
Security on the Line:

Modern Curve-based Cryptography

Copyright c© 2019 Joost Renes
ISBN: 978–94–6323–695–9
Typeset using LATEX

Cover design: Ilse Modder – www.ilsemodder.nl

Printed by: Gildeprint – www.gildeprint.nl

This work is part of the research programme TYPHOON with project number 13499,
which is (partly) financed by the Netherlands Organisation for Scientific Research
(NWO).

www.ilsemodder.nl
www.gildeprint.nl

Security on the Line:
Modern Curve-based Cryptography

Proefschrift
ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op maandag 1 juli 2019
om 14.30 uur precies

door
Joost Roland Renes

Promotor

Prof. dr. L. Batina

Manuscriptcommissie

Prof. dr. E.R. Verheul
Prof. dr. S.D. Galbraith (University of Auckland, Nieuw-Zeeland)

Prof. dr. A.J. Menezes (University of Waterloo, Canada)
Dr. N. Heninger (University of California San Diego, Verenigde Staten)

Dr. F. Vercauteren (KU Leuven, België)

Acknowledgements

A unique feature of doing a PhD is that by the end of it, one is expected to deliver a
book detailing all personal contributions to the field of study. This inherently high-
lights its individual nature, yet one would be wrong to think all these years are spent
alone in a dark office (if anything, because no PhD student would ever be given their
own office). My academic journey has given me the opportunity to experience life
in many different places, and to visit far too many to list here. I would like to take
this chance to thank those who have been there along the way to make it all the more
worthwhile.

First and foremost I would like to thank my promotor Lejla Batina. Her imme-
diate enthusiasm convinced me to start on this path, and I have never felt a lack of
professional or personal support during. I am very grateful to have had the chance
to work with you and for the many exciting things that have happened because of it.

During my PhD I have been lucky enough to work with great people. A special
thanks goes out to Craig Costello, whom I met at the very beginning of my PhD. We
not only collaborated on my first paper (and others after that), but you also gave me
the opportunity to spend three great summers at Microsoft Research. In extension,
I would like to thank Michael Naehrig for being a great (co-)mentor during said
internships. I am proud of the work I have done with both of you, and slightly
embarrassed of the persistent failures on the soccer field. I would also like to thank
Brian LaMacchia, and the rest of the team, for repeatedly inviting me to the group
and creating a great work environment. A final thanks to Ben Smith, whom I had the
pleasure to work with and whose impressively detailed yet simple way of describing
many topics has tremendously improved my understanding numerous times.

I would like to thank the members of my reading committee Eric Verheul, Steven
Galbraith, Alfred Menezes, Nadia Heninger and Fréderik Vercauteren for taking the
time to go through this lengthy thesis. Also, I thank my co-authors Wouter Castryck,
Huseyin Hisil, David Jao, Tanja Lange, Patrick Longa, Chloe Martindale, Lorenz

vi Acknowledgements

Panny, Peter Schwabe, David Urbanik and Fernando Virdia for their hard work and
the great discussions along the way. A particular thanks to Fréderik Vercauteren
and Steven Galbraith for inviting me to spend some time at their respective research
groups, and to Lorenz Panny for his detailed and helpful comments on a preliminary
version of the first part of this thesis.

Despite all the moving around, most of my time has still been spent in Nijmegen.
I have been a proud member of the Digital Security Group, all of whose (past) mem-
bers I would like to thank for their warmth and kindness through coffee breaks,
Friday beers and game nights. I am proud to have created many friendships that
I am sure will last beyond the brief scope of a PhD. In particular, a special thanks
goes out to Pedro, who has literally been there since day one on the job. It has been
a pleasure to have shared an office for all this time, and I consider it a miracle that
I have not gained weight over the years. I would also like to thank Louiza for her
friendship and advice through the years, whom I was honored to be a paranimph
for. I thank Joan Daemen and Peter Schwabe for their support and nice discussions
related to teaching and research.

I would like to thank my parents and my brothers for their continued support,
for always giving me a place to return home to, and for being there during trying
times.

Finally, a heartfelt thanks to Anna for her love and invaluable support during the
concluding months of this thesis, which have without a doubt been the most chal-
lenging. I am proud to start the next journey by your side.

Joost Renes
Nijmegen, May 2019

Contents

Acknowledgements v

Introduction xiii

List of Symbols xxiii

1 Background 1

I Elliptic and Hyperelliptic Curves 3
1 Algebraic Curves . 3
2 Curves of Genus 1 and 2 . 7

2.1 Elliptic Curves . 8
2.2 Hyperelliptic Curves of Genus 2 17

II Curve-based Cryptographic Protocols 21
1 Classical Cryptography . 21

1.1 Diffie–Hellman . 22
1.2 Schnorr Signatures . 23

2 Post-Quantum Cryptography . 25
2.1 Supersingular Isogeny Diffie–Hellman 25
2.2 Ordinary Isogeny Diffie–Hellman 27

2 Classical Cryptography 29

III Complete Addition Formulas for Prime Order Elliptic Curves 31

viii Contents

1 Introduction . 32

2 Complete Addition Formulas . 38

2.1 The General Case . 39

2.2 The Case a = −3 . 42

2.3 The Case a = 0 . 44

3 Some Intuition Towards Optimality . 44

3.1 Choice of Y = 0 for Bidegree (2, 2) Addition Laws 46

3.2 Jacobian Coordinates . 47

4 Using These Formulas in Practice . 48

4.1 Application to Prime Order Curves 48

4.2 Interoperability With Composite Order Curves 50

4.3 An OpenSSL Implementation . 51

5 Hardware Implementations . 53

A Magma Verification Code for Parallel ADD 56

IV µKummer: Efficient Hyperelliptic Signatures and Key Exchange 59
1 Introduction . 59

2 High-level Overview . 61

2.1 Signatures . 61

2.2 Diffie-Hellman Key Exchange. 64

3 Algorithms and Their Implementation 64

3.1 The Field Fp . 64

3.2 The Curve C and Its Theta Constants 66

3.3 Compressed and Decompressed Elements of JC 67

3.4 The Kummer Surface KC . 69

3.5 Pseudo-addition on KC . 69

4 Scalar Multiplication . 71

4.1 Pseudomultiplication on KC . 71

4.2 Point Recovery from KC to JC 74

4.3 Full Scalar Multiplication on JC 75

5 Results and Comparison . 77

V qDSA: Small and Secure Digital Signatures 81
1 Introduction . 82

2 The qDSA Signature Scheme . 83

2.1 The Kummer Variety Setting . 84

2.2 Basic Operations . 84

Contents ix

2.3 The qID Identification Protocol 85
2.4 Applying Fiat–Shamir . 87
2.5 The qDSA Signature Scheme . 87

3 Implementing qDSA with Elliptic Curves 90
3.1 Montgomery Curves . 90
3.2 Signature Verification . 91
3.3 Using Cryptographic Parameters 92

4 Implementing qDSA with Kummer Surfaces 92
4.1 Constants . 93
4.2 Fast Kummer Surfaces . 95
4.3 Deconstructing Pseudo-doubling 95

5 Signature Verification on Kummer Surfaces 98
5.1 Biquadratic Forms and Pseudo-addition 98
5.2 Deriving Efficiently Computable Forms 99
5.3 Signature Verification . 101
5.4 Using Cryptographic Parameters 101

6 Kummer Point Compression . 103
6.1 The General Principle . 104
6.2 From Squared Kummers to Tetragonal Kummers 105
6.3 Compression and Decompression for KSqr 107
6.4 Using Cryptographic Parameters 110

7 Implementation . 110
7.1 Core Functionality . 111
7.2 Comparison to Previous Work 111

A Elliptic Implementation Details . 114
A.1 Pseudoscalar Multiplication . 114
A.2 The BVALUES Subroutine for Signature Verification 114

B Kummer Surface Implementation Details 116
B.1 Scalar Pseudomultiplication . 116
B.2 Subroutines for Signature Verification 116
B.3 Subroutines for Compression and Decompression 118

VI On Kummer Lines with Full Rational 2-torsion 121
1 Introduction . 121
2 Notation . 123
3 Maps between Kummer Lines . 125

3.1 Models with Rational 2-torsion 126

x Contents

3.2 Actions of Points of Order 2 . 129
3.3 Hybrid Kummer Lines . 131

4 Isomorphism Classes over Finite Fields 133
4.1 Identifying Kummer Lines . 133
4.2 Canonical Kummer Lines . 134
4.3 Squared and Intermediate Kummer Lines 134

3 Post-Quantum Cryptography 137

VII Efficient Compression of SIDH Public Keys 139
1 Introduction . 140
2 Constructing Torsion Bases . 146

2.1 Square Roots, Cube Roots, and Elligator 2 147
2.2 Generating a Torsion Basis for E(Fp2)[2eA] 148
2.3 Generating a Torsion Basis for E(Fp2)[3eB] 149

3 The Tate Pairing Computation . 151
3.1 Optimized Miller Functions . 152
3.2 Parallel Pairing Computation and the Final Exponentiation . . 155

4 Efficient Pohlig-Hellman in µ`e . 156
4.1 Arithmetic in the Cyclotomic Subgroup 156
4.2 Pohlig-Hellman . 157
4.3 Windowed Pohlig-Hellman . 158
4.4 The Complexity of Nested Pohlig-Hellman 159
4.5 Discrete Logarithms in µ2372 . 161
4.6 Discrete Logarithms in µ3239 . 161

5 Final Compression and Decompression 161
5.1 Compression . 162
5.2 Decompression . 163

6 Implementation Details . 164

VIII Computing Isogenies between Montgomery Curves 167
1 Introduction . 167
2 Isogenies on Weierstrass Curves . 169
3 Montgomery Form and 2-isogenies . 172

3.1 The General Formula . 173
3.2 2-isogenies . 176
3.3 Application to Isogeny-based Cryptography 178

Contents xi

3.4 Relating 2-isogenies and 4-isogenies 180
4 Triangular Form and 3-isogenies . 181

4.1 The General Formula . 181
4.2 3-isogenies . 184
4.3 Application to Isogeny-based Cryptography 185

IX CSIDH 187
1 Introduction . 187
2 Isogeny Graphs . 192
3 The Class-group Action . 195
4 Construction and Design Choices . 199
5 Representing & Validating Fp-isomorphism Classes 201
6 Non-interactive Key Exchange . 203
7 Security . 205

7.1 Classical Security . 206
7.2 Quantum Security . 208
7.3 Instantiations . 212

8 Implementation . 214
8.1 Performance Results . 218

Discussion & Conclusions 221

Bibliography 227

Summary 257

Samenvatting (Dutch summary) 259

List of Publications 263

Curriculum Vitae 265

xii Contents

Introduction

The main theme (and title) of this thesis is “modern curve-based cryptography”.
Indeed, the history of cryptography is long and leads back to the early Egyptians and
Romans. Its principal goal was (and is) to provide means for secure communication.
However, one must wonder what it means to be secure. A typical example sketches a
Roman general during wartime sending a message to one of their soldiers. This leads
to several questions. Firstly, is there a chance that this message may be intercepted?
If so, is the content of the message sensitive and not to be read by any other party?
If the answer to the second question is positive, the general could consider using
a cipher to encrypt the message. Yet, the sensitivity of the content may depend on
the timeliness of the interception. If the general wants to send the message “Attack
in one day!” he likely does not care if the opponent deciphers it in two days. The
cipher the general chooses therefore depends not only on how good the opponent
is at deciphering it, but also on how much time they have to do so. During Roman
wartime, there were no doubt many more factors to take into consideration. The
main takeaway is that understanding the context in which cryptography is used is
crucial to understand its security.

