

§2.4]).

Corollary 4. There is an induced commutative diagram of Kummer lines

K e
¢4 $o
o /’ \ ;
’CEE ’CEE 3)
4_)3\ 01\7[Og 4_71
' g K

such that

Go: (X:2) = (X+2Z:X—-2), ¢1:(X:2)— (bX:42),

$r: (X:2Z) > (BPX? — 0272 . a°X% — 1 77),
while ¢ = ¢, and ¢, resp. ¢ are obtained from ¢, resp. ¢, by dualizing.

Proof. Apply the respective x and y projection maps to the curves in (2). O

3. Maps between Kummer Lines 129

This provides clear connections between the x- and y- lines of Montgomery and
(twisted) Edwards curves with full rational 2-torsion. We now show that we can use
these 2-torsion points to obtain simple isomorphisms to the canonical and squared

Kummer lines.

3.2 Actions of Points of Order 2

First recall from §1.2.1 that we have points

(PyeM, Q= (*:0%:0:00€E, O =(a:b:0:0) €&,

a®:0:
(@:0:%)eM, O;=@*:0*:0:0)€E, O =(@:b:0:0)e&

= =

of order 2 (with the base point O on the respective curves). One can check that these
are all respective images of one another under the ¢; and ¢;. They correspond to
translations* T by the respective points which commute with the projection maps
to PL. As a result, we obtain induced involutions T on the Kummer lines. More

concretely, we can show that for any point P = (X : Z) € P! we have

al

7P (®X —V?Z: VX —d*’Z), T, :Pw— (°Z:0?X), Te,:P— (Z:X),
:P—

(@*X =02 :P’X - #Z), Tg 1P (®Z:0°X), Tg P> (Z:X).

=
~

Note that we could apply the maps 7 to the diagram (2), but that requires keeping
track of multiple coordinates and is somewhat tedious. Instead, for simplicity, we
will focus on the Kummer lines. Applying the maps T to (3), we obtain the following

result.

Theorem 5. Forany P = (X : Z) € P!, we denote by

Po: P> (X+Z:X-2), ¢,:Pw (bX:42), §,:P— (X*:2%),
P3: P (X+Z:X-2), ¢,:P— (bX:aZ), P5:P— (X*:2%),

maps P! — L. The diagram in (4) is commutative and every < is an isomorphism.

Proof. This is the diagram from (2) translated by corresponding points of order 2
through the different 7, projected to their respective Kummer lines. We construct

@0 :?010500?]"

Translations are morphisms [Sil09, Theorem 3.6] and are therefore isogenies if and only if they send
the base point of the domain curve to the base point of the co-domain curve. For example, tr : (M, Op) —
(M, T) is an isogeny. As such, it is a group homomorphism.

130 Chapter VI. On Kummer Lines with Full Rational 2-torsion

<
S
I

9)

)

3
e
™ Q

§/
/s

(4)

Al
)

(- m Dy

e
A
e
g)’ﬂ)

I
Sl
~

?ﬁ@ ¢---->
§>§>

and proceed similarly for the other ;. O

Recall that (the duals of) IC](?/IM, ICI?E resp. ICgog are the Kummer lines of (the
duals of) a Montgomery, twisted Edwards resp. Edwards curve. Hence it remains
to identify K1, K?l and IC?l (and their duals). Since they are all simply P! as an
algebraic variety, we analyze their (pseudo-)addition formulae.

First note that Proposition 1 says that moving through the sequence ¢, ..., $s
corresponds to the [2] map (starting at any of the ¢;). Since the T are isomorphisms,
the same is true for ¢y, . .., 5. In other words, for example

2] =¢s0---0pyon Ky, [2] :¢4O"-0¢00¢50n}C?1.

Comparing these with the algorithm from Gaudry and Lubicz [GL09, §6.2] (and the
formulas also appear in [BLb]) reveals that these are the doubling formulae for the
squared and canonical Kummer lines. One readily® verifies that the same is true for
the differential addition formulae. The third Kummer line K?l has not appeared to
our knowledge, and has similar arithmetic to the squared Kummer line. We refer to
it as the intermediate Kummer (c. f. §V.4.3). Interestingly, it appears as the y-line of a
twisted Edwards curve where the coefficient of x? is —1, in which case the optimal
formulas by Hisil et al. [His+08] are available. For completeness, we summarize
the associated curve constants for the instances provided by Karati and Sarkar in

5 This can be done by using the known addition formulae on the elliptic curves whose identities are
at infinity, and composing with the translation and projection maps. This is somewhat tedious, but is
relatively straightforward by using a computer algebra package [BCP97; Sag18].

3. Maps between Kummer Lines 131

Table 1. Kummer lines over a finite field IF; and their associated (i) squared Kummer (a®: b?)
(ii) Montgomery A (iii) twisted Edwards ¢ and (iv) Edwards c? constants.

q (a?: b?) (A:1) (6:1) (c?:1)
251 9 (81:20) (—6961 : 1620) (—3721:10201) (61:101)
2251 9 (186:175) (—65221:130200) (—121:130221) (11:361)

2% 19 (82:77) (—12653 : 6314) (—25 : 25281) (5:159)
2266 _ 3 (260:139) (—86921:36140) (—14641:159201) (121 :399)

Table 1, connecting the squared Kummer line to the Kummer lines of Montgomery
and twisted Edwards models via isomorphisms (as opposed to birational maps or

isogenies).

Remark 6. We reiterate that only the intermediate Kummer line is new, while all the
others have already appeared in the literature and are well-known. However, there
had been little work in providing explicit maps between them, and this is exactly

what we provide.

3.3 Hybrid Kummer Lines

Since the arithmetic on these Kummer lines is generally well-studied, the (crypto-
graphic) value of this study does not come from improved operation counts. Be-
side its theoretical contribution, we ease the problem of selecting which curves to
use for best performance (e.g. for standardization). That is, the simplicity of the
isomorphisms gives quasi-cost-free transformations that allow interchangeable us-
age of any of the models. This is similar to the usage of a birational map to move
between the Montgomery and twisted Edwards model, but we extend it with the
squared Kummer line. We summarize this in Figure 1. In particular, Karati and
Sarkar [KS17] show the benefits of the squared Kummer line on platforms where

SIMD instructions are available.

2% 127 12X — g2
T (0> X—b*Z :b*X—a*Z) Oum (X+Z:X-27) O
KT, K0 K¢

Figure 1. The squared Kummer line, the x-line of a Montgomery curve and the y-line of a
twisted Edwards curve E, connected by involutions.

132 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Remark 7. Recall that all the above works under the assumption of having full ratio-
nal 2-torsion. Although Montgomery and (twisted) Edwards curves always have a
group order divisible by 4, it does not necessarily mean that they have full 2-torsion
(i.e. they could have a point of order 4). Note that standardized curves such as
Curve25519 and Curve448 do not have full 2-torsion, so this theory does not directly
apply.

Moreover, results from the well-studied Montgomery model immediately carry
over to the squared Kummer line. For example, we can straightforwardly fit a
(squared) Kummer line into the qDSA signature scheme. For signature verification,
given x(P),x(Q),x(R) € KI, we must be able to check whether x(R) = x(P £ Q).
Although this can certainly be directly defined on K},, we note that it is equivalent
to checking whether

Zr(x(R)) = Fr(x(P £ Q).

This is simply the function Check(T7(x(P)), Tr(x(Q)), Tr(x(R))), where Check is de-
fined in Algorithm V.2.

To demonstrate feasibility of this approach, we extend the (publicly available)
Curve25519-based instantiation of qDSA from Chapter V on the ARM Cortex M0
architecture. For this purpose we choose a squared Kummer line over jss_19, al-
lowing field arithmetic to remain essentially unchanged. A notable exception to this
is an efficient assembly implementation of 16 x 256-bit field multiplication, which is
used for the multiplications by the line constants. This replaces the highly optimized
multiplication by 121666 from Diill et al. [Diil+15]. We select (a2, b%) = (159,5), so
that the squared Kummer line K, corresponds to the dual® of KL25519(82,77) pre-
sented and implemented by Karati and Sarkar [KS17]. This implies the Montgomery
constant of the curve above the line IC](\OAM tobe (A+2:4) = (—5929 : 795). We sum-
marize the implementation results in Table 2. We emphasize that the point of this
work is not to provide the most efficient implementation for this given platform, but
rather to show the close connection between the different Kummer lines. Although
on this platform results differ only by a minimal margin, the difference can be much
larger on other devices (in particular, when SIMD instructions are available). Our
isomorphisms allow an implementer to select the model that is most appropriate for

a given architecture.

Remark 8. The implementations that we present are constant-time, and all standard

countermeasures (e. g. projective blinding, scalar blinding [Cor99, §5]) against more

® The constants (a?,b%) = (88,77) lead to (A +2 : 4) = (—25 : 25256) which has slightly larger
constants on ICSIM than its dual. However, results should be very similar.

4. Isomorphism Classes over Finite Fields 133

Table 2. Comparison of an implementation of the qDSA signature scheme based on
Curve25519 and the Montgomery model of the squared Kummer line defined by (a?,b?) =
(159, 5), where the memory is measured in bytes (B).

Ref. Object Constant Clock cycles Stack Code

(A+2:4)= 3889116 (sign) 660 B

Chap.V Curve25519 18443 B
(121666 : 1) 6793695 (verify) 788B

This (O (A+2:4)= 3916879 (sign) 660B .o o
M (—5929:795) 6857007 (verify) 788B
2:p%) = 24857 (si 0B

This KT, (7:b%) = 3824857 (sign) 660 oo

(159 : 5) 6673039 (verify) 788B

advanced side-channel and fault attacks can be applied if required. In particular,
as mentioned by the authors, the recent fault attack by Takahashi, Tibouchi and
Abe [TTA18] can (cheaply) be thwarted by requiring nonces to be multiples of the
cofactor (i.e. by “clamping”). However, such countermeasures are only necessary
when an implementation is used in a context where fault attacks are considered part
of the attacker model. We emphasize that our implementation is intended as a refer-
ence and not for production use.