This inherently leads to the question of what context cryptography is used in
present day. The answer, as usual, is that it depends. Much of our communication
nowadays is done through the internet, say our laptops connecting to a server of
a bank to perform a transaction. Hopefully, only a small trusted set of people can
access our laptop while only the bank has access to its server.1 Untrusted parties
can observe the communication between the laptop and the server, but can not view
computations executed locally. Such parties are typically called passive adversaries
(since they do nothing but listen). At first glance the situation appears analogous
to that of the Roman general and the soldier, but there is a crucial difference in as-
sumptions. We can reasonably presume that the Roman army has had time to pre-

1 Whether or not to trust banks is a separate issue that has lead to the development of cryptocurrencies
(or awkwardly abbreviated as crypto), which is not to be confused with cryptography (or currency).

xiv Introduction

pare (say, in Rome) before going out into the battlefield. During this time, they could
have communicated a secret value (or a key). Once out in adversarial territory, they
can use this shared key to encrypt their messages. Note that such an assumption
cannot sensibly be made for a person connecting to the server of their bank. For
example, what if one lives outside of Europe and wants to connect to a server in the
Netherlands? Even if one could bootstrap communication by having a private meet-
ing once, one should consider what happens if the key is compromised. Moreover,
is such a setup feasible for banks with huge customer bases? Indeed, this problem is
difficult and is known as the key distribution problem.

It is (more or less) in this context that a major breakthrough in cryptography
happened. In 1976 the (now) famous cryptographers Whitfield Diffie and Martin
E. Hellman [DH76] proposed to split the cryptographic primitive in two parts; a
private operation that is done locally by each party separately (on the laptop and on
the server) using a private key, leading to a public piece of data called a public key.
The laptop and the server can now exchange their public keys and derive a shared
key from them. As long as the passive adversary cannot learn any information about
the private keys or the shared key from learning the public keys, we can assume the
two parties have exchanged a key that is only known to them and henceforth use a
cipher for communication.

Although extremely elegant in its simplicity, it is not immediately obvious how
such a system can be achieved. This explains why the work of Diffie and Hellman
was such a big leap forward. Not only did they present the idea of public-key
cryptography, they also provided a working instantiation. Although not as secure
as initially believed, it is worthwhile noting that their original proposal still holds
up today. However, other primitives have since gained in popularity. Besides the
well-known RSA cryptosystem [RSA78] by Rivest, Shamir and Adleman that was
found quickly after the introduction of public-key cryptography, the instantiations
based on elliptic curves by Miller [Mil86] and Koblitz [Kob87] are increasingly being
used. The latter systems are typically referred to as elliptic-curve cryptography (ECC)
or (slightly more generally) as curve-based cryptography. Their main advantage com-
pared to earlier proposals is that the keys remain small, even when adversaries are
assumed to have relatively extensive computational power. In this thesis, we only
concern ourselves with curve-based primitives and we refer to §I for a more tech-
nical introduction. We should emphasize that curve-based cryptography is ubiqui-
tous. For example, it is present in the TLS [Res18] protocol that dictates the afore-
mentioned secure internet communications (known mostly for the appearance of a
green lock next to the URL in a web browser). Moreover, it is used for securing bio-

xv

metric passports or identity cards [ICA15] (e. g. Dutch identity documents), popular
messaging applications such as Whatsapp [Wha17] and Signal [Sig] and operating
systems like Android [And] and iOS [App]. In short, there are too many examples to
list; it is not unreasonable to expect that essentially every person reading this thesis
uses curve-based cryptography on a daily basis.

We return to the question of context in modern-day cryptography. As a result of
the protocol by Diffie and Hellman, we can assume adversaries to only access public
data. The question now shifts to what “public” means. Certainly anything that is
purposefully published by the communicating parties is public. However, an ad-
versary could have access to the network over which this is communicated. In that
case they can measure the time it takes for the messages to be delivered and, more
interestingly, how long it takes a party to respond. This potentially leaks a little bit
of information about the private computation. Such attacks are referred to as timing
attacks and were first introduced by Paul Kocher [Koc96]. If an adversary has access
to a device (e. g. a passport or identity card), not only can they measure the time the
operations take, but also (say) measure the power consumption or electromagnetic
emanation [KJJ99]. More generally, such unintended channels of potential leakage
of private information are called side channels. The exploitation of side channels has
turned out to be a very fruitful method of attack. Even stronger adversaries can, for
example, try to inject faults in the (private) computation by optical means (i. e. shoot
a laser) or by means of power spikes [BDL97]. These faults could cause an erro-
neous execution of the algorithm that leads to knowledge about the private key. An
attacker with these capabilities is called active. As such, implementing curve-based
protocols on devices with such strong (yet realistic!) adversaries is a non-trivial task.
Regardless, the classical cryptographic schemes based on elliptic curves have proven
to be resistant for decades (potentially with the use of appropriate additional coun-
termeasures, see e. g. [Cor99]).

This leads us to the final and most recent adversarial model that has arisen due
to the advances of quantum computation. Assuming that an adversary has ac-
cess to a large enough quantum computer, the security of the public-key cryptosys-
tems described in this section completely disappears due to an algorithm of Peter
Shor [Sho97]. At this moment, significant resources are spent towards advancing the
field of quantum computing. The largest quantum computer in existence is built by
Google and consists of 72 (physical) quantum bits (qubits) [Kel18]. It is estimated
that 2 330 (logical) qubits are required to run the algorithm of Shor to break moder-
ate elliptic-curve cryptographic parameters [Roe+17, Table 2], but it is unclear when
(and if) this number will be reached. Notice the discrepancy between physical and

xvi Introduction

logical qubits; it is expected that many physical qubits are necessary to build a single
logical qubit.

Although this adversarial model is not yet realistic (as far as we know), the field
of cryptography should be prepared when it becomes so. For that reason, the Na-
tional Institute of Standards and Technology (NIST) has initiated standardization
for public-key cryptographic schemes that resist quantum adversaries [Nat16]. It
is not immediate that protocols based on (elliptic) curves can be adapted to be se-
cure against quantum adversaries. Indeed, significantly different techniques are em-
ployed [Cou06; RS06; JDF11] and the resulting research direction is referred to as
isogeny-based cryptography. In particular, it underlies SIKE [Jao+16], one of the 82
submitted proposals to the standardization effort of NIST and one of 26 proposals
remaining in the (currently ongoing) second round. Again, the main advantage of
the protocol based on elliptic curves is the small size of the (public) keys. However,
the isogeny-based protocols incur a much more significant slowdown compared to
other schemes.

In the first part of this thesis we work towards simply and securely implementing
curve-based primitives against classical (i. e. non-quantum) adversaries. Although
minimizing the time spent on computing keys and signatures is tempting to opti-
mize for, it will typically come at a cost. For example, the fastest formulas for most
(if not all) forms of elliptic curves have exceptional cases that may be exploited by an
adversary. Moreover, one must be even more careful in the presence of adversaries
that have access to side-channels. One may instead want to opt for formulas that are
simpler and easier to implement, thereby more naturally excluding certain attack
vectors. Due to the increasing number of online devices with low resources, another
typical trade-off is between speed, code size and memory usage. We believe that
the most important feature of an implementation is its security, which is strongly
connected to the simplicity and size of the underlying code. In the second part we
look towards isogeny-based protocols, conjectured to be secure against quantum ad-
versaries (i. e. post-quantum secure). Although similar trade-offs can be made, these
protocols are less standard and much more sensitive to change. As such, the focus of
these chapters is aimed towards understanding the related theory, and thereby im-
proving the efficiency and size of the primitives. In fact, in Chapter IX we propose a
new post-quantum primitive. In short, this thesis is divided into three parts;

Part 1. The first part (Chapters I & II) gives an introduction to the theory that under-
lies the rest of the thesis. That is, we discuss the basics of elliptic and hyperel-
liptic curves and their usage in cryptography. There is no claim of novelty in
this part, and its intention is simply to provide the necessary background.

xvii

Part 2. The second part (Chapters III–VI) considers contributions to classical cryp-
tographic protocols. More precisely, protocols that are secure under the as-
sumption that the adversary does not have access to a quantum computer. In
essence, we improve the security and efficiency of protocols for key exchange
and digital signatures based on the discrete logarithm problem in the (Kummer
variety of the) Jacobian of curves of genus 1 or 2.

Part 3. The final part (Chapters VII–IX) makes contributions to protocols based on
isogeny problems, which are thought to be secure against quantum adver-
saries. We improve the efficiency of the SIDH protocol and its key compression
methods, and present the new primitive CSIDH.

Contributions

This work is organized as a sequence of (mostly published) papers, with minor mod-
ifications. These changes are made to align notation and lay-out of the different pa-
pers, and to combine overlapping material. This is done with the intent to improve
readability and should not affect the content. As such, there is no reason to read the
thesis sequentially (although the order is mostly chronological). In particular, refer-
ences to tables, figures and equations do not include chapter numbers. In all cases
this means that the reference points to within the chapter itself. For any exception
the chapter number will be explicitly included. Many chapters also include software,
which is all made available (most of which in the public domain) at

https://joostrenes.nl

unless mentioned otherwise. In the rest of this section we briefly summarize the
contents of each chapter, and highlight our own contribution.

Complete Addition Formulas (Chapter III)

In the first chapter we consider the arithmetic of elliptic curves present in many
standards. That is, curves in (short) Weierstrass form defined over a prime field Fp

whose group of rational points over Fp has prime order. Such curves were known
to have complete addition formulas (i. e. formulas that work on all pairs of points
as input), but they incurred a tremendous slowdown compared to the incomplete
formulas. In this chapter we significantly improve these formulas. Although a minor
loss of efficiency remains (of about 30–40% in software depending on parameters),

https://joostrenes.nl

xviii Introduction

the implementation naturally simplifies and should give users more confidence in
their security. The chapter is mostly based on the paper

Joost Renes, Craig Costello, and Lejla Batina. “Complete Addition For-
mulas for Prime Order Elliptic Curves”. In: Advances in Cryptology – EU-
ROCRYPT 2016. Ed. by Marc Fischlin and Jean-Sébastien Coron. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2016, pp. 403–428.

A convenient property is the parallelizability of the formulas, which is especially
exploitable in hardware. We work out efficient algorithms for 1–6 cores and apply
them in a hardware implementation in

Pedro Maat C. Massolino, Joost Renes, and Lejla Batina. “Implementing
Complete Formulas on Weierstrass Curves in Hardware”. In: Security,
Privacy, and Applied Cryptography Engineering. Ed. by Claude Carlet, M.
Anwar Hasan, and Vishal Saraswat. Cham: Springer International Pub-
lishing, 2016, pp. 89–108.

This essentially comprises of §5 of Chapter III.

Contribution. I am the main author of the work in the first paper. I developed
the optimized formulas and algorithms in §2, including their inclusion in OpenSSL
in §4.3 and their Magma implementations. Moreover, I wrote and implemented (in
Magma) the parallel versions of the second paper that appear in §5 and the appendix.
I have also written the optimality analysis in §3.

Digital Signatures from Kummer Varieties (Chapter IV & V)

The next two chapters consider the practicality of signature schemes based on the
efficient arithmetic on Kummer varieties. In Chapter IV we present the results of

Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. “µKummer:
Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers”.
In: Cryptographic Hardware and Embedded Systems – CHES 2016. Ed. by
Benedikt Gierlichs and Axel Y. Poschmann. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 301–320,

which provides implementations of the Diffie–Hellman key exchange and Schnorr
signature scheme based on a Kummer surface of a genus-2 hyperelliptic curve. The
software is written for the AVR ATmega and ARM Cortex M0 architectures, out-
performing all other existing schemes and demonstrating its applicability for low-
resource devices. In this work we follow the approach of Chung, Costello and Smith

xix

[CCS17] of performing all scalar multiplications on the Kummer surface via project-
ing and recovering. However, this leaves some complex operations to be performed
on the Jacobian, leading to increased code complexity and memory usage. An ar-
guably more elegant approach slightly modifies the signature scheme itself to be
naturally instantiated with a Kummer variety. This leads to the qDSA signature
scheme, which is presented in

Joost Renes and Benjamin Smith. “qDSA: Small and Secure Digital Signa-
tures with Curve-Based Diffie–Hellman Key Pairs”. In: Advances in Cryp-
tology – ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Cham: Springer International Publishing, 2017, pp. 273–302.

On top of a theoretical security analysis of the scheme and highly efficient imple-
mentations on the same two architectures as before, we also show how to efficiently
instantiate the necessary operations (i. e. signature verification and public-key com-
pression) with genus-2 Kummer surfaces.

Contribution. I have developed the µKummer library on both the AVR ATmega
and ARM Cortex M0 platforms, which is the main contribution of the first paper. I
have also co-developed the qDSA signature scheme, and wrote its proof of security.
Moreover, I created the qDSA library consisting of a C reference implementation and
software for the AVR ATmega and ARM Cortex M0 platforms.

On Kummer Lines with Rational 2-torsion (Chapter VI)

The final chapter of Part 2 studies the relations of the various Kummer lines that
have appeared in the literature. In the presence of full rational 2-torsion, we pro-
vide explicit maps between Montgomery curves, (twisted) Edwards models and
(squared) Kummer lines. This significantly simplifies the treatment of Karati and
Sarkar [KS17], who demonstrate the feasibility of the squared Kummer line on plat-
forms with SIMD instructions. In

Huseyin Hisil and Joost Renes. On Kummer Lines With Full Rational 2-
torsion and Their Usage in Cryptography. Cryptology ePrint Archive, Re-
port 2018/839. https://eprint.iacr.org/2018/839. 2018

we present an easy framework for moving between the different models with iso-
morphisms. This improves interoperability of the models and simplifies the task of
an implementer. In particular, this allows for a straightforward generalization of the
qDSA signature scheme to the squared Kummer line.

https://eprint.iacr.org/2018/839

xx Introduction

Contribution. I am a main contributor of the work that appears in this paper. In
particular, I developed the library implementing qDSA based on the squared Kum-
mer line on the ARM Cortex M0 platform.

Efficient Compression of SIDH Public Keys (Chapter VII)

The main advantage of SIDH compared to other post-quantum scheme is the rela-
tively small size of its public keys. This chapter is based on

Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes,
and David Urbanik. “Efficient Compression of SIDH Public Keys”. In:
Advances in Cryptology – EUROCRYPT 2017. Ed. by Jean-Sébastien Coron
and Jesper Buus Nielsen. Cham: Springer International Publishing, 2017,
pp. 679–706,

which shows how to achieve even smaller public keys. It is based on the work
by [Aza+16] but improves on it in multiple ways. We provide techniques for effi-
ciently sampling torsion bases on a curve, significantly improve the pairing compu-
tations and obtain extremely efficient discrete logarithms in smooth cyclic groups.
Moreover, we show how to compress the keys even further at essentially no cost.

Contribution. I am a main contributor to all content in this chapter. In particular,
I created the optimized discrete logarithm algorithm of §4 and the (de)compression
algorithms of §5. In addition, I have significantly contributed to the C and Magma
libraries.

Computing Isogenies between Montgomery Curves (Chapter VIII)

The speed of supersingular-isogeny Diffie–Hellman is for a large part determined by
the efficiency of the arithmetic of the elliptic-curve model and its isogeny formulas.
A particularly popular form is the Montgomery form, which is used in the currently
most optimal implementations of SIDH. This chapter is based on

Joost Renes. “Computing Isogenies Between Montgomery Curves Using
the Action of (0, 0)”. In: Post-Quantum Cryptography. Ed. by Tanja Lange
and Rainer Steinwandt. Cham: Springer International Publishing, 2018,
pp. 229–247,

and studies the isogeny formulas between elliptic curves in Montgomery form, ex-
panding on and simplifying the work of [CH17]. That is, we show that the isogeny

xxi

formulas generalize to any group not containing the point (0, 0) (and in particular
2-isogenies) and provide simplifications to the proofs. We also include potential new
models that could lead to elegant isogeny formulas, though they do not lead to faster
implementations of SIDH as of yet.

Contribution. I am the sole author of the work in this paper.

CSIDH (Chapter IX)

The last chapter proposes a new cryptographic primitive for key exchange, which
is strongly related to the work of Couveignes [Cou06] and Rostovtsev and Stol-
bunov [RS06]. It is based on the paper

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and
Joost Renes. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. In: Advances in Cryptology – ASIACRYPT 2018. Ed. by Thomas
Peyrin and Steven Galbraith. Cham: Springer International Publishing,
2018, pp. 395–427,

and replaces the class group action arising from the endomorphism ring of an ordi-
nary elliptic curve by a class group action related to the Fp-rational endomorphism
ring of a supersingular elliptic curve. The main upside is the fact that the group of ra-
tional points over Fp has exactly size p+ 1, allowing to easily select primes such that
the curves have extremely smooth group orders. This leads to significantly faster
evaluation of isogenies, while retaining the extremely small public keys. Moreover,
we show how to efficiently validate public keys. As a result, the key exchange sup-
ports static public keys and is considered non-interactive.

Contribution. The main idea of this work is attributed to the first author. The paper
is a collaborative effort, in which my contributions focus on the instantiation and its
arithmetic, methods of public-key validation and the corresponding security analy-
sis (§§4–8). The optimized C and assembly implementation is credited to the fourth
author.

xxii Introduction

List of Symbols

ADD Additive group operation.

An Affine space of dimension n.

k̄ Algebraic closure of a field k.

C Algebraic curve.

O (1) Base point of an elliptic curve or (2) Endomorphism ring.

O Big-O complexity.

char Characteristic of a field.

cl Class group.

|| Concatenation.

a, s, neg Cost associated to a finite field addition (a), subtraction (s) and

negation (neg).

M, S, mc, E, I Cost associated to a finite field multiplication (M), squaring (S),

multiplication by constant c (mc), exponentiation (E) and inver-

sion (I).

xxiv List of Symbols

DBL Doubling operation in a group.

d f Differential of a rational function f .

ψn n-division polynomial for some integer n.

Pic Divisor class group.

div(f) Divisor of a non-zero rational function f .

Div Abelian group of divisors.

Prin Group of principal divisors.

x̂ Dual of an element x.

E``p Set of elliptic curves over a finite field Fp with a given endo-

morphism ring.

E Elliptic curve.

k Field.

Fq Finite field of order q.

Gal Galois group.

a, b, c, l Ideals in an order of a quadratic number field.

J Jacobian.

SK, PK, K Private (SK), public (PK) and shared (K) keys.

K Kummer surface.

K̃ Kummer surface (general model).

log Logarithm in base 2.

MADD Mixed addition in group of points of an elliptic curve.

N(x) Norm of an element x.

∞ Point at infinity on an elliptic curve.

x, y Projection maps to the x-coordinate or y-coordinate of an ellip-

tic curve.

List of Symbols xxv

Pn Projective space of dimension n.

Q Rational numbers.

L Riemann-Roch space.

Z Ring of integers.

Z/NZ Ring of integers modulo N.

∗ Star operator denoting the action of a class group on the set of

(isomorphism classes of) ordinary elliptic curves.