4 Isomorphism Classes over Finite Fields

For cryptographic purposes, we are mostly concerned with the case that k = IF,, for
some prime (power) 4. As using extension fields is generally expensive, we would
like to set things up such that all computation is performed in IF;. Whether or not
we can do this in a way such that constants remain small, depends on the number
of Kummer lines that exist. Following earlier studies on the number of isomorphism
classes for certain curve models [Ber+08; FS09; FMW12], we provide counts for the
canonical, squared and intermediate Kummer lines.

4.1 Identifying Kummer Lines

For this purpose it is interesting to ask when two Kummer lines should be consid-
ered to be the same. Given two Kummer lines 1 = E;/{£1} and K; = E;/{+1}
of elliptic curves Eq, E; defined over Fg, it could be natural to identify K1 with Cp
whenever E; is [Fj-isomorphic to E;. However, as noted in §1.2.1, the arithmetic

on the [F-rational points of the Kummer lines will be identical whenever E; is IF »-

134 Chapter VI. On Kummer Lines with Full Rational 2-torsion

isomorphic to E; (i.e. E; is the quadratic twist of Eq). Since the curves are defined
over [Fy, this will happen if and only if j(E;) = j(Ez). As such, we equate the num-
ber of Kummer lines with the number of elliptic curves defined over IF; up to IF;-
isomorphism.

Recall that we parametrize Kummer lines by a,b € T, such that ab(a* — b*) # 0
and a2/b? € qu. Since b # 0, a Kummer line is defined by the fraction a/b or,
equivalently, by the point (a : b) € P!. Again, since b # 0 we can therefore simply
assume b = 1. As such, we can consider 2 € F; such that a® € F; and a®—a#0.

4.2 Canonical Kummer Lines

We begin by considering the canonical Kummer line from Gaudry and Lubicz [GL09]
defined by some a as above. Recall that it corresponds to the y-line of the curve
E/Fg: x> +y? = % (14 x?y?), with identity 07 = (a:1:0:0) whose image in IP!
is (a : 1). Therefore, we certainly require that a € IF,. It is easily seen that 4%, b < F,
and that this is enough to perform all arithmetic with [F;-operations.

Now note that (g , ﬁl) is IF4-isomorphic to (SA ,O0 5) via T8, which is an Edwards
curve ifand only if a € F; and 1/a° # 1/a. The first is true by assumption, while the
latter follows from a° # a. Therefore we simply count the number of Edwards curves
defined over IF; up to IF;-isomorphism. A result by Farashahi and Shparlinski [FS09,
Theorem 5] shows that there are exactly

”7;421 ifg=1,9,13,17 (mod 24),
-5 o

7 if q= 5 (mOd 24) ’

q+1

5 J ifg=3 (mod 4).

Thus, in general there will be no problem to find Kummer lines with the desired
security properties. However, it may not be easy to find them such that its constants
are small. For that reason, we look towards the squared and intermediate Kummer
lines.

4.3 Squared and Intermediate Kummer Lines

If we use canonical Kummer lines, we restrict ourselves to a € F; for all of the
arithmetic to be in IF;. This (seemingly) limits the number of Kummer lines that we

can use. This is no longer the case on squared and intermediate Kummer lines; it

4. Isomorphism Classes over Finite Fields 135

suffices to only have a* € IF;. Note that this implies that a € TF .

Since the j-invariants of M, E and £ and their duals are all equal, we can count the
number of curves up to isomorphism of the form & : x? + 2 = alZ (14 x?y?) such
that a®> # a (but note that & is not necessarily an Edwards curve over IF;). There are
exactly g — 3 such curves, so it remains to determine how many are in the same F,-
isomorphism class. This question has already been considered by Edwards [Edw07,

Proposition 6.1], whose statement implies that two Edwards curves determined by

a?,7% € F, have the same j-invariant whenever 72
q J

o 2 2 N2 N2
TIPS Y e D (R I e T (i D
a? a+1 a—1 a+i a—i
If g=1 (mod 4), then i = i and a straightforward computation show that
2 2 .\ 2 N\ 2
(D) (DY () L (“H) e, «= acF,.
a+1 a—1 a+i a—i
If g =3 (mod 4), then i1 = —i and a similar computation shows that
a-1\> [(a+1)?
+ | — F F
(1) (1) ey e,
N2 .\ 2
i(” l.) ,i(”l.) €F, < i-ackF,.
a-+1 a—1

Given that either a € IF; ori-a € F;, while half the elements of IF; have square roots

is one of the following;:

in F;, we closely approximate’ that the number of isomorphism classes is

{(411+112> J {6J ifg=1 (mod 4),
{(1—!—1) QJ FJ ifg=3 (mod4).
8 8/2 8

A more careful analysis c.f. [FS09] could be done, but such a close estimate suf-
fices for our purposes. Interestingly, for 4 = 3 (mod 4) the number of canonical
and squared Kummer lines is about the same. Thus although 4?> € T, is a weaker
restriction than a € IFy, it does not actually lead to more Kummer lines (up to isomor-
phism). This is explained by the fact that —1 is a non-square since 4 = 3 (mod 4),

2

hence exactly one of a? or —a? must be a square in FF,, while their corresponding

7 This statement is exact up to the observation that some of the elements in (5) can be the same, which
happens only exceptionally.

136 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Edwards curves are isomorphic. For ¢ = 1 (mod 4) there is a clear difference in
the number of Kummer lines, so in that case there is a significant advantage in find-
ing small parameters for a squared or intermediate Kummer line over a canonical

Kummer line.

Part 3

Post-Quantum Cryptography

v V11

Efficient Compression of SIDH
Public Keys

Supersingular isogeny Diffie-Hellman (SIDH) is an attractive candidate for post-
quantum key exchange, in large part due to its relatively small public key sizes.
A paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [Aza+16] showed that
the public keys defined in Jao and De Feo’s original SIDH scheme can be further
compressed by around a factor of two, but reported that the performance penalty in
utilizing this compression blew the overall SIDH runtime out by more than an order
of magnitude. Given that the runtime of SIDH key exchange is currently its main
drawback in relation to its lattice- and code-based post-quantum alternatives, an
order of magnitude performance penalty for a factor of two improvement in band-
width presents a trade-off that is unlikely to favor public-key compression in many
scenarios.

In this chapter, we propose a range of new algorithms and techniques that accel-
erate SIDH public-key compression by more than an order of magnitude, making it
roughly as fast as a round of standalone SIDH key exchange, while further reducing
the size of the compressed public keys by approximately 12.5%. These improve-
ments enable the practical use of compression, achieving public keys of only 330
bytes for the concrete parameters used to target 128 bits of quantum security and
further strengthens SIDH as a promising post-quantum primitive.

140 Chapter VII. Efficient Compression of SIDH Public Keys

1 Introduction

In their February 2016 report on post-quantum cryptography [Che+16], the United
States National Institute of Standards and Technology (NIST) stated that “It seems
improbable that any of the currently known [public-key] algorithms can serve as a drop-in
replacement for what is in use today”, citing that one major challenge is that quantum re-
sistant algorithms have larger key sizes than the algorithms they will replace. While
this statement is certainly applicable to many of the lattice- and code-based schemes
(e.g. LWE encryption [Reg05] and the McEliece cryptosystem [McE78]), Jao and
De Feo’s 2011 supersingular isogeny Diffie-Hellman (SIDH) proposal [JDF11] is one
post-quantum candidate that could serve as a drop-in replacement to existing inter-
net protocols. Not only are high-security SIDH public keys smaller than their lattice-
and code-based counterparts, they are even smaller than some of the traditional (i. e.
finite field) Diffie-Hellman public keys.

SIDH public-key compression. The public keys defined in the original SIDH pa-
pers [JDF11; DFJP14] take the form PK = (E, P, Q), where E/]sz 2 =x+ax+b
is a supersingular elliptic curve, p = nganpg £ 1 is a large prime, the cardinality of
Eis#E(F2) = (pF1) = (nan)2, and depending on whether the public key cor-
responds to Alice or Bob, the points P and Q either both lie in E(F 2)[n4], or both
lie in E(IF ,2)[np]. Since P and Q can both be transmitted via their x-coordinates (to-
gether with a sign bit that determines the correct y-coordinate), and the curve can be
transmitted by sending the two IF > elements 2 and b, the original SIDH public keys
essentially consist of four IF,» elements, and so are around 8log p bits in size.

A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [Aza+16]
showed that it is possible to compress the size of SIDH public keys to around 4 log p
bits as follows. Firstly, to send the supersingular curve E, they pointed out that one
can send the j-invariant j(E) € F, rather than (a,b) €]Ff}z, and showed how to
recover a and b (uniquely, up to isomorphism) from j(E) on the other side. Sec-
ondly, for n € {n4,np}, they showed that since E(IF2)[n] = Z/nZ x Z/nZ, an
element in E(Isz)[n] can instead be transmitted by sending two scalars («,p) €
Z/nZ x Z./ nZ that determine its representation with respect to a basis of the torsion
subgroup. This requires that Alice and Bob have a way of arriving at the same basis
for E(FF2)[n]. Following [Aza+16], we note that it is possible to decompose points
into their Z/nZ x Z/nZ representation since for well-chosen SIDH parameters,
n = (¢ is always smooth, which means that discrete logarithms in order n groups
can be solved in polynomial time using the Pohlig-Hellman algorithm [PH78]. Given

1. Introduction 141

that such SIDH parameters have n4 ~ np (see [JDF11]), it follows that n ~ ,/p and
that sending elements of E(IF,») [n] as two elements of Z/nZ (instead of an element
in [F) cuts the bandwidth required to send torsion points in half.