⊗ Tensor product.

xxvi List of Symbols

Part 1

Background

Chapter I
Elliptic and Hyperelliptic Curves

The main theme of this thesis is curve-based cryptography, so we begin by introduc-
ing the notions that are encountered throughout the different chapters. There are
several great sources to find more extensive introductions to (hyper)elliptic curves
and their cryptographic properties, for example the books by Silverman [Sil09] and
Galbraith [Gal12]. The intent of this chapter is to summarize the relevant theory and
fix notation, often referring back to established works for further details.

1 Algebraic Curves

Throughout this chapter (and indeed, the whole thesis) we follow [Sil09] and let k
be a perfect field (i. e. every finite extension is separable). In a cryptographic context
k = Fq is a finite field of q elements, in which this assumption holds true. The main
consequence of interest is that the algebraic closure k̄ is a Galois extension of k, in
which case the fixed field

k̄Gal(k̄/k) =
{

λ ∈ k̄ | σ(λ) = λ for all σ ∈ Gal(k̄/k)
}

of k̄/k is the base field k. Moreover, for any finite extension K/k, the fixed field of
the (necessarily Galois) extension k̄/K is K. This allows us to initially make many
definitions and statements over k̄, and only restrict to K whenever necessary (i. e.
when talking about K-rationality). For example, we let An and Pn denote affine resp.
projective n-space over k̄, which have a canonical action of Gal(k̄/K) (i. e. coordinate-
wise). We write An(K) resp. Pn(K) for the points fixed under this action (i. e. their

4 Chapter I. Elliptic and Hyperelliptic Curves

K-rational points). This applies analogously for many concepts that we define, and
we return to this in more detail at the end of the section.

Algebraic varieties. As is commonplace, we denote elements of An by comma-
separated tuples (x1, . . . , xn), and elements of Pn by colon-separated capitalized tu-
ples (X0 : · · · : Xn). For any i ∈ {0, . . . , n} there exists an embedding

χi : An ↪→ Pn

(x1, . . . , xn) 7→ (x1 : · · · : xi−1 : 1 : xi+1 : · · · xn) ,

and since any element of Pn has a non-zero coordinate, projective space is covered by
the union of the χi(A

n). As usual, the affine and projective n-spaces carry the struc-
ture of a topological space via the Zariski topology [Har77, §I.1–I.2]. The closed sub-
sets of affine (resp. projective) n-space are the sets of common zeroes of polynomials
(resp. homogeneous polynomials) of (necessarily finitely generated by Hilbert’s ba-
sis theorem [Hil90]) ideals I inside k̄[x1, . . . , xn] (resp. k̄[X0, . . . , Xn]), viewed as func-
tions to k̄. We define an affine (resp. projective) algebraic variety V to be a non-empty,
closed and (topologically) irreducible subset of An (resp. Pn).

Remark 1. Given a projective algebraic variety V ⊆ Pn, we note that V ∩ χi(A
n) is an

affine variety whose projective closure is V [Sil09, Proposition I.2.6]. We shall often
identify the two without explicit mention. For example, although elliptic curves are
often defined via their affine Weierstrass model in A2, we are always interested in
their projective closure in P2 (which includes an extra point at infinity).

For a (projective algebraic) variety V ⊆ Pn defined by an ideal I, we define its
function field k̄(V) as the set of fractions G/H of homogeneous polynomials (of equal
degree) G, H ∈ k̄[X0, . . . , Xn] such that H /∈ I and under the equivalence relation
defined by G0/H0 = G1/H1 if and only if G0H1 − G1H0 ∈ I [Sil09, Remark II.2.9].
Elements of k̄(V) are referred to as rational functions. A rational function is said to be
regular at a point P ∈ V if there exists a representative in its equivalence class whose
denominator does not vanish at P. A rational map ψ between projective varieties
V ⊆ Pn and W ⊆ Pm is a map ψ = (f0 : · · · : fm) : V → W where fi ∈ k̄(V).
Note that this map is only well-defined at a point P ∈ V if there exists a rational
function g ∈ k̄(V) such that all of the g fi are regular at P. In that case, ψ(P) =

(g f0(P) : · · · : g fn(P)) lies in W, and we say that ψ is regular at P. The map ψ is
a morphism whenever it is regular at all points in V. It is an isomorphism if it is a
morphism and there exists a morphism χ : W → V such that ψ ◦ χ and χ ◦ ψ are the
identity map. Crucially, the choice of g is not necessarily the same for every point in

1. Algebraic Curves 5

V. However, for any point P ∈ V there exists an open neighborhood U ⊆ V of P and
functions g0, . . . , gm ∈ k̄(V) regular on U such that ψ(Q) = (g0(Q) : · · · : gm(Q))

for all Q ∈ U [Har77, Lemma I.3.6]. In other words, any morphism can be locally
described by well-defined fractions of homogeneous polynomials (of equal degree).

The dimension of an algebraic variety is its dimension as a topological space (and
coincides with the Krull dimension of its coordinate ring). A curve C is a projective al-
gebraic variety of dimension 1. It is called hyperelliptic when there exists a morphism
C → P1 of degree 2. Every curve considered in this thesis is hyperelliptic (and, in
fact, any curve of genus 1 or 2 is hyperelliptic). A curve C ⊆ Pn is smooth at P when-
ever the rank of the Jacobian matrix (of a set of generators of the ideal defining C)
evaluated at P is n − 1 [Sil09, § I.1], and is called smooth (or non-singular) when it
is smooth at all points. In this thesis we shall mostly work with smooth curves. A
surface is a projective algebraic variety of dimension 2.

The Jacobian of a curve and its Kummer variety. A particularly useful property of
curves is that there exists a well-defined notion of zeroes and poles of rational func-
tions at smooth points, and every non-zero rational function only contains finitely
many such points [Sil09, Proposition II.1.2]. Hence if C is a smooth curve, for each
point P ∈ C we can define a valuation vP : k̄(C)∗ → Z [Gal12, Lemma 7.4.14] which
assigns to each function its order of vanishing at P. In other words, to any function
f ∈ k̄(C)∗ we can assign a finite formal sum of points

div(f) = ∑
P∈C

vP(P)(P) .

More generally, any formal sum of points

D = ∑
P∈C

nP(P) , nP ∈ Z ,

where only finitely many nP are non-zero is called a divisor. Its degree is deg(D) =

∑P∈C nP. The divisor D is called effective whenever nP is non-negative for all P ∈ C,
and we define the so-called Riemann–Roch space L(D) as

L(D) =
{

f ∈ k̄(C)∗ | div(f) + D is effective
}

.

It is a finite-dimensional k̄-vector space [Sil09, Proposition II.5.2]. The set of divi-
sors is denoted Div(C) and forms an (abelian) group under addition with identity
0 (the divisor with nP = 0 for all P ∈ C), and the set Div0(C) of divisors of degree

6 Chapter I. Elliptic and Hyperelliptic Curves

zero is a subgroup. The divisors of the form div(f) for f ∈ k̄(C)∗ are called princi-
pal divisors, and the set of such divisors is denoted Prin(C). They are contained in
Div0(C) [Gal12, Theorem 8.3.14], and in fact form a subgroup [Gal12, Lemma 7.7.6].
The divisor class group (or Picard group) is the quotient group

Pic0(C) = Div0(C)/ Prin(C) .

The set of points of Pic0(C) is a projective algebraic variety,1 which we refer to as the
Jacobian JC of C. Carrying over the group structure of Pic0(C), one can show that JC
is in fact an abelian variety. The setKC = JC/± (i. e. the set of points where elements
are identified with their inverses) is also an algebraic variety, which we refer to as
the Kummer variety KC of C. The image of a point P ∈ JC in KC is denoted by ±P.
The Kummer variety does not inherit the abelian group structure of JC . However,
the operation {±P,±Q} 7→ {±(P + Q),±(P−Q)} is well-defined via lifting to JC .
Moreover, since scalar multiplication on JC commutes with the negation map, the
Kummer variety does inherit a well-defined pseudo-scalar multiplication (m,±P) 7→
±[m]P. See §2 for more details.

Differentials and the genus. Let C be a smooth curve. We define the space of dif-
ferentials ΩC on C to be the 1-dimensional k̄-vector space [Sil09, Proposition II.4.2]
generated by formal elements d f for f ∈ k̄(C) with the relations [Sil09, §II.4]

(1) d(f + g) = df + dg for all f , g ∈ k̄(C) ,
(2) d(f g) = gdf + f dg for all f , g ∈ k̄(C) ,
(3) dx = 0 for all x ∈ k̄ .

The notions of poles and zeroes are also well-defined on non-zero differentials ω ∈
ΩC [Sil09, Proposition II.4.3], giving rise to divisors div(ω) in the same way as for
principal divisors. The divisors of elements of ΩC all lie in the same divisor class.
This is called the canonical divisor class, and any element of that class is called a canon-
ical divisor. Although differentials are only explicitly used in Chapter VIII, the degree
of canonical divisors has a direct connection to the genus of a curve and is therefore
implicit throughout this whole thesis. The genus g of C is the (non-negative) integer
g = deg(D) + 1 + dimk̄ L(div(ω)− D)− dimk̄ L(D) , where ω ∈ ΩC is an arbitrary
non-zero differential.

1 This is not immediately obvious in general. For elliptic curves the Picard group can always be em-
bedded into P2 using the Weierstrass model [Sil09, Proposition III.3.4], while the Jacobian of genus-2
curves can be described as the locus of 72 quadratic equations inside P15 [CF96, §2]. These are the only
two cases we care about in this thesis.

2. Curves of Genus 1 and 2 7

Rationality. Until now, we have worked merely over the algebraically closed field
k̄. However, for cryptographic purposes the finite fields Fq of interest are not alge-
braically closed. As promised, we now discuss rationality of the objects discussed so
far over the perfect base field and its finite extensions.

We say that an algebraic variety V ⊆ Pn is defined over k when its generating
ideal has a generating set contained in k[X0, . . . , Xn]. In that case, for any finite field
extension K/k, there is an action of Gal(k̄/K) on the points P = (Z0 : · · · : Zn) of V
where σ(P) = (σ(Z0) : · · · : σ(Zn)) for any σ ∈ Gal(k̄/K). We define V(K), called
the set of K-rational points of V, to be the set of points invariant under the action of
Gal(k̄/K). Moreover, suppose that V is defined over k and let W ⊆ Pm be another
variety defined over k. Recall that a morphism ϕ : V →W is locally given by rational
functions with coefficients in k̄. Therefore, any σ ∈ Gal(k̄/K) acts on ϕ by acting on
its coefficients. We say that ϕ is defined over K when ϕ(P) = σ(ϕ)(P) for all P ∈ V and
all σ ∈ Gal(k̄/K). Finally, there is an action of Gal(k̄/K) on any divisor D ∈ Div(C)
by acting on the points in its support [Sil09, §II.3] and we say that D is defined over K
if σ(D) = D for all σ ∈ Gal(k̄/K). This action is well-defined on Pic0(C). We define
Pic0

K(C) to be the Gal(k̄/K)-stable subgroup of Pic0(C), and note that for all intents
and purposes we shall always work with Pic0

K(C). It is in bijection with JC(K) for
any finite extension K/k.

2 Curves of Genus 1 and 2

We now turn our attention to the cryptographically most relevant curves. Note that
we could immediately restrict everything to the case where k is a finite field (i. e. a
field of prime order or its quadratic extension), but the general treatment is usually
not much different, while some results in this thesis hold in the general case too. We
elaborate on special properties of elliptic curves over finite fields, and in particular
their endomorphism rings, at the end of §2.1.

Classically, elliptic-curve cryptography is typically2 based on the hardness of the
discrete logarithm problem in Pic0

Fp
(C) of a curve C defined over the prime field Fp.

This can be solved via Pollard’s rho algorithm [Pol75] of time complexity O(
√

N),
where N = # Pic0

Fp
(C). Alternatively, the discrete logarithm problem in the Picard

group of a curve of genus g over a field Fp can be solved with time complexity
Õ(p2−2/g) [Gau+07, Theorem 1], improving on the time complexity of the rho attack
for g ≥ 3. As such, all curves of genus g ≥ 3 require relatively large parameters

2 We do not consider binary fields at all in this thesis.

8 Chapter I. Elliptic and Hyperelliptic Curves

to be securely implemented and are much less efficient than their genus 1 and 2
counterparts for which the rho method is the best known attack. Therefore we do
not consider the case g ≥ 3 in this thesis.

For protocols based on the hardness of isogeny problems, it is not entirely obvi-
ous that curves of higher genus do not hold value. However, although they are an
interesting direction of research, we only consider isogeny graphs of elliptic curves
in this thesis (which have already received cryptographic interest, see for example
the ongoing standardization process [Nat16] by NIST).

2.1 Elliptic Curves

There exist various more and less general definitions of elliptic curves in the litera-
ture, whose usefulness depends on the context they are being used in. In this thesis
we do not a priori restrict the chosen embedding into projective space (although we
always assume it exists), while we possibly want to consider points that are not de-
fined over the field of definition of the curve. Therefore, we follow [Sil09] and simply
define an elliptic curve E (over k̄) to be a smooth projective curve of genus 1 with a
specified base point O ∈ E. We say that E is defined over k whenever E is defined
over k as a curve and O ∈ E(k).

The abelian group of points. Perhaps the most well-known property of elliptic
curves is the natural bijection of the set of points on E with Pic0(E), giving a sim-
ple description of Pic0(E) as an abelian variety (i. e. E is its own Jacobian). More
explicitly, the map κ that sends P to the class of the divisor (P)− (O) is a bijection
of sets [Sil09, Proposition III.3.4], and the obvious abelian group structure of Pic0(E)
transfers to E. The identity element of the group of points on E is the specified base
point O. If E is defined over k, then κ induces a bijection between E(K) and Pic0

K(E)
for any finite extension K/k.

For any (non-zero) integer m ∈ Z there is an m-torsion subgroup E[m], which
is the set of points in E that are mapped to O under the multiplication-by-m map
[m] : E → E. If m is non-zero in k, then E[m] ∼= Z/mZ ×Z/mZ. Otherwise, if
char(k) = p for a prime p and r a positive integer, then E[pr] is isomorphic to either
{O} or Z/prZ [Sil09, Corollary III.6.4].

Weierstrass form. Let E be defined over k. Given functions x, y ∈ k(E) such that

L(2[O]) = 〈1, x〉 , L(3[O]) = 〈1, x, y〉

2. Curves of Genus 1 and 2 9

as k̄-vector spaces [Sil09, Proposition II.5.8], we obtain the classical embedding P 7→
(x(P) : y(P) : 1) onto the (projective closure of the) locus defined by the Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 , a1, . . . , a6 ∈ k (1)

inside the projective plane P2 [Sil09, Proposition III.3.1(a)] such that O 7→ (0 : 1 : 0).
If char(k) 6= 2, 3 then one can apply an additional transformation to ensure that
a1 = a2 = a3 = 0, and we refer to it as the short Weierstrass form.

The group law inherited from Pic0(E) now has a simple geometric description
in P2 [Sil09, Proposition 3.4(e)]. Three points P, Q, R ∈ E satisfy P + Q + R = O if
and only if there exists a line intersecting E at all three points. In particular, choosing
R = O implies that for any affine point P = (s, t) ∈ E we have −P = (s,−t), and
we note that these are the only two affine points whose x-coordinate is s. That is, the
degree-2 morphism E → P1 mapping (X : Y : Z) 7→ (X : Z) factors through KE

and induces an isomorphism KE ∼= P1 (of algebraic varieties).3 For that reason, we
refer to KE as the Kummer line of E. Moreover, it immediately implies that E is a
hyperelliptic curve.

The group operation E × E → E that maps (P, Q) 7→ P + Q can be described
by rational functions and, in fact, is a morphism of algebraic varieties [Sil09, The-
orem III.3.6]. The same is true for the negation map P 7→ −P. However, we im-
mediately note that morphisms only have local descriptions as (tuples of) rational
functions and are not necessarily well-defined on all of E× E. Instead, they are only
well-defined on an open subset of E× E. Rational maps that compute the group law
on an open subset of E × E are called addition formulas [BL95]. Indeed, Bosma and
Lenstra [BL95, Theorem 1] prove that the full group law can not be described by a
single addition formula. For example, the following addition formulas [Sil09, §III.2]
that add two points P = (s, t) and Q = (u, v) as R = (w, z) defined by

w = λ2 + a1λ− a2 − s− u
z = −(λ + a1)w− ν− a3

, where
λ = (v− t)/(u− s)
ν = (tu− sv)/(u− s)

are only defined on the open subset where P and Q are both affine and s 6= u. As
shown by Lange and Ruppert [LR85], the space of addition formulas forms a 3-
dimensional k̄-vector space, and a basis for this space has been given by Bosma and
Lenstra [BL95, §5]. Although a single addition formula does not suffice for E × E,
often one is only interested in K-rational points of E for some finite extension K/k.
Interestingly, if there exist addition formulas defined on an open subset U of E× E

3 Since x = X/Z has a pole of order 2 at O = (0 : 1 : 0), we have O 7→ (1 : 0).

10 Chapter I. Elliptic and Hyperelliptic Curves

such that (E× E)(K) ⊆ U, then this single addition formula will suffice for comput-
ing the group law on E(K). In that case we call the addition formulas K-complete.
Such examples have been given, see e. g. [BL95, §5] or [AKR12, Remark 4.4]. This is
the main topic of discussion in Chapter III, in the cryptographic setting where k is a
finite field Fq and E(Fq) does not contain any points of even order.

Montgomery form. Suppose that char(k) 6= 2, 3 and that E is defined over k. Then
one can embed E into P2 as the (projective closure of the) curve

by2 = x3 + ax2 + x ,

which is known as a Montgomery curve [Mon87], with unique point at infinity O =

(0 : 1 : 0). It follows by smoothness of E that b(a2 − 4) 6= 0. It is not immediate that
one can guarantee that a, b ∈ k and, indeed, this is not true in general. For example,
if k = Fp then one can find a, b ∈ k if and only if E or its (quadratic) twist contains an
Fp-rational point of order 4 [Ber+08, Theorem 3.3]. Every Montgomery curve has a
k-rational point Q = (0, 0) of order 2 whose action by translation on affine points acts
like inversion on the x-coordinate. Moreover, for any Q4 ∈ E(k̄) such that [2]Q4 = Q
we have Q4 ∈

{
(1,±

√
(a + 2)/b), (−1,±

√
(a− 2)/b)

}
.

The geometric description of the group law with identity O as described for the
Weierstrass model in P2 carries over to Montgomery form. In particular, the inverse
of any affine point S = (s, t) is −S = (s,−t) and the map E → P1 by sending
(X : Y : Z) 7→ (X : Z) is again a morphism of degree 2. Although the formulas
for computing the group law on a curve in Montgomery form are typically lengthy,
the arithmetic significantly simplifies when we move to the Kummer line KE ∼= P1.
That is [Mon87, §10], given the abscissas xP resp. xQ of two affine points P resp. Q
such that P 6= ±Q and P, Q /∈ E[2] and given the abscissa xP−Q of their difference,
we find

xP+Q = (xPxQ − 1)2/
[
xP−Q(xP − xQ)

2] ,

x[2]P = (x2
P − 1)2/

[
4xP(x2

P + axP + 1)
]

.

Montgomery curves also have very efficiently computable isogenies on the x-line.
This is the main topic of Chapter VIII.

(Twisted) Edwards form. Let c ∈ k̄ such that c5 6= c and E : x2 + y2 = c2(1 + x2y2)

is a smooth curve of genus 1. This is technically only a subset of the set of curves of
the form x2 + y2 = c2(1 + dx2y2) originally defined as Edwards curves by Bernstein

2. Curves of Genus 1 and 2 11

and Lange [BL07]. However, in this thesis we are only concerned with the case d = 1,
which corresponds to the form introduced by Edwards [Edw07], who was the first
to observe that its arithmetic with respect to the base point O = (0, c) is extremely
symmetric.

Embedding the curve into P2 via (x, y) 7→ (x : y : 1) gives two singularities at
(1 : 0 : 0) and (0 : 1 : 0). We can resolve these by blowing up (see e. g. [His10, §2.3.4]
or [Gal12, Lemma 9.12.18]) to obtain the curve

E/k = V(X2 + Y2 − c2(Z2 + T2), XY− TZ) ⊆ P3

and embedding (x, y) 7→ (xy : x : y : 1). When referring to Edwards curves, we
will mean their embedding into P3. For affine points we will sometimes use the
affine notation and expect that this should not cause confusion. Note that this is a
purely theoretical tool, since once all is said and done, the cryptographically relevant
arithmetic is performed in a prime order subgroup in which all points are affine. At
infinity, an Edwards curve contains the elements

Θ1 = (1 : c : 0 : 0) , θ1 = (1 : 0 : c : 0) ,

Θ2 = (1 : −c : 0 : 0) , θ2 = (1 : 0 : −c : 0) ,

where Θ1, Θ2 resp. θ1, θ2 have orders 2 resp. 4. Observe that if E is defined over k,
then O ∈ E(k) implies that c ∈ k. Moreover, if i ∈ k̄ is an element such that i2 = −1,
then E[4] ∼= Z/4Z×Z/4Z has generating set 〈θ1, (i, 1)〉. That is, the 4-torsion is
rational over k or over a quadratic extension of k.