Although passing back and forth between (a,b) and j(E) to (de)compress the
curve is relatively inexpensive, the compression of the points P and Q requires three

computationally intensive steps:

— Step 1 — Constructing the n-torsion basis. During both compression and decom-
pression, Alice and Bob must, on input of the curve E, use a deterministic
method to generate the same two-dimensional basis {R1, R>} € E(F 2)[n]. The
method used in [Aza+16] involves systematically sampling candidate points
R € E(F), performing cofactor multiplication by & to move into E(F,)[n],
and then testing whether or not [1]R has “full” order n (and, if not, restarting).

— Step 2 — Pairing computations. After computing a basis {Ry, Ry} of the group
E(F,2)[n], the task is to decompose the point P (and identically, Q) as P =
[ap]R1 + [Bp|R2 and determine (ap, Bp). While this could be done by solv-
ing a two-dimensional discrete logarithm problem (DLP) directly on the curve,
Azarderakhsh et al. [Aza+16] use a number of Weil pairing computations to

transform these instances into one-dimensional finite field DLPs in y,, C]F;z.

— Step 3 — Solving discrete logarithms in . The last step is to repeatedly use the
Pohlig-Hellman algorithm [PH78] to solve DLPs in y;,, and to output the four
scalars ap, Bp, %) and ,BQ inZ/nZ.

Each of these steps presents a significant performance drawback for SIDH public-
key compression. Subsequently, Azarderakhsh et al. report that, at interesting levels
of security, each party’s individual compression latency is more than a factor of ten
times the latency of a full round of uncompressed key exchange [Aza+16, §5].

Our contributions. We present a range of new algorithmic improvements that de-
crease the total runtime of SIDH compression and decompression by an order of
magnitude, bringing its performance close to that of a single round of SIDH key ex-
change. We believe that this makes it possible to consider public-key compression
a default choice for SIDH, and it can further widen the gap between the key sizes
resulting from practical SIDH key exchange implementations and their code- and
lattice-based counterparts.

We provide a brief overview of our main improvements with respect to the three
compression steps described above. All known implementations of SIDH (see e. g.

142 Chapter VII. Efficient Compression of SIDH Public Keys

[DFJP14; AFJ14; CLN16a]) currently choose nq = (' = 2°4 and ng = {}} = 3° for
simplicity and efficiency reasons, so we focus on ¢ € {2,3} below; however, unless
specified otherwise, we note that all of our improvements will readily apply to other

values of /.

— Step 1 — Constructing the n-torsion basis. We make use of some results arising
from explicit 2- and 3-descent of elliptic curves to avoid the need for the expen-
sive cofactor multiplication that tests the order of points. These results charac-
terize the images of the multiplication-by-2 and multiplication-by-3 maps on E,
and allow us to quickly generate points that are elements of E(IF2) \ [2]E(F 2)
and E(F) \ [3JE(FF). Therefore, we no longer need to check the order of
(possibly multiple!) points using a full-length scalar multiplication by n 4np,
but instead are guaranteed that one half-length cofactor multiplication produces
a point of the correct order. For our purposes, producing points in E \ [2]E
is as easy as generating elliptic curve points whose x-coordinates are non-
square (this is classical, e.g. [Hus04, Ch. 1(§4), Thm 4.1]). On the other
hand, to efficiently produce points in E \ [3]E, we make use of the analogous
characteristic described in more recent work on explicit 3-descent by Schaefer
and Stoll [SS04]. Combined with a tailored version of the Elligator 2 encod-
ing [Ber+13] for efficiently generating points on E, this approach gives rise to
highly efficient n-torsion basis generation. This is described in detail in §2.

— Step 2 — Pairing computations. We apply a number of optimizations from the
literature on elliptic curve pairings in order to significantly speed up the run-
time of all pairing computations. Rather than using the Weil pairing (as was
done in [Aza+16]), we use the more efficient Tate pairing [GHS02; Bar+02]. We
organize the five pairing computations that are required during compression
in such a way that only two Miller functions are necessary. Unlike all of the
prior work done on optimized pairing computation, the pairings used in SIDH
compression cannot take advantage of torsion subgroups that lie in subfields,
which means that fast explicit formulas for point operations and Miller line
computations are crucial to achieving a fast implementation. Subsequently, we
derive new and fast inversion-free explicit formulas for computing pairings on
supersingular curves, specific to the scenario of SIDH compression. Following
the Miller loops, we compute all five final exponentiations by exploiting a fast
combination of Frobenius operations together with either fast repeated cyclo-
tomic squarings (from [SLO3]) or our new formulas for enhanced cyclotomic

cubing operations. The pairing optimizations are described in §3.

1. Introduction 143

— Step 3 — Solving discrete logarithms in p,. All computations during the Pohlig-
Hellman phase take place in the subgroup ji;, of the multiplicative group G, 1
of order p + 1 in IF;‘JZ, where we take advantage of the fast cyclotomic squar-
ings and cubings mentioned above, as well as the fact that IF » inversions are
simply conjugations, so come almost for free (see §4.1). On top of this fast arith-
metic, we build an improved version of the Pohlig-Hellman algorithm that ex-
ploits windowing methods to solve the discrete logarithm instances with lower
asymptotic complexity than the original algorithm. For the concrete parame-
ters, the new algorithm is approximately 14 x (resp. 10x) faster in p,372 (resp.
H3239), while having very low memory requirements (see Table 1 and 2). This is

all described in more detail in §4.

— Improved compression. Through normalizing the representation of P and Q in
(Z/nZ)*, we are able to further compress this part of the public key repre-
sentation into (Z/nZ)3. Subsequently, our public keys are around % log p bits,
rather than the 4log p bits achieved in [Aza+16]. To the best of our knowl-
edge, this is as far as SIDH public keys can be compressed in practice. This is
explained in §5.1.

— Decompression. The decompression algorithm — which involves only the first of
the three steps above and a double-scalar multiplication — is also accelerated
in this chapter. In particular, on top of the faster torsion basis generation, we
show that the double-scalar multiplications can be absorbed into the shared
secret computation. This makes them essentially free of cost. This is described
in §5.2.

The combination of the three main improvements mentioned above, along with a
number of further optimizations described in the rest of this chapter, yields enhanced
compression software that is an order of magnitude faster than the initial software
benchmarked in [Aza+16].

The compression software. We wrote the new suite of algorithms in plain C and
incorporated the compression software into the SIDH library recently made available
by Costello, Longa and Naehrig [CLN16a]; their software uses a curve with log p =
751 that currently offers around 192 bits of classical security and 128 bits of quantum
security. The public keys in their uncompressed software were 6log p = 564 bytes,
while the compressed public keys resulting from our software are 5logp = 330
bytes. The software described in this chapter can be found in the version 2.0 release
of the SIDH library at

144 Chapter VII. Efficient Compression of SIDH Public Keys

https://www.microsoft.com/en-us/research/project/sidh-library/.

Although our software is significantly faster than the previously given compres-
sion benchmarks by Azarderakhsh et al. [Aza+16], we believe that the most mean-
ingful benchmarks we can present are those that compare the latency of our opti-
mized SIDH compression to the latency of the state-of-the-art key generation and
shared secret computations in [CLN16a]. This gives the reader (and the PQ audi-
ence at large) an idea of the cost of public-key compression when both the raw SIDH
key exchange and the optional compression are optimized to a similar level. We
emphasize that although the SIDH key exchange software from [CLN16a] targeted
one isogeny class at one particular security level, and therefore so does our compres-
sion software, all of our improvements apply identically to curves used for SIDH at
other security levels, especially if the chosen isogeny degrees remain (powers of) 2
and 3. Moreover, we expect that the relative cost of compressed SIDH to uncom-
pressed SIDH will stay roughly consistent across different security levels, and that
our targeted benchmarks therefore give a good gauge on the current state-of-the-art.

It is important to note that, unlike the SIDH software from [CLN16a] that uses
private keys and computes shared secrets, by definition our public-key compression
software only operates on public data.! Thus, while we call several of their constant-

time functions when appropriate, none of our functions need to run in constant-time.

Remark 1 (Ephemeral SIDH). A paper by Galbraith, Petit, Shani and Ti [Gal+16]
gives, among other results, a realistic and serious attack on instantiations of SIDH
that reuse static private/public key pairs. Although direct public-key validation in
the context of isogeny-based cryptography is currently non-trivial, there are meth-
ods of indirect public-key validation (see e. g. [Kir+15; Gal+16]) that mirror the same
technique proposed by Peikert [Peil4, §5-6] in the context of lattice-based cryptogra-
phy, which is itself a slight modification of the well-known Fujisaki-Okamoto trans-
form [FO99]. At present, the software from [CLN16a] only supports secure ephemeral
SIDH key exchange, and does not yet include sufficient (direct or indirect) valida-
tion that allows the secure use of static keys. Thus, since our software was written
around that of [CLN16a], we note that it too is only written for the target application
of ephemeral SIDH key exchange. In this case attackers are not incentivized to tam-
per with public keys, so we can safely assume throughout this chapter that all public
keys are well-formed. Nevertheless, we note that the updated key exchange proto-
cols in [FO99; Peil4; Kir+15; Gal+16] still send values that can be compressed using

! There is a minor caveat here in that we absorb part of the decompression into the shared secret
computation, which uses the constant-time software from [CLN16a] — see §5.

https://www.microsoft.com/en-us/research/project/sidh-library/

1. Introduction 145

our algorithms. On a related note, we also point out that our algorithms readily ap-
ply to the other isogeny-based cryptosystems described in [DFJP14] for which the
compression techniques were detailed in [Aza+16]. In all of these other scenarios,
however, the overall performance ratios and relative bandwidth savings offered by
our compression algorithms are likely to differ from those we report for ephemeral
SIDH.