The geometric description of the group law differs from the Weierstrass model
[Arè+11, §4]. For example, given any point P = (P0 : P1 : P2 : P3) ∈ E such that
P 6= Θ1, Θ2 there exists a hyperplane H : P3Y − P2Z = 0 ⊆ P3 that intersects E
in P, Θ1, Θ2 and a unique fourth point Q = (−P0 : −P1 : P2 : P3). It follows
that div(H/ (Y− cZ)) = (P) + (Q)− 2(O), and hence Q = −P. In particular, the
inverse of an affine point (s, t) is given by (−s, t). Consequently, the projection to the
Kummer line is now obtained by projection to the y-coordinate

E→ P1 : (T : X : Y : Z) 7→ (Y : Z) .

Notably, (Θ1, Θ2) 7→ ((1 : c), (1 : −c)). In other words, the projection to the Kummer
line corresponds to projecting away from {Θ1, Θ2} onto P1.

In general, one can not expect for E[4] to be rational over k or a quadratic ex-
tension. As such, not every curve admits an Edwards model over k. As a partial

12 Chapter I. Elliptic and Hyperelliptic Curves

resolution, instead we can take α, δ ∈ k such that αδ(α− δ) 6= 0 and let

αx2 + y2 = 1 + δx2y2

be (the affine part of) a smooth projective curve of genus one. This is commonly
referred to as the twisted Edwards model [Ber+08], where the base point is chosen as
O = (0, 1). It is a more general model than the Edwards model and is closely re-
lated to a Montgomery curve [Ber+08, Theorem 3.2(i)]. As above, we use the smooth
model inside P3 containing the elements

Ω1 = (1 :
√

δ/α : 0 : 0) , ω1 = (1 : 0 :
√

δ : 0) ,

Ω2 = (1 : −
√

δ/α : 0 : 0) , ω2 = (1 : 0 : −
√

δ : 0) ,

where Ω1, Ω2 have order 2 and ω1, ω2 have order 4. Again, we have a projection to
P1 by projecting to the y-coordinate, which in particular maps

(Ω1, Ω2) 7→
(
(1 :
√

δ/α), (1 : −
√

δ/α)
)

.

As opposed to Montgomery curves, the arithmetic on the curve itself is very sym-
metric. That is, given two affine points P = (s, t) and Q = (u, v) on a twisted
Edwards curve, their sum R = P + Q is given by

R =

(
sv + tu

1 + δstuv
,

tv− αsu
1− δstuv

)
.

Similar to the case of Montgomery curves, the arithmetic on the Kummer line is
also very elegant. In Chapter VI we provide very simple isomorphisms between the
Kummer lines of Montgomery curves, (twisted) Edwards curves and Kummer lines
arising from the theory of theta functions [GL09, §6].

Isogenies. An isogeny between elliptic curves (E0,O0) and (E1,O1) defined over k
is a non-constant morphism ϕ : E0 → E1 such that ϕ(O0) = O1. If such an isogeny
exists, we say that E0 and E1 are isogenous. For any isogeny ϕ : E0 → E1 there exists
a unique isogeny ϕ̂ : E1 → E0 such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg ϕ] and we call ϕ̂

the dual isogeny of ϕ [Sil09, Theorem III.6.1]. The set of elliptic curves isogenous to a
given curve E0 is an equivalence class which we call the isogeny class of E0. We say
that ϕ is defined over k if it is defined over k as a morphism of algebraic curves. It is
an isomorphism of elliptic curves if there exists an isogeny ψ from (E1,O1) to (E0,O0)

such that ϕ ◦ ψ and ψ ◦ ϕ are the identity maps.

2. Curves of Genus 1 and 2 13

Elliptic curves are, up to isomorphism over k̄, classified by their j-invariant [Sil09,
Proposition III.1.4(b)]. A twist of an elliptic curve E0/k is an elliptic curve over k
which is not isomorphic to E0 over k, but shares the same j-invariant. A morphism
ϕ : E0 → E1 induces a field embedding ϕ∗ : k(E1)→ k(E0) by pulling back rational
functions, which gives a finite extension k(E0)/ϕ∗k(E1) [Sil09, Theorem II.2.4(a)]. We
say that ϕ is separable whenever the corresponding field extension is, and define the
degree of ϕ as deg(ϕ) = [k(E0) : ϕ∗k(E1)] [Gal12, Definition 8.1.6]. Any separable
isogeny over k has a finite kernel G ⊆ E0, which is a Gal(k̄/k)-stable group [Gal12,
Exercise 9.6.5] of size deg(ϕ) [Sil09, Theorem III.4.10]. In fact, any finite Gal(k̄/k)-
stable group H ⊆ E0 gives rise to a separable isogeny ψ : E0 → Ẽ defined over k such
that ker ψ = H and Ẽ is defined over k, which is unique up to post-composition with
an isomorphism [Gal12, Theorem 9.6.19]. In that case we write Ẽ = E/H. One can
obtain an explicit description of ψ and E/H from H through Vélu‘s formulas [Vél71];
in Chapter VIII we discuss alternatives when the action of ψ on one affine point is
known.

An endomorphism of an elliptic curve E/k is an isogeny ψ : E → E. The set of
endomorphisms, together with the zero map, forms a ring End(E) (under point-
wise addition and composition of isogenies) called the endomorphism ring. It con-
tains the ring of endomorphisms defined over k, denoted Endk(E), as a subring.
Both these rings clearly contain Z since they contain the maps [m] : E → E [Sil09,
Corollary III.5.4]. The algebra End(E) ⊗Z Q is called the endomorphism algebra. If
End(E) 6= Z we say that E has complex multiplication. In fact, there are only two
possible structures for End(E) if E has complex multiplication; it is an order in
End(E) ⊗ Q, which is either a quadratic imaginary number field or a quaternion
algebra [Sil09, Theorem III.9.3]. In the first case we call E ordinary, in the latter case
we say that E is supersingular. Given an isogeny ϕ : E0 → E1, the endomorphism
rings of E0 and E1 are not necessarily isomorphic, but the induced map

End(E0)⊗Q→ End(E1)⊗Q

ψ 7→ (ϕ ◦ ψ ◦ ϕ̂) /[deg ϕ]

does give rise to an isomorphism of endomorphism algebras [Koh96, pp. 7]. Conse-
quently, the property of being ordinary or supersingular is well-defined on isogeny
classes.

Elliptic curves over finite fields. Finally we restrict to the cryptographically most
interesting case when k = Fq is a finite field of size q = pn and E an elliptic curve

14 Chapter I. Elliptic and Hyperelliptic Curves

defined over Fq. The Frobenius map on Fq induces a (purely inseparable) map
π : E → E(q) by applying the Frobenius map to the coordinates of points on E,
where E(q) is the elliptic curve defined by the equation of E after applying the Frobe-
nius map to its coefficients. If E is defined over Fq, then E(q) = E and we refer
to π as the Frobenius endomorphism. For any non-negative integer m, the endomor-
phism πm − 1 is separable with kernel E(Fqm) [Sil09, Corollary III.5.5], i. e. the Fqm -
rational points of E are simply those fixed by πm. There exists a t ∈ Z such that
π2 − tπ + q = 0 in End(E) and we refer to t as the trace of Frobenius. By consider-
ing the action π on the Tate module [Sil09, §III.7] for any prime ` 6= p, one shows
that t = q + 1− #E(Fq) [Sil09, Theorem V.2.3.1]. The number of possible traces is
relatively small; Hasse’s theorem [Sil09, Theorem V.1.1] tells us that |t| ≤

√
2q. The

endomorphism algebra End(E)⊗Q contains the imaginary quadratic number field
Q(π) of discriminant D = t2− 4q, so any elliptic curve over Fq has complex multipli-
cation. If E is ordinary, then End(E)⊗Q ∼= Q(π). Otherwise, End(E)⊗Q is strictly
bigger and E is supersingular. This happens if and only if t ≡ 0 (mod p) [Sil09,
Exercise V.5.10].

Isogeny graphs over finite fields. Let E/Fq be an elliptic curve over a field of char-
acteristic p and let ` 6= p be a prime. Given a finite extension K/Fq, we denote by
GK,` the `-isogeny graph over K, i. e. the graph whose nodes are K-isomorphism
classes of elliptic curves and whose edges are (separable) isogenies of degree ` over
K (up to post-composition with K-isomorphisms). When K = Fq, the isomorphism
classes can be represented by their j-invariants. Moreover, since E(Fq)[`] ∼= Z/`Z×
Z/`Z, the curve E contains exactly `+ 1 subgroups of order `. These correspond to
`+ 1 outgoing isogenies from j(E). Note that typically (i. e. when j(E) 6= {0, 1728},
see [Gal12, Remark 25.3.2]) every outgoing edge has a corresponding incoming edge,
since every isogeny induces a dual isogeny. Therefore, although isogenies techni-
cally have a direction, the isogeny graph can (almost) be thought of as an undirected
graph. The `-isogeny graph consists of ordinary and supersingular components.

Suppose that E/Fq is an ordinary curve with Frobenius endomorphism π of trace
t. By Tate’s theorem [Tat66, §3], the set of such curves forms an isogeny class. The
ring of Fq-rational endomorphisms EndFq(E) is an order O ⊂ Q(

√
t2 − 4q) contain-

ing Z[π] [Sil09, Theorem III.9.3]. Given an ideal a ⊂ O we define ϕa : E → E/a to
be an isogeny with ker ϕa =

⋂
α∈a ker α. It is immediate that ker ϕa is Gal(Fq/Fq)-

stable, and thus ϕa is defined over Fq and E/a is well-defined up to Fq-isomorphism.
As principal ideals inO correspond to endomorphisms, we obtain a well-defined ac-
tion ∗ of the ideal class group cl(O) on the set X of Fq-isomorphism classes of curves

2. Curves of Genus 1 and 2 15

of trace t with endomorphism ring O by defining [a] ∗ E = E/a, identifying the
curves with their Fq-isomorphism classes. This action is free and transitive [Sch87;
Wat69, Theorem 4.5], and we say that X is a principal homogeneous space for cl(O).
Note that typically one does not require the isogeny class to have fixed trace t, in
which case there are two orbits of the action of cl(O) on the set of Fq-isomorphism
classes with endomorphism ring O (the second orbit are the classes of curves with
trace of Frobenius−t). However, these are simply two isomorphic copies of the same
graph (see [DFKS18, §2.2] for more details) and so we may identify them.