Remark 2 (Trading speed for simplicity and space). Since the compression code in
our software library only runs on public data, and therefore need not run in constant-
time, we use a variable-time algorithm for field inversions (a variant of the extended
binary GCD algorithm [Kal95]) that runs faster than usual exponentiation methods
(via Fermat's little theorem). Although inversions are used sparingly in our code and
are not the bottleneck of the overall compression runtime, we opted to add a single
variable-time algorithm in this case. However, during the design of our software li-
brary, we made several decisions in the name of simplicity that inevitably hampered
the performance of the compression algorithms.

One such performance sacrifice is made during the computation of the torsion
basis points in §2, where tests of quadratic and cubic residuosity are performed us-
ing field exponentiations. Here we could use significantly faster, but more compli-
cated algorithms that take advantage of the classic quadratic and cubic reciprocity
identities. Such algorithms require intermediate reductions modulo many variable
integers, and a reasonably optimized generic reduction routine would increase the
code complexity significantly. These tests are also used sparingly and are not the bot-
tleneck of public-key compression, and in this case, we deemed the benefits of opti-
mizing them to be outweighed by their complexity. A second and perhaps the most
significant performance sacrifice made in our software is during the Pohlig-Hellman
computations, where our windowed version of the algorithm currently fixes small
window sizes in the name of choosing moderate space requirements. If larger stor-
age is permitted, then Sutherland’s analysis of an optimized version of the Pohlig-
Hellman algorithm [Sut11] shows that this phase could be sped up significantly (see
§4). But again, the motivation to push the limits of the Pohlig-Hellman phase is
stunted by the prior (pairing computation) phase being the bottleneck of the overall
compression routine. Finally, we note that the probabilistic components of the tor-
sion basis generation phase (see §2) lend themselves to an amended definition of the
compressed public keys, where the compressor can send a few extra bits or bytes in
their public key to make for a faster and deterministic decompression. For simplicity
(and again due to this phase not being the bottleneck of compression), we leave this

more complicated adaptation to future consideration.

146 Chapter VII. Efficient Compression of SIDH Public Keys

Organization. In §2 we present alternative algorithms that deterministically gener-
ate a basis, while in §3 we exploit the fact that the Weil pairings can be replaced by re-
duced Tate pairings and give an optimized algorithm that computes them all simul-
taneously. In §4 we present an efficient version of the Pohlig-Hellman algorithm that
exploits windowing methods to solve the discrete logarithm instances with lower
complexity than the original algorithm. In §5 we show that one of the four scalar in
7/ nZ need not be transmitted by normalizing the tuple («p, Bp, xg, Bo)-

2 Constructing Torsion Bases
Foragiven A € FF» corresponding to a supersingular curve
E/F cy? =0+ Ax +x

with #E(FF 2) = (n Angp)?, the goal of this section is to produce a basis for E(F,)[n]
(with n € {nn,ng}) as efficiently as possible. This amounts to computing two order
n points Ry and R, whose Weil pairing w; (R1, Ry) has exact order n. Checking the
order of the Weil pairing either comes for free during subsequent computations, or
requires the amendments discussed in Remark 3 at the end of this section. Thus, for
now our goal is simplified to efficiently computing points of order n € {n,,ng} in
E(F).

Let {n,7i} = {na,ng}, write n = £° and let O be the identity in E(FF,2). The
typical process of computing a point of exact order # is to start by computing R €
E(F 2) and multiplying by the cofactor 71 to compute the candidate output R = [#]R.
Note that the order of R divides 1, but might not be n. Thus, we multiply R by -1,
and if [(°"1]R # O, we output R, otherwise we must pick a new R and restart.

In this section we use explicit results arising from 2- and 3-descent to show that
the cofactor multiplications by 7 and by ¢°~! can be omitted by making use of el-
ementary functions involving points of order 2 and 3 to check whether points are
(respectively) in E \ [2]E or E \ [3]E. In both cases this guarantees that the subse-
quent multiplication by 7 produces a point of exact order n, avoiding the need to
perform full cofactor multiplications to check order prior to the pairing computa-
tion, and avoiding the need to restart the process if the full cofactor multiplication
process above fails to output a point of the correct order (which happens regularly
in practice). This yields much faster algorithms for basis generation than those that
are used in [Aza+16].

We discuss the 2°-torsion basis generation in §2.2 and the 3°-torsion basis gener-

2. Constructing Torsion Bases 147

ation in §2.3. We start in §2.1 by describing some arithmetic ingredients.

2.1 Square Roots, Cube Roots, and Elligator 2

In this section we briefly describe the computation of square roots and that of testing
cubic residuosity in IF , as well as our tailoring of the Elligator 2 method [Ber+13]
for efficiently producing points in E(F ;).

Computing square roots in IF . Square roots in IF » are most efficiently computed
via two square roots in the base field F,. Since p = 3 (mod 4), write F» = (i)
with i2 + 1 = 0. Following [Sco07, §3.3], we use the simple identity

\/a+b~i:j:(¢x+/3~i),where¢x:\/(aﬂ:\/az—i—bz)/Z,ﬁ:b/(sz), 1)

fora,b,a, p € Fp. Both of (a+ /a2 +b2)/2 and (a — va% + b2) /2 will not necessar-
ily be square, so we make the correct choice by assuming that z = (a + v/a2 + b2) /2
is square and setting & = z(PH/4; if a2 = 7, we output a square root as £ (a + Bi),
otherwise we can output a square root as £(— ai).

Checking cubic residuosity in IF ». In §2.3 we will need to efficiently test whether
elements v € IF» are cubic residues or not. This amounts to checking whether
o(*~1)/3 = 1 or not, which we do by first computing v’ = vP~! = v /v via one
application of Frobenius (i.e. F » conjugation) and one FF > inversion. We then com-
pute v/(P+1)/3 as a sequence of e 4 = 372 repeated squarings followed by eg — 1 = 238
repeated cubings. Both of these squaring and cubing operations are in the order p + 1
cyclotomic subgroup of]F;;z, so can take advantage of the fast operations described
in §4.1.

Elligator 2. The naive approach to obtaining points in E(F) is to sequentially test
candidate x-coordinates in IF,» until f(x) = x3 4+ Ax? + x is square. Each of these
tests requires at least one exponentiation in IF,, and a further one (to obtain the cor-
responding y) if f(x) is a square. The Elligator 2 construction deterministically pro-
duces points in E(FF >) using essentially the same operations, so given that the naive
method can fail (and waste exponentiations), Elligator 2 performs significantly faster

on average. The idea behind Elligator 2 is to let u be any non-square in F >, and for

148 Chapter VII. Efficient Compression of SIDH Public Keys

any r € Isz, write

14 ur? 14 ur?

)

=

Then either v is an x-coordinate of a point in E (]sz), or else v’ is [Ber+13]; this is
because f(v) and f (') differ by the non-square factor ur?.

In our implementation we fix u = i 4 4 as a system parameter and precompute a
public table consisting of the values —1/(1 + ur?) € IF > where r? ranges from 1 to
10. This table is fixed once-and-for-all and can be used (by any party) to efficiently
generate torsion bases as A varies over the isogeny class. Note that the size of the
table here is overkill, we very rarely need to use more than 3 or 4 table values to
produce basis points of the correct exact order.

The key to optimizing the Elligator 2 construction (see [Ber+13, §5.5]) is to be able
to efficiently modify the square root computation in the case that f(v) is non-square,
to produce /f('). This update is less obvious for our field than in the case of prime
fields, but nevertheless achieves the same result. Referring back to (1), we note that
whether or not 4 4 b - i is a square in [F» is determined solely by whether or not
a? + b? is a square in IFp, [Sco07, §3.3]. Thus, if this check deems that a + bi is non-
square, we multiply it by ur? = (i + 4)r? to yield a square, and this is equivalent to
updating (a,b) = (r(4a — b),r(a + 4b)), which is trivial in the implementation.

2.2 Generating a Torsion Basis for E(F) [2%]

The above discussion showed how to efficiently generate candidate points R inside
E(F,2). In this subsection we show how to efficiently check that R is in E \ [2]E,
which guarantees that [3°|R is a point of exact order 2°4, and can subsequently be
used as a basis element.

Since the supersingular curves E/F» : y? = x(x2 + Ax + 1) in our isogeny class
have a full rational 2-torsion, we can always write them as E/F : v = x(x —
7)(x —). A classic result (c.f. [Hus04, Ch. 1(§4), Thm 4.1]) says that, in our case,
any point R = (xg, yr) in E(FF) isin [2]E(F), i. e. is the result of doubling another
point, if and only if xg, xg — 7y and xg — J are all squares in]sz. This means that we
do not need to find the roots § and 7y of x? + Ax + 1 to test for squareness, since we
want the xg such that at least one of xg, xg — ¥ and xg — ¢ are a non-square. We
found it most efficient to simply ignore the latter two terms and reject any xr that
is square, since the first non-square xg we find corresponds to a point R such that

[3°B]R has exact order 2°4, and further testing square values of xy is both expensive

2. Constructing Torsion Bases 149

and often results in the rejection of R anyway.

In light of the above, we note that for the 2-torsion basis generation, the Elligator
approach is not as useful as it is in the next subsection. The reason here is that we
want to only try points with a non-square x-coordinate, and there is no exploitable
relationship between the squareness of v and ¢’ in (2) (such a relation only exists
between f(v) and f(v')). Thus, the best approach here is to simply proceed by trying
candidate v’s as consecutive elements of a list L = [u,2u, 31, .. .| of non-squares in
F > until (03 + Av? + v) is square; recall from above that this check is performed
efficiently using one exponentiation in IF).

To summarize the computation of a basis {R1, Ry} for E(IF2)[2°4], we compute
Ry by letting v be the first element in L where (v + Av? + v) is square. We do not
compute the square root of (0> + Av? + v), but rather use ep repeated x-only tripling
operations starting from v to compute xg,. We then compute yr, as the square root
of x%l + Axlzal + xg,. Note that either choice of square root is fine, so long as Alice
and Bob take the same one. The point R; is found identically, i. e. using the second
element in L that corresponds to an x-coordinate of a point on E (Isz), followed
by ep x-only tripling operations to arrive at xg,, and the square root computation to
recover yg,. Note that the points Ry and R; need not be normalized before their input
into the pairing computation; as we will see in §3, the doubling-only and tripling-
only pairings do not ever perform additions with the original input points, so the
input points are essentially forgotten after the first iteration.

2.3 Generating a Torsion Basis for E(FF) [3°7]

The theorem used in the previous subsection was a special case of more general the-
ory that characterizes the action of multiplication-by-m on E. We refer to Silverman’s
chapter [Sil09, Ch. X] and to [SS04] for the deeper discussion in the general case, but
in this chapter we make use of the explicit results derived in the case of m = 3 by
Schaefer and Stoll [SS04], stating only what is needed for our purposes.

Let P = (xp,, yp,) be any point of order 3in E(IF) (recall that the entire 3-torsion
is rational here), and let gp, (x,) = y — (Ax + p) be the usual tangent function to E at
P3. For any other point R € E(IF), the result we use from [SS04] states that R € [3]E
if and only if gp,(R) is in (]sz)3 (i.e. is a cube) for all of the 3-torsion points® P;.
Again, since we do not want points in [3]E, but rather points in E \ [3]E, we do not
need to test that R gives a cube for all of the gp, (R), we simply want to compute
an R where any one of the gp,(R) is not a cube. In this case the test involves both

2 The astute reader can return to §2.2 and see that this is indeed a natural analogue of [Hus04, Ch. 1
(§4), Thm 4.1].

150 Chapter VII. Efficient Compression of SIDH Public Keys

coordinates of R, so we make use of Elligator 2 as it is described in §2.1 to produce
candidate points R € E(F 2).

Unlike the previous case, where the 2-torsion point (0,0) is common to all curves
in the isogeny class, in this case it is computing a 3-torsion point P; that is the most
difficult computation. We attempted to derive an efficient algorithm that finds xp, as
any root of the (quartic) 3-division polynomial 13(A, x), but this solution involved
several exponentiations in both IF» and FFp, and was also hampered by the lack
of an efficient enough analogue of (1) in the case of cube roots.> We found that a
much faster solution was to compute the initial 3-torsion point via an x-only cofactor
multiplication: we use the first step of Elligator 2 to produce an x-coordinate xg,
compute X = X[pea|g Via e4 repeated doublings, and then apply k repeated triplings
until the result of a tripling is (X : Z) € P! with Z = 0, which corresponds to the
point O, at which point we can set out xp,, the x-coordinate of a 3-torsion point P;, as
the last input to the tripling function. Moreover, if the number of triplings required
to produce Z = 0 was k = ep, then it must be that R is a point of exact order 3. If
this is the case, we can use a square root to recover y from xz, and we already have
one of our two basis points.

At this stage we either need to find one more point of order 3°8, or two. In ei-
ther case we use the full Elligator routine to obtain candidate points R exactly as
described in §2.1, use our point P; (together with our efficient test of cubic residu-
osity above) to test whether gp, (R) = yr — (Axg + p) is a cube, and if it is not, we
output £[2°4]R as a basis point; this is computed via a sequence of x-only doublings
and one square root to recover yp g at the end. On the other hand, if gr,(R) is
a cube, then R € [3] E, so we discard it and proceed to generate the next R via the
tailored version of Elligator 2 above.

We highlight the significant speed advantage that is obtained by the use of the
result of Schaefer and Stoll [SS04]. Testing that points are in E \ [3]E by cofactor mul-
tiplication requires e4 point doubling operations and ep point tripling operations,
while the same test using the explicit results from 3-descent require one field expo-
nentiation that tests cubic residuosity. Moreover, this exponentiation only involves
almost-for-free Frobenius operations and fast cyclotomic squaring and cubing oper-
ations (again, see §4.1).

Remark 3. As mentioned at the beginning of this section, until now we have sim-
plified the discussion to focus on generating two points Ry and R, of exact order n.
However, this does not mean that {Ry, R} is a basis for E(IF 2)[n]; this is the case if
and only if the Weil pairing w, (R1, Ry) has full order n. Although the Weil pairing

3 A common subroutine when finding roots of quartics involve solving the so-called depressed cubic.

3. The Tate Pairing Computation 151

will have order n with high probability for random R; and R», the probability is not
so high that we do not encounter it in practice. Thus, baked into our software is a
check that this is indeed the case, and if not, an appropriate backtracking mecha-
nism that generates a new Ry. We note that, following [CLN16a, §9] and [Gal+16,
Section 2.5], checking whether or not the Weil pairing w, (Ry, Rz) has full order is
much easier than computing it, and can be done by comparing the values [1n//¢]Ry
and [n/¢]R;.

3 The Tate Pairing Computation

Given the basis points Ry and R; resulting from the previous section, and the two
points P and Q in the (otherwise uncompressed) public key, we now have four points
of exact order n. As outlined in §I1.2.1, the next step is to compute the following five

pairings to transfer the discrete logarithms to the multiplicative group p, C]F;zz

ep :=ey(R1, Rp) = fn,Rl(Rz)(le)/n, e1 :=ey(Rq, P) = fn,Rl(P)(pzfl)/n,
e2 1= en(R1, Q) = fu,r, (QW D/, e3 := ey (Ry, P) = fup,(P)P~1/",
ey :=ey(Ry, Q) = fn’RZ(Q)(PZ—l)/n_

As promised in §1, the above pairings are already defined by the order n reduced
Tate pairing ey, : E(F,2)[n] x E(F,2)/nE(F,2) — py, rather than the Weil pairing that
was used in [Aza+16]. The rationale behind this choice is clear: the lack of special
(subfield) groups inside the n-torsion means that many of the tricks used in the pair-
ing literature cannot be exploited in the traditional sense. For example, there does
not seem to be a straight-forward way to shorten the Miller loop by using efficiently
computable maps arising from Frobenius (see e. g. [Bar+07], [HSV06], [Hes08]), our
denominators lie in lez so cannot be eliminated [Bar+02], and, while distortion maps
exist on all supersingular curves [Ver04], finding efficiently computable and there-
fore useful maps seems hard for random curves in the isogeny class. The upshot is
that the Miller loop is far more expensive than the final exponentiation in our case,
and organizing the Tate pairings in the above manner allows us to get away with the
computation of only two Miller functions, rather than the four that were needed in
the case of the Weil pairing [Aza+16].

In the case of ordinary pairings over curves with a larger embedding degree,*
the elliptic curve operations during the Miller loop take place in a much smaller

* This has long been the preferred choice of curve in the pairing-based cryptography literature.

152 Chapter VII. Efficient Compression of SIDH Public Keys

field than the extension field; in the Tate pairing the point operations take place in
the base field, while in the loop-shortened ate pairing [HSV06] (and its variants)
they take place in a small-degree subfield. Thus, in those cases the elliptic curve
arithmetic has only a minor influence on the overall runtime of the pairing.

In our scenario, however, we are stuck with elliptic curve points that have both
coordinates in the full extension field. This means that the Miller line function com-
putations are the bottleneck of the pairing computations (and, as it turns out, this is
the main bottleneck of the whole compression routine). The main point of this sec-
tion is to present optimized explicit formulas in this case; this is done in §3.1. In §3.2
we discuss how to compute the five pairings in parallel and detail how to compute
the final exponentiations efficiently.

3.1 Optimized Miller Functions

We now present explicit formulas for the point operations and line computations in
Miller’s algorithm [Mil04]. In the case of the order-2°4 Tate pairings in E (]sz) [254],
we only need the doubling-and-line computations, since no additions are needed.
In the case of the order-3°¢ Tate pairings inside E(IF pz) [3°8], we investigated two op-
tions: the first option computes the pairing in the usual “double-and-add” fashion,
reusing the doubling-and-line formulas with addition-and-line formulas, while the
second uses a simple sequence of ep tripling-and-parabola operations. The latter op-
tion proved to offer much better performance and is arguably more simple than the
double-and-add approach.

We tried several coordinate systems in order to lower the overall number of field
operations in both pairings, and after a close inspection of the explicit formulas in
both the doubling-and-line and tripling-and-parabola operations, we opted to use
the coordinate tuple (X? : XZ : Z? : YZ) to represent intermediate projective points
P=(X:Y:Z)€P?in E(F). Note that all points in our routines for which we use
this representation satisfy XYZ # 0, as their orders are strictly larger than 2. This

ensures that the formulas presented below do not contain exceptional cases.?

Doubling-and-line operations. The doubling step in Miller’s algorithm takes as
input the tuple (Uy : Uy : Uz : Uy) = (X% : XZ : Z? : YZ) corresponding to the point
P = (X:Y:Z) e P?in E(F,), and outputs the tuple (V; : Vo : V3 : V4) = (X3 :
X2Z5 : Z3 1 Y»Z5) corresponding to the point [2]P = (X : Y, : Zp) € P2, as well

5 The input into the final iteration in the doubling-only pairing is a point of order 2, but (as is well-
known in the pairing literature) this last iterate is handled differently than all of the prior ones.

3. The Tate Pairing Computation 153

as the 5 coefficients in the Miller line function [/v = (I - x + 1y - y + ly) / (vxx + vp)
with divisor 2(P) — (2P) — (O). The explicit formulas are given as

Iy = 4U3 4+ 2UpUy (Uy — U3) , 1, = 4ULU7, lp = 2Uy Uy (U — Us)
Oy = 4U2U2, 0y = Uz (U1 — U3)2 ,
together with

Vi = (U — W), Vo =4l (U —Us)?*, Vs=16Uj,
Vy = 2U, (Uy — Us) (Uy — Uz)? +2U, (4 + A (Uy + U3))) .

The above point doubling-and-line function computation can be computed in 9M +
5S + 7a + 1s. The subsequent evaluation of the line function at the second argu-
ment of a pairing, the squaring that follows, and the absorption of the squared line
function into the running paired value costs 5M + 2S + 1a + 2s.