Now let E/Fq be supersingular. There exist only finitely many isomorphism
classes of supersingular elliptic curves, and their j-invariants are contained in Fp2

[Sil09, Theorem V.3.1(a)]. As a result, every isomorphism class can be represented
by a supersingular elliptic curve defined over Fp2 . More precisely, the number of
isomorphism classes is exactly bp/12c+ εp [Gal12, Theorem 9.11.11], where

εp =

0 if p ≡ 1 (mod 12) ,

1 if p ≡ 5, 7 (mod 12) ,

2 if p ≡ 11 (mod 12) .

The set of supersingular isomorphism classes forms a connected component in Gk̄,`

[Koh96, Corollary 78], necessarily (`+ 1)-regular almost everywhere (i. e. away from
j = 0, 1728) and satisfies the Ramanujan property [Piz90]. Note that although setting
k = Fp2 would suffice to have Gk,` contain all supersingular isomorphism classes
as nodes, this does not necessarily imply that all `-isogenies are defined over k. We
expand on this in a cryptographic context in §II.2.

Finally, suppose that E is supersingular and defined over Fp for p ≥ 5. Its Fp-
rational endomorphism ring EndFp(E) is an order O ⊂ Q(

√−p) containing Z[π].
The graph of such curves is contained in the supersingular isogeny graph over Fp2 ,
but much more closely resembles the (volcano) structure of the ordinary case [DG16].
In Chapter IX we elaborate on this case, and show how to obtain an efficient non-
interactive key exchange protocol.

Pairings. Finally, we briefly discuss bilinear pairings on elliptic curves. Although
the literature is vast, including all sorts of applications in cryptography, we only
consider the Weil and (reduced) Tate-Lichtenbaum pairing. Only the latter is used
in this thesis (see Chapter VII), to efficiently solve discrete logarithm problems on
supersingular elliptic curves of smooth order.

Let E/Fq be an elliptic curve and m a positive integer not divisible by p =

16 Chapter I. Elliptic and Hyperelliptic Curves

char(Fq). Given any divisor D = ∑P∈E nP(P) and rational function f ∈ Fq(E)
such that div(f) has support disjoint from D, we define f (D) = ∏P∈E f (P)nP . We
denote by µm the group of m-th roots of unity of Fq, and define the Weil pairing
wm : E[m]× E[m] → µm as wm(P, Q) = fP(DQ)/ fQ(DP), where DP, DQ ∈ Div0(E)
and fP, fQ ∈ Fq(E) are such that

DP ∼ (P)− (O) , div(fP) = mDP ,

DQ ∼ (Q)− (O) , div(fQ) = mDQ ,

and DP and DQ have disjoint support. Note that there exist different definitions
of the Weil pairing [Sil09, §III.8], which can be shown to be equivalent [Sil09, Ex-
ercise 3.16]. It is a bilinear, alternating, non-degenerate and Galois invariant map
[Sil09, Proposition III.8.1]. The bilinearity and alternating properties lead to a strong
relation to (two-dimensional) discrete logarithm problems. That is, if E[m] = 〈P, Q〉
and R = [a]P + [b]Q for some a, b ∈ Z/mZ, then it follows that

wm(P, R) = wm(P, Q)b , wm(Q, R) = wm(Q, P)a .

In other words, the Weil pairing allows to reduce discrete logarithms in E to discrete
logarithms in µm. It is not immediately obvious that this leads to a computational ad-
vantage. First, if m is exponentially large, then so are the degrees of fP and fQ. How-
ever, wm can be computed with complexity logarithmic in m due to an algorithm of
Miller [Mil04]. More problematic is the fact that µm is typically not contained in Fq,
but only in an extension Fqk . The smallest positive k is called the embedding degree
of m in Fq. Although k is generally large, one can show that k ≤ 6 whenever E is
supersingular (see e. g. [MOV91, Table 1]). In this thesis we only consider the case
where E is indeed supersingular (with k = 2), and hence do not need to worry about
the embedding degree.

A computationally more appealing pairing is the Tate-Lichtenbaum pairing [Lic69].
Let K be a finite extension of Fq such that E[m] ⊆ E(K). Then we define the pairing
as the function

tm : E[m]× E(K)/mE(K)→ K∗/(K∗)m , (P, Q) 7→ fP(DQ) .

That is, the computation can again be performed via Miller’s algorithm, but requires
fewer Miller functions. Note that since K is a finite extension of Fq (say of degree k),
its multiplicative group K∗ is cyclic of order qk − 1. Moreover, since E[m] ⊆ E(K)
it follows that m | qk − 1, and in particular K∗/(K∗)m ∼= µm through the (group)

2. Curves of Genus 1 and 2 17

isomorphism τ : x 7→ x(q
k−1)/m. Although this causes a computational overhead,

the isomorphism is typically used to avoid working with cosets. We refer to ẽm :
E[m]× E(K)/mE(K) → µm defined by ẽm = τ ◦ tm as the reduced Tate-Lichtenbaum
pairing. The (reduced) pairing is bilinear and non-degenerate [Eng14, Theorem 9].
Note, however, that the relation with the discrete logarithms above relied on the
pairing being alternating. Indeed, the (reduced) Tate-Lichtenbaum pairing does not
have this property in general (in fact, the definition of being alternating does not
even make sense since E[m] and E(K)/mE(K) are distinct objects). However, in the
cases of our interest we shall have E(K) ∼= (Z/mZ)2 × (Z/`Z)2 for some prime
` 6= m (see §2.1). In that case it is immediate that

mE(K) ∼= (Z/`Z)2 , E(K)/mE(K) ∼= E[m] .

We write em : E[m] × E[m] → µm for the resulting pairing (which we also refer to
as the reduced Tate-Lichtenbaum pairing). Moreover, we shall always assume em to
be alternating and therefore to be interchangeable with the Weil pairing for all our
purposes (this can easily be checked in specific cases).

2.2 Hyperelliptic Curves of Genus 2

Finally, we consider the case where C is a smooth curve of genus 2 over a field k such
that char(k) 6= 2. In this thesis, we only use genus-2 curves in protocols based on the
hardness of the discrete logarithm problem. In fact, only a single genus-2 curve is
used. Although everything we describe works for other genus-2 hyperelliptic curves
(say given in Rosenhain form), it does not lead to cryptographically secure protocols
unless # Pic0

Fp
(C) is divisible by a large prime. Such curves are not easy to find and,

in fact, the only one (satisfying also certain other cryptographic properties) that has
been found to date is the Gaudry–Schost curve. Therefore we do not lose much
generality by restricting our attention to this curve. As such, we fix p = 2127 − 1 and
let k = Fp. Given the constants

λ = 0x15555555555555555555555555555552 ,

µ = 0x73E334FBB315130E05A505C31919A746 ,

ν = 0x552AB1B63BF799716B5806482D2D21F3 ,

we define C/Fp to be the genus-2 curve defined by its Rosenhain form y2 = x(x −
1)(x− λ)(x− µ)(x− ν). It is (the quadratic twist of) the twist-secure curve found by
Gaudry and Schost [GS12] for which #JC(Fp) equals 16 · N for a 250-bit prime N.

18 Chapter I. Elliptic and Hyperelliptic Curves

The Picard group. Contrary to the case of elliptic curves, there exists no bijection
between elements of Pic0

Fp
(C) and C(Fp). However, every divisor class of Pic0

Fp
(C)

can be uniquely represented by a divisor that is one of

(1) 0 ,
(2) [R]− [O] ,
(3) [P] + [Q]− 2[O] ,

where P, Q and R are affine points such that xP 6= xQ and O is the (unique) point
at infinity [Gal12, Theorem 10.4.1]. This is called a reduced divisor [Can87, §2]. A re-
duced divisor is commonly described by its Mumford representation [Mum93], which
simply keeps track of the affine points that identify it. That is, it is a pair of polyno-
mials 〈u(x), v(x)〉 where

(1) 〈u(x), v(x)〉 = 〈1, 0〉 ,
(2) 〈u(x), v(x)〉 = 〈x− xR, yR〉 ,
(3) 〈u(x), v(x)〉 = 〈(x− xP)(x− xQ),

yQ−yP
xQ−xP

x +
xQyP−xPyQ

xQ−xP
〉 .

An element of JC(Fp) can therefore be represented by the coefficients of u(x) and
v(x), requiring (at most) 4 elements of Fp [Gal12, Lemma 10.3.10].

An algorithm by Cantor performs the group operation in the divisor class group
on reduced divisors in Mumford representation [Can87] and this theoretically suf-
fices to construct the most interesting cryptographic protocols. However, there are
some downsides to this algorithm. Not only is it rather slow, it is also hard to make
constant-time (i. e. with running time independent of its inputs). Alternatively, the
Picard group can be embedded into P15 [CF96, §2.1–2.2], giving an algebraic de-
scription of the Jacobian JC and its group law in terms of the curve coeffients [CF96,
Eq. 3.9.5]. Unfortunately the involved rational functions very quickly become un-
wieldy (i. e. much more computationally heavy than its genus-1 counterpart, see for
example the formulas provided in the appendix of [CF96]). As such, arithmetic on
the Jacobian is best avoided as much as possible (see e. g. Chapter IV and Chapter V).

Kummer surfaces. The situation significantly improves by projecting to the Kum-
mer variety, i. e. by projecting onto the first 4 coordinates of the Jacobian in P15,
and by making some assumptions on the curve model [Duq04, §4]. The locus of the
Kummer variety in P3 is described by a quartic

K̃C : K2T2 + K1T + K0 = 0 ,

2. Curves of Genus 1 and 2 19

where Ki(X, Y, Z) for i ∈ {0, 1, 2} are homogeneous polynomials of degree 4− i with
coefficients in k[λ, µ, ν] [CF96, Eq. 3.1.9]. It is a 2-dimensional algebraic variety, so
we refer to K̃C as the Kummer surface. More precisely, we call this model the general
model of the Kummer surface of JC (denoted by the tilde over KC). Although the
performance improves over working directly on JC , it is still not more efficient than
the analogous (and much simpler) elliptic-curve operations.