Tripling-and-parabola operations. The tripling-and-parabola operation has as in-
put the tuple (U : Uy : Uz : Uy) = (X?: XZ : Z% : YZ) corresponding to the point
P=(X:Y:Z)€P?in E(F,2), and outputs the tuple (Vi : V2 : V3 : Vy) = (X3 :
X3Z3 : Z3 : Y3Z3) corresponding to the point [3]P = (X3 : Y3 : Z3) € P2, as well
as the 6 coefficients in the Miller parabola function I/v = (I -y + Lyo - x> + Ly 1x +
lx0)/ (vxx + vg) with divisor 3(P) — (3P) — 2(O). The explicit formulas are given as

1, = 8Uj3,
lp = U3 (U2 44U AU, + 6U, U3 — U2),
ly1 = 2Uo(3U3 + 2U; Us + 3U3 + 6U; AUy + 4A%U3 + 6AlLUS)
Lo = U (—U3 46U Us + 3U3 + 4AULU3),
vy = SUU; (BU? + 4U AU, + 6UL U3 — U32)*,
vg = —8UxU; (BUZ + 4U; AU, + 6U Us — U32)?(UZ — 6Ly Us — 3U3 — 4AULU3)?,

together with

Vi = 8USUL (—U? + 6U4 U3 + 3U2 + 4AU,U3)*,

Vo = 8ULUS (3UZ + 4U; AU, + 6U3 Uz — U3)? (U7 — 6U U — 3U3 — 4AULU3)?,
V3 = 8UU;5 (3UZ + 4U; AU, + 6Uy U3 — U3)*,

Vy = —8U U3(3U? + 4U; AU, + 6U Us — U32) (—U? + 6U Us + 3U3 + 4AULU3)

154 Chapter VII. Efficient Compression of SIDH Public Keys

- (16U U3 A?U3 + 28UF AUp Uy + 28U US AU, + 4U3 AU, + 4U5 AU,
+6UZU3 + 28U Us + U3 + 28U U35 + U7) (Us + Uy + All)?.

The above point tripling-and-parabola function computation can be computed in
19M + 6S + 15a + 6s. The subsequent evaluation of the line function at the second
argument of a pairing, the cubing that follows, and the absorption of the cubed line
function into the running paired value costs 10M + 2S + 4a.

Remark 4 (No irrelevant factors). It is common in the pairing literature to abuse no-
tation and define the order-n Tate pairing as e, (P, Q) = fp(Q)(pk_l)/ " where k is
the embedding degree (in our case k = 2), and fp has divisor div(fp) = n(P) —
n(O). This is due to an early result of Barreto, Kim, Lynn and Scott [Bar+02, The-
orem 1], who showed that the actual definition of the Tate pairing, i.e. e,(P,Q) =
fp(DQ)(Pk_l)/” where D, is a divisor equivalent to (Q) — (O), could be relaxed in
practical cases of interest by replacing the divisor Dg with the point Q. This is due
to the fact that the evaluation of fp at O in such scenarios typically lies in a proper
subfield of]F;k, so becomes an irrelevant factor under exponentiation by (p* —1)/n.
In our case, however, this is generally not the case because the coefficients in our
Miller functions lie in the full extension field F*,. Subsequently, our derivation of
explicit formulas replaces Q with the divisor Dg = (Q) — (O), and if the evaluation
of the Miller functions at O is ill-defined, we instead evaluate them at the divisor
(Q+ T) — (T) that is linearly equivalent to Dy, where we fixed T = (0,0) as the
(universal) point of order 2. If Q = (xg,yp), then Q + T = (1/xq, —yQ/sz), SO
evaluating the Miller functions at the translated point amounts to a permutation of
the coefficients, and evaluating the Miller functions at T = (0,0) simply leaves a
quotient of the constant terms. These modifications are already reflected in the op-

eration counts quoted above.

Remark 5. In the same vein as Remark 2, there is another possible speed improve-
ment within the pairing computation that is not currently exploited in our library.
Recall that during the generation of the torsion bases described in §2, the candidate
basis point R is multiplied by the cofactor n € {ny4,np} to check whether it has the
correct (full) order, and if so, R is kept and stored as one of the two basis points.
Following the idea of Scott [Sco07, §9], the intermediate multiples of R (and partial
information about the corresponding Miller line functions) that are computed in this
cofactor multiplication could be stored in anticipation for the subsequent pairing
computation, should R indeed be one of the two basis points. Another alternative

here would be to immediately compute the pairings using the first two candidate ba-

3. The Tate Pairing Computation 155

sis points and to absorb the point order checks inside the pairing computations, but
given the overhead incurred if either or both of these order checks fails, this could

end up being too wasteful (on average).

3.2 Parallel Pairing Computation and the Final Exponentiation

In order to solve the discrete logarithms in the subgroup yu, of n-th roots of unity
in IF;;2, we compute the five pairings ey := e(Ry,Ry), e1 := e(Rq1, P), e := e(R1,Q),
e3 := e(Rp, P), and e4 := e(Ry, Q). The first argument of all these pairings is either
Rj or Ry, i.e. all are of the form fn,Ri(S)(pz’l)/” fori € {1,2} and S € {R,, P, Q}.
This means that the only Miller functions we need are f, r, and f, ,, and we get
away with computing only those two functions for the five pairing values. The two
functions are evaluated at the points Ry, P, Q during the Miller loop to obtain the
desired combinations. It therefore makes sense to accumulate all five Miller values
simultaneously.

Computing the pairings simultaneously also becomes advantageous when it is
time to perform inversions. Since we cannot eliminate denominators due to the lack
of a subfield group, we employ the classic way of storing numerators and denomi-
nators separately to delay all inversions until the very end of the Miller loop. At this
point, we have ten values (five numerators and five denominators), all of which we
invert using Montgomery’s inversion sharing trick [Mon87] at the total cost of one
inversion and 30 IF » multiplications. The five inverted denominators are then mul-
tiplied by the corresponding numerators to give the five unreduced paired values.
The reason we not only invert the denominators, but also the numerators, is because
these inverses are needed in the easy part of the final exponentiation.

The final exponentiation is an exponentiation to the power (p?> —1)/n = (p —
1) pTH The so-called easy part, i.e. raising to the power p — 1, is done by one appli-
cation of the Frobenius automorphism and one inversion. The Frobenius is simply
a conjugation in IF », and the inversion is actually a multiplication since we had al-
ready computed all required inverses as above. The so-called hard part of the final
exponentiation has exponent (p + 1) /n and needs to be done with regular exponen-
tiation techniques. A nice advantage that makes the hard part quite a little easier is
the fact that after a field elementa = ag +a; -1 € Isz has been raised to the power
p — 1, it has order p + 1, which means it satisfies 1 = a? - a = a3 + 3. This equation
can be used to deduce more efficient squaring and cubing formulas that speed up
this final part of the pairing computation (see §4.1 for further details).

Finally, in the specific setting of SIDH, where p = nanp — 1, we have that (p +

156 Chapter VII. Efficient Compression of SIDH Public Keys

1)/ng = ngand (p+1)/ng = ny. When ny and ng are powers of 2 and 3, re-
spectively, the hard part of the final exponentiation consists of only squarings or
only cubings, respectively. These are done with the particularly efficient formulas
described in §4.1 below.

4 Efficient Pohlig-Hellman in p e

In this section, we describe how we optimize the Pohlig-Hellman [PH78] algorithm
to compute discrete logarithms in the context of public-key compression for super-
singular isogeny-based cryptosystems, and we show that we are able to improve on
the quadratic complexity described in [PH78]. A similar result has already been pre-
sented in the more general context of finite abelian p-groups by Sutherland [Sut11].
However, our software employs a different optimization of the Pohlig-Hellman al-
gorithm, by choosing small memory consumption over more efficient computation,
which affects parameter choices. We emphasize that there are different time-memory
trade-offs that could be chosen, possibly speeding up the Pohlig-Hellman computa-
tion by another factor of two (see Remark 2).

Following the previous sections, the two-dimensional discrete logarithm prob-
lems have been reduced to four discrete logarithm problems in the multiplicative
group pige C]F;‘72 of ¢°-th roots of unity, where ¢,e € Z are positive integers and /¢ is
a (small) prime. Before elaborating on the details of the windowed Pohlig-Hellman
algorithm, we note that the condition ¢° | p + 1 makes various operations in s more

efficient than their generic counterpart in]F;z.

4.1 Arithmetic in the Cyclotomic Subgroup

Efficient arithmetic in pye can make use of the fact that y. is a subgroup of the mul-
tiplicative group Gp41 C IF;;Z of order p + 1. Various subgroup cryptosystems based
on the hardness of the discrete logarithm problem have been proposed in the lit-
erature [SS95; LV00], which can be interpreted in the general framework of torus-
based cryptography [RS03]. The following observations for speeding up divisions
and squarings in G, 1 have been described by Stam and Lenstra [SL03, §3.23 and
Lemma 3.24].

Division in pe. Let p = 3 (mod 4) and F» = Fy(i), i? = —1. For any a =
ap+ay-i € Gpy1, where ag, a1 € Fp, we have that a - a? = aP*tl = 1, and there-

fore, the inverse a~! = a? = ay — ay - i. This means that inversion in Hge can be

4. Efficient Pohlig-Hellman in p e 157

computed almost for free by conjugation, i. e. a single negation in IF,, and thus divi-

sions become as efficient as multiplications in .

Squaring in pp. The square of a = ag + a; - i can be computed as a*> = (243 —
1) + ((ap + a1)?> — 1) - i by essentially two base field squarings. In the case where
such squarings are faster than multiplications, this yields a speed-up over generic
squaring in IF ».

Cubingin ppe. As far as we know, a cubing formula in G, 41 has not been considered
in the literature before. We make the simple observation that a> can be computed as
a® = (ap+ay -i)® = ag(4a3 — 3) + a1 (4a3 — 1) - i, which needs only one squaring and
two multiplications in IFp, and is significantly faster than a naive computation via a
squaring and a multiplication in p .

4.2 Pohlig-Hellman

We now discuss the Pohlig-Hellman algorithm as presented in [PH78] for the group
Hee. Letr, g € pype be (non-trivial elements) such that » = g* for some & € Z. Given r
and g, the goal is to determine the unknown scalar «. Denote « as

e—1)
a=Y il (a;€{0,...,0—1}).
i=0

Now define s = g”il, which is an element of order ¢, and let ry = r. Finally, define

gi=g¢" (0<i<e-1)

and
i—1
7’1 — —

8i-1
A straightforward computation then shows that forall 0 <i <e—1,

(1<i<e—1).

Pl g 3)
As proven in [PH78], this allows to inductively recover all «;, by solving the dis-
crete logarithms of Equation (3) in the group (s) of order ¢. This can be done by
precomputing a table containing all elements of (s). Alternatively, if ¢ is not small
enough, one can improve the efficiency by applying the Baby-Step Giant-Step algo-
rithm [Sha71], at the cost of some more precomputation. For small ¢ the computation

158 Chapter VII. Efficient Compression of SIDH Public Keys

has complexity O(e?), while precomputing and storing the g; requires O(e) memory.

4.3 Windowed Pohlig-Hellman

The original version of the Pohlig-Hellman algorithm reduces a single discrete log-
arithm in the large group e to e discrete logarithms in the small group p,. In this
section we consider an intermediate version, by reducing the discrete logarithm in
fiee to & discrete logarithms in pijw. Let 7, g, & as in the previous section, and letw € Z
be such that w | e. Note that it is not necessary for e to be divisible by w. If it is not,
we replace e by e — (e (mod w)), and compute the discrete logarithm for the final e
(mod w) bits at the end. However the assumption w | e improves the readability of
the arguments with little impact on the results, so we focus on this case here. Write

51 ,
x = Z a " (a; €40,...,00—1}),
i=0

define s = g”fw, which is an element of order /%, and let ry = r. Let
gi=g" (0<i<®-1)
w
and
=L (1<i< S 1), @)
8it1 w

—1). ©)

1

Hence we inductively obtain «; for all 0 < i < % — 1, and thereby «. To solve

the discrete logarithm in the smaller subgroup /v, we consider two strategies as
follows.

Baby-step Giant-step in (s). As before, for small ¢ and w we can compute a table
containing all /% elements of (s), making the discrete logarithms in (5) trivial to solve.
As explained in [Sha71], the Baby-Step Giant-Step algorithm allows us to make a
trade-off between the size of the precomputed table and the computational cost. That
is, given some v < w, we can compute discrete logarithms in (s) with computational
complexity O(£?) and O(¢“~?) memory. Note that the computational complexity
grows exponentially with v, whereas the memory requirement grows exponentially

with w — v. This means that if we want to make w larger, we need to grow v as well,

4. Efficient Pohlig-Hellman in p e 159

as otherwise the table-size will increase. Therefore in order to obtain an efficient and
compact algorithm, we must seemingly limit ourselves to small w. We overcome this

limitation in the next section.

Pohlig-Hellman in (s). We observe that (s) has order ¢“, which is again smooth.
This allows us to solve the discrete logarithms in (s) by using the original Pohlig-
Hellman algorithm of §4.2. However, we can also choose to solve the discrete loga-
rithm in (s) with a second windowed Pohlig-Hellman algorithm. Note the recursion
that occurs, and we can ask what the optimal depth of this recursion is. We further
investigate this question in §4.4.

4.4 The Complexity of Nested Pohlig-Hellman

We estimate the cost of an execution of the nested Pohlig-Hellman algorithm by
looking at the cost of doing the computations in (4) and (5). Let F, (n > 0) de-
note the cost of an n-times nested Pohlig-Hellman algorithm, and set F_; = 0. Let
wo, Wy, ..., Wy, Wyy1 be the window sizes, and set wg = e, w11 = 1 (note that
n = 0 corresponds to the original Pohlig-Hellman algorithm). Again, assume that
Wy | wy—1 | -+ | w1 | e, which is merely for ease of exposition. The first iteration has

window size wy, which means that the cost of the exponentiations in (5) is

£
t wyi Lzlwl <e_1> iLzle (e—l)L,

iz0 2 w1 w1 2 w1

where L denotes the cost of an exponentiation by /. The exponentiations in (4) are
performed with a scalar of size log a; ~ wy log ¢, which costs %wl log{ M+ w;logtS
on average. To do all ;- of them then costs on average lelog /M +elog(S. We em-
phasize that for small w; and ¢ this is a somewhat crude estimation, yet it is enough
to get a good feeling for how to choose our parameters (i.e. window sizes). We
choose to ignore the divisions, since there are only a few (see Remark 6) and, as we
showed in §4.1, they can essentially be done at the small cost of a multiplication. We
also ignore the cost of the precomputation for the gzm, which is small as well (see Re-
mark 7). To complete the algorithm, we have to finish the remaining w% (n—1)-times
nested Pohlig-Hellman routines. In other words, we have shown that

1 e 1 e
F. =~ 5¢ (wl - l> L+ Eelong—i—elogéS—i— w—an,l.

160 Chapter VII. Efficient Compression of SIDH Public Keys
Now, by using analogous arguments on F,_1, and induction on 7, we can show that

1 _
ane(e—i-...—i—zunl—i-wn—n)L
2 \w Wy

n+1
+

elogfM+ (n+1)elog?S. (6)

To compute the optimal choice of (wy, ..., w,), we compute the derivatives,

ow; 2°

F, 1 1 .
OF Sl L (a<i<n
Wi+1 w;

and simultaneously equate them to zero to obtain the equations

wi = ywiwig (1<i<n).

From this we can straightforwardly compute that the optimal choice is

n n=l 2 1
(wll_“,wn) = (en+1/en+1,.._,en+1/gn+l) . (7)

Plugging this back into the Equation (6), we conclude that

Fn%%e(rz—i-l) <eﬁ—1)L+

n+1

elog{M+ (n+1)elog?S.

Observe that Fy ~ 1e?, agreeing with the complexity described in [PH78]. How-
ever, as 1 grows, the complexity of the nested Pohlig-Hellman algorithm goes from

quadratic to linear in ¢, giving a significant improvement.

Remark 6. We observe that for every two consecutive windows w; and w; 1, we need
less than "= divisions for (4). Breaking the full computation down, it is easy to
i+1

show that the total number of divisions is less than

e e w1 w1 Wy—2 [Wy Wy
+<+(-~-+ . (—+ ——w, ,
wyp Wi \w2 w2 Wy —1 Wn Wn

which can be rewritten as e(wi1 + % +...+ w%’ + %) Now we note that wi'H | w;,
while w; 1 # w;, forall 0 < i < n. Asw, 1 = 1, it follows that w,, . 1_; > 2' for all

0 < i < n. Therefore

(R R L] R A
ottt s) <e (Gt bt .

5. Final Compression and Decompression 161

Table 1. Estimations of F; in iy via a Magma implementation. Here m and s are the cost of
multiplications and squarings in IF,, while M = 3-m and S = 2 - s are the cost of multiplica-
tions and squarings in IF .. The costs are averaged over 100 executions of the algorithm. The
IF, operation counts are generated from the IF p2 Operation count estimations (c.f. §4.1), while
the IF» are rounded down after averaging.

Windows F 2 F, Table
noow, Wy W3 Wy M S m s lez

0o - - - - 372 69378 1116 138756 375
1 19 - - - 375 7445 1125 14 890 43
2 51 7 - - 643 4437 1929 8874 25
3 8 21 5 - 716 3826 2148 7 652 25
4 114 35 11 3 1065 3917 3195 7 834 27

Remark 7. As every table element is of the form ng’ where i is an integer such that
0 <i <e—1, weconclude that we need at most (e — 1)L to pre-compute all tables.

4.5 Discrete Logarithms in p37

For this section we fix £ = 2 and e = 372. In this case L is the cost of a squaring,
i,e. L = S. To validate the approach, we present estimates for the costs of the
discrete logarithm computations in p,37> through a Magma implementation. In this
implementation we count every multiplication, squaring and division operation; on
the other hand, some of these were ignored for the estimation of F, above. The
results are shown in Table 1 for 0 < n < 4 choosing the window sizes as computed
in (7). The improved efficiency as well as the significantly smaller table sizes are

clear, and we observe that in the group ps7 it is optimal to choose 1 = 3.

4.6 Discrete Logarithms in pi323

We now fix £ = 3 and e = 239 and present estimates for the costs of the discrete
logarithm computations in ps9. Here L is now the cost of a cubing in pg9. As
explained in §4.1, this is done at the cost of two multiplications and one squaring in

IF,. As shown in Table 2, the optimal case in p33 is also n = 3.

5 Final Compression and Decompression

In this section we explain how to further compress a public key PK from IF» x
(Z/nZ)* to F» x {0,1} x (Z/nZ)3. Moreover, we also show how to merge the

162 Chapter VII. Efficient Compression of SIDH Public Keys

Table 2. Estimations of F; in iz via a Magma implementation. Here m and s are the cost of
multiplications and squarings in IF,, whileM =3-m, S = 2-sand C = 2- m + s are the cost
of multiplications, squarings and cubings in IF > respectively. The costs are averaged over 100
executions of the algorithm. The F, operation counts are generated from the [F . operation
count estimations (c. f. §4.1), while the F . are rounded down after averaging.

Windows F 2 F, Table
n w, wy w3 wy M S C m s lez

0o - - - - 239 78 28680 58077 28836 242
1 19 - - - 349 341 3646 8339 4328 35
2 51 7 - - 612 660 2192 6220 3512 22
3 8 21 5 - 656 836 1676 5320 3348 17
4 114 35 11 3 942 1252 1427 5716 3931 16

key decompression with one of the operations of the SIDH scheme, making much of
the decompression essentially free of cost. For ease of notation we follow the scheme
described in [CLN16a], but everything that follows in this section generalizes natu-

rally to the theory as originally described in [DFJP14].

5.1 Compression

Using the techniques explained in all previous sections, we can compress a triple
(Ea, P,Q) € IFZZ to a tuple (A, ap, Bp,ag, ,BQ) IS]sz x (Z./nZ)* such that

(P,Q) = (apRl + ,BpRz,thRl + ,BQRz) ,

where {Rj, Ry} is a basis of E4[n]. As described in [CLN16a], the goal is to compute
(P+tmQ) for £ € {2,3} and a secret key m. Again, we note that the original pro-
posal expects to compute (11 P + n,Q) for secret key (11, 1), but we emphasize that
all that follows can be generalized to this case.

Since P is an element of order #, one of ap or Bp lies in (Z/nZ)*, and

(ap P+ tmay'Q) i ap € (Z/nZ)*

(P+tmQ) = .
(Bp'P+mpp'Q) if Pp € (Z/nZ)"

Hence, to compute (P + ¢mQ), we do not necessarily have to recompute (P, Q).
Instead, we can compute

(#5'P,a5'Q) = (Ry + a5 BrRo,ap agRs + a5 Ry

5. Final Compression and Decompression 163

or
(51?113, ﬁ;lQ) = (ﬁ;lapRl + Ry, BplagR; + ﬁI:lﬁQRz) .

Note that in both cases we have normalized one of the scalars. We conclude that we
can compress the public key to PK € [F» x {0,1} x (Z/ nZ)3, where

ox — (A,O,ocljlﬁp,txljlocQ,oc;lﬁQ) if ap e (Z/nZ)*
(41, B5"ap, B5'ag. By Bo) if Be € (Z/nZ)"

5.2 Decompression

Let (A, b,ap,ag, ,EQ) € Fp x{0,1} x (Z/nZ)? be a compressed public key. Note
that, by the construction of the compression, there exists a y € (Z/nZ)* such that

(1P Q) - (Ri +pRo, @Ry + §QR2) it b=0 o
(KPRl + Ry, agRy + ﬁQRz) if b=1

The naive strategy, analogous to the one originally explained in [Aza+16], would be
to generate the basis {Ry, Ry} of E4[n], use the public key to compute (y~1P,771Q)
via (8), and finally compute

(P+tmQ) = (v 'P+tmy1Q),

where m € Z/nZ is the secret key. The cost is approximately a 1-dimensional and
a 2-dimensional scalar multiplication on E4, while the final 1-dimensional scalar
multiplication is part of the SIDH scheme.

Instead, we use (8) to observe that
(P+tmQ) = (y7'P+ tmy™'Q)
<(1 + EmEQ) Ri+ (ap + fﬂ”lng) R2> if b=0
(@p + bmiig) Ry + (1+ tmBo) Ra) if b=1

Thus, since 1+ fmag, 1+ EmEQ € (Z/nZ)* (recall that n = ¢¢), we conclude that

<R1 + (1 + ZmeQ)*l (Ep + ngQ) R2> if b=0

(P+mQ) = -1 .
<(1 + émﬁQ) (@p + bmig) Ry +Ry) if b=1

164 Chapter VII. Efficient Compression of SIDH Public Keys

Table 3. Comparison of SIDH key exchange and public key compression implementations
targeting the 128-bit post-quantum and 192-bit classical security level. Benchmarks for our
implementation were done on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost disabled. Results for [Aza+16], obtained on a 4.0GHz Intel Core
17-4790K Haswell processor, were scaled from seconds to cycles using the CPU frequency; the
use of TurboBoost is not specified in [Aza+16]. The performance results, expressed in millions
of clock cycles, were rounded to the nearest 10° cycles.

Function Party This [Aza+16]

Public key (bytes) — ggge gég 385
Keygen + Shared key g(l)llse gg —

. Alice 109 6081

. Compression Bob 112 7747

Cycles (cex10%) Alice 42 539
Decompression Bob 34 493

Total (no compression) — 192 535

Total (compression) — 469 15395

Decompressing in this way costs only a handful of field operations in IF » in addition
to a 1-dimensional scalar multiplication on E4. Since the scalar multiplication is
already part of the SIDH scheme, this makes the cost of decompression essentially
the cost of generating {Ry, Ry }. This is done exactly as explained in §2.

6 Implementation Details

To evaluate the performance of the new compression and decompression, we im-
plemented the proposed algorithms in plain C and wrapped them around the SIDH
software from [CLN16a]. This library supports a supersingular isogeny class de-
fined over p = 2%72.32% — 1, which contains curves of order (232 - 3239)2. These
parameters target 128 bits of post-quantum security.

Table 3 summarizes the results after benchmarking the software with the clang
compiler v3.8.0 on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost turned off. The details in the table include the size of
compressed and uncompressed public keys, the performance of Alice’s and Bob’s
key exchange computations using compression, the performance of the proposed
compression and decompression routines, and the total costs of SIDH key exchange
with and without the use of compression. These results are compared with those

from the prior work by Azarderakhsh et al. [Aza+16], which uses a supersingular

6. Implementation Details 165
isogeny class defined over p = 237 .3242 _ 1,

As can be seen in Table 3, the new algorithms for compression and decompres-
sion are significantly faster than those from [Aza+16]: compression is up to 66 times
faster, while decompression is up to 15 times faster. Similarly, the full key exchange
with compressed public keys can be performed about 30 times faster. Even though
part of these speedups can indeed be attributed to the efficiency of the original SIDH
library, this only represents a very small fraction of the performance difference (note
that the original key exchange from the SIDH library is only 2.8 times faster than the
corresponding result from [Aza+16]).

Our experimental results show that the use of compressed public keys introduces
a factor-2.4 slowdown to SIDH. However, the use of compact keys (in this case, of
330 bytes) can now be considered practical; e. g. one round of SIDH key exchange is
computed in only 150 milliseconds on the targeted platform.

166 Chapter VII. Efficient Compression of SIDH Public Keys

o ¥ 111

Computing Isogenies between

Montgomery Curves Using the
Action of (0,0)

A recent paper by Costello and Hisil [CH17] presents efficient formulas for comput-
ing isogenies with odd-degree cyclic kernels on Montgomery curves. We provide
a constructive proof of a generalization of this theorem which shows the connec-
tion between the shape of the isogeny and the simple action of the point (0,0). This
generalization removes the restriction of a cyclic kernel and allows for any separa-
ble isogeny whose kernel does not contain (0,0). As a particular case, we provide
efficient formulas for 2-isogenies between Montgomery curves and show that these
formulas can be used in isogeny-based cryptosystems without expensive square root
computations and without knowledge of a special point of order 8. We also consider

elliptic curves in triangular form containing an explicit point of order 3.

1 Introduction

Ever since the introduction of elliptic curves to public-key cryptography by Miller
[Mil86] and Koblitz [Kob87], they have been of interest to the cryptographic commu-
nity. By using the group of points on an appropriately chosen elliptic curve where
the discrete logarithm problem is assumed to be hard, many standard protocols can
be instantiated. Notably, the Diffie-Hellman key exchange [DH76] and the Schnorr

168 Chapter VIII. Computing Isogenies between Montgomery Curves

signature scheme [Sch90] and its variants [Acc99a; Ber+12] allow for efficient imple-
mentations with high security and small keys. The efficiency of these curve-based
algorithms is largely determined by the scalar multiplication routine, and as a result
a lot of research has gone into optimizing this operation.

However, the threat of large-scale quantum computers has initiated the search
for alternative algorithms that also resist quantum adversaries (which the classical
curve-based systems do not [Sho94]). Building on the work of Couveignes [Cou06]
and Rostovsev and Stolbunov [RS06], in 2011 Jao and De Feo [JDF11] proposed su-
persingular isogeny Diffie-Hellman (SIDH) as a key exchange protocol offering post-
quantum security. Being based on the theory of elliptic curves, SIDH inherits several
operations from traditional curve-based cryptography. As such, it has immediately
benefited from decades of prior research into optimizing their operations. In par-
ticular, the Montgomery form of an elliptic curve has resulted in great performance.
Initially proposed by Montgomery to speed up factoring using ECM [Mon87; Len87]
and having been used for very efficient Diffie-Hellman key exchange (e.g. Bern-
stein’s Curve25519 [Ber06a]), the current fastest instantiations of SIDH also employ
Montgomery curves [CLN16b; KAMK16]. But, although the optimizations for scalar
multiplication immediately carry over, the work on computing explicit isogenies on
Montgomery curves is more limited.

For isogeny computations one commonly uses Vélu’s formulas [Vél71]. How-
ever, if the elliptic curve has a form which is less general than (or different from)
Weierstrass form, the formulas from Vélu are not guaranteed to preserve this. As
isogenies are only well-defined up to isomorphism, one can post-compose with an
appropriate isomorphism to return to the required form, but it may not be obvi-
ous with which isomorphism, or the isomorphism may be expensive to compute. A
more elegant approach is to observe some extra structure on the curve model and
require the isogenies to preserve this. For example, Moody and Shumow [MS16] ap-
ply this idea to Edwards and Huff curves by fixing certain points. Moreover, since
the isogeny is invariant under addition by kernel points, there is a close connection
between the isogeny and the action (by translation) of some chosen point. We make
this more explicit in Theorem 1 for curves in Weierstrass form.

So far the approaches for obtaining formulas for isogenies on curves in Mont-
gomery form have been rather ad hoc. In [DFJP14], De Feo, Jao and Plt apply Vélu’s
formulas and compose with the appropriate isomorphisms to return to Montgomery
form. As noted in [DFJP14, §4.3.2], this approach fails to produce efficient results for
2-isogenies. That is, either one has to compute expensive square roots i