Finally, for use in cryptographic applications Gaudry [Gau07] proposed an alter-
native embedding into P3 as a quartic surface KC with locus described by

X4 + Y4 + Z4 + T4 + 2EXYZT =
F(X2T2 + Y2Z2) + G(X2Z2 + Y2T2)

+ H(X2Y2 + Z2T2)
,

where the constants E, F, G, H ∈ k̄ are determined by the curve C. The surface is
related to the theory of theta functions [CC86] and leads to much faster arithmetic.
We refer to KC as the fast Kummer surface,4 though different variants exist (see e. g.
Chapter V). It is not necessarily true that E, F, G and H will lie in k. Indeed, not every
Kummer surface of a genus-2 hyperelliptic curve defined over k admits a fast model
over k. For instance, all 16 of the 2-torsion points of JC must be defined over k.

4 Notice a slight abuse of notation, since we use KC for both the Kummer variety as well as the fast
model of a Kummer surface. This should not cause confusion.

20 Chapter I. Elliptic and Hyperelliptic Curves

Chapter II
Curve-based Cryptographic
Protocols

Although the field of cryptography is broad, in this thesis we focus on two impor-
tant public-key cryptographic primitives: two-party key exchange and digital sig-
natures. Classically, this is achieved via the Diffie–Hellman key exchange and the
Schnorr signature scheme based on the hardness of the discrete logarithm problem. We
introduce these in §1. However, the introduction of large-scale quantum computers
would break these schemes through Shor’s (polynomial-time) algorithm [Sho97]. As
a result, alternative protocols based on the hardness of the isogeny problem were in-
troduced. We elaborate on them in §2.

1 Classical Cryptography

In this section protocols always take place in cyclic prime-order groups, so we fix
notation first. Let J be an (additive) abelian group of prime order N with identity
element O, and let P be a non-zero element of J (i. e. such that J = 〈P〉). For any
integer m ∈ Z, scalar multiplication is denoted by a map [m] : J → J such that
[m] : (m, P) 7→ [m]P. Let K = J /± be the set of its elements under the equivalence
relation where Q and R are in the same class whenever Q = ±R. As usual, the image
of an element Q ∈ J in K is denoted by ±Q. The notation suggests that J can be
instantiated as the (prime order subgroup of the rational points of a) Jacobian of a
hyperelliptic curve over Fq, while K is its Kummer variety. Indeed, in this thesis this
is always the case.

22 Chapter II. Curve-based Cryptographic Protocols

1.1 Diffie–Hellman

In their seminal work Diffie and Hellman [DH76] first proposed the idea of pub-
lic key cryptosystems, and provided an instantiation based on the discrete loga-
rithm problem in the multiplicative subgroup of finite fields. A decade later, Diffie–
Hellman groups were constructed as the group of rational points of an elliptic curve
(or the Jacobian of a hyperelliptic curve [Kob88]) over a finite field [Mil86; Kob87].

Diffie–Hellman in J . The protocol works in an arbitrary cyclic group J = 〈P〉,
which we assume to be of prime order N. Two parties Alice and Bob both choose
their respective private keys SKA and SKB as an element of (Z/NZ)∗, and publish
their public keys PKA = [SKA]P and PKB = [SKB]P. Both parties can now derive the
shared secret KAB = [SKA]PKB = [SKB]PKA.

Diffie–Hellman inK. As remarked by Miller [Mil86], a completely analogous con-
struction works in the Kummer variety K. Given the image ±P of a generator of J ,
Alice (resp. Bob) again chooses their private key SKA (resp. SKB) as an element of
(Z/NZ)∗. Their public key is now PKA = ±[SKA]P (resp. PKB = ±[SKB]P), while
the shared secret can be derived by both parties as KAB = ±[SKA · SKB]P.

Security. We only discuss the security of the Diffie–Hellman protocol in the group
J . The Diffie–Hellman problems for the protocol in K all reduce to the analogous
Diffie–Hellman problems in J , with a minor security loss in the reduction. The
security of the Diffie–Hellman protocol relates to several problems:

Discrete Logarithm Problem. The discrete logarithm problem supposes to be given
non-zero P, Q ∈ J and asks to find an m ∈ (Z/NZ)∗ such that Q = [m]P. In
terms of Diffie–Hellman, it is the problem of retrieving a secret SK from a public
key PK. The best-known (generic) classical algorithm for solving the discrete
logarithm problem is Pollard’s rho algorithm [Pol75] using O(

√
m) group op-

erations with negligible memory requirement. Note that we assume that index
calculus attacks [COS86] do not apply to the groups under consideration. The
problem is solved in polynomial time by Shor’s algorithm [Sho97] under the
assumption of having a large enough quantum computer.

Computational Diffie–Hellman. The computational Diffie–Hellman problem (abbre-
viated CDH) requires to compute KAB, given all public information of the pro-
tocol. This problem is no harder than the discrete logarithm problem, but is
not known to be equivalent. However, it is typically conjectured to be (see

1. Classical Cryptography 23

e. g. [Boe90; MW99]) and the currently best-known attacks on curve-based
Diffie–Hellman are attacks on the discrete logarithm problem (i. e. Pollard rho).

Decisional Diffie–Hellman. The decisional Diffie–Hellman problem (abbreviated as
DDH) requires to distinguish KAB from a random element, given all public
information of the protocol. It is no harder than DDH, and indeed there exist
groups where CDH is hard yet DDH is easy. A large prime order group of
rational points of a supersingular elliptic curve would fall in this class through
the use of pairings (see §2.1).

Computational aspects. The group operation of J is written as a function ADD :
J × J → J that maps (P, Q) 7→ P + Q. For the special case where P = Q we
define the function DBL : J → J as DBL(P) = ADD(P, P). Although naïvely
[m]P = P + P + · · · + P, this would have O(m) computational complexity (in the
number of group operations). It can more conveniently be computed via the double-
and-add algorithm of complexity O(log2 m). There exist many variants of this algo-
rithm, most notably ones whose sequence of operations is independent of m under
the assumption that we know an upper bound on m (such algorithms lend them-
selves to easy constant-time implementations).

The set K does not (generally) inherit an abelian group structure from J . Note
that although K has a well-defined operation XDBL : ±P 7→ ±[2]P coming from DBL

on J , the ADD operation becomes slightly more complicated. That is, we have a
function

XADD : {±P,±Q,±(P−Q)} 7→ ±(P + Q)

referred to as differential addition (i. e. we can only compute the sum of two points
if we are given the difference). Since scalar multiplication on J commutes with the
negation map, the Kummer variety has a well-defined pseudo-scalar multiplication
LADDER : (m,±P) 7→ ±[m]P. This can be computed with O(log2 m) calls to XADD

and XDBL through the Montgomery ladder [Mon85]. Typically one defines a function
XDBLADD that simultaneously computes XDBL and XADD at lower cost.

1.2 Schnorr Signatures

There exist many different (variants of) signature schemes based on the discrete log-
arithm problem. Here we describe the Schnorr signature scheme [Sch90], which is
(arguably) the most natural.

24 Chapter II. Curve-based Cryptographic Protocols

Alice Bob

SKA ←R (Z/NZ)∗ SKB ←R (Z/NZ)∗

PKA ← [SKA]P PKB ← [SKB]P
PKA , PKB←−−−−−−→

KAB ← [SKA]PKB KAB ← [SKB]PKA

Figure 1. Diffie–Hellman key exchange in a cyclic group J = 〈P〉 of (large) prime order N.

Schnorr identification and signatures. We first define the Schnorr identification pro-
tocol (see Figure 2) in J . Suppose that Alice has a secret key SKA ∈ (Z/NZ)∗ and
an accompanying public key PKA = [SKA]P. She wants to prove knowledge of her
secret key SKA to Bob, without revealing any information about it (i. e. this is a zero-
knowledge protocol). By tying her identity to her public key PKA (e. g. via a certificate
authority), this provides a form of authentication from Alice to Bob. Alice starts
by selecting an ephemeral secret r ∈ (Z/NZ)∗ and computing R = [r]P, and she
sends her commitment R to Bob. Upon receiving R, Bob selects a random challenge
c ∈ Z/NZ and returns it to Alice. In turn, Alice computes

s = (r− c · SKA) mod N

and sends s to Bob. Bob accepts if and only if R equals [s]P + [c]PKA.
Notice that this is an interactive authentication protocol. It can be made non-

interactive via the Fiat–Shamir heuristic [FS87]. That is, Alice can generate the chal-
lenge herself based on the commitment R by setting c = H(R), where H is a random
oracle [BR93]. By instead selecting c = H(R || M) for some message M, Alice can
compute a Schnorr signature (R, s) on M that can be validated by any party that has
access to her public key.

Security. A signature scheme in this thesis is considered to be secure if any party
that does not know SKA is unable to forge signatures on any message not signed
before. That is, a signature scheme is secure when it is existentially unforgeable under
adaptive chosen message attacks. Any signature scheme constructed by applying the
Fiat–Shamir heuristic to a sigma protocol has this property [PS96]. A sigma protocol
is a three-round protocol that satisfies the properties of completeness, special soundness
and honest-verifier zero-knowledge [HL10, §6.2]. The Schnorr identification scheme
is such a sigma protocol, which is typically proved via the Forking Lemma [PS96,
Lemma 2] in the random oracle model. In Chapter V we construct a sigma proto-

2. Post-Quantum Cryptography 25

col similar to the Schnorr identification scheme that works in K, and we define a
signature scheme in K via the Fiat–Shamir heuristic.

Alice Bob

r ←R (Z/NZ)∗

R← [r]P R−−−−−−−−→
c←−−−−−−−− c ∈ Z/NZ

s← (r− c · SKA) mod N s−−−−−−−−→

R ?
= [s]P + [c]PKA

Figure 2. Schnorr identification scheme in a cyclic group J = 〈P〉 of (large) prime order N.

2 Post-Quantum Cryptography

The protocols in this section are based on (variants of) the isogeny problem, i. e. the
hardness of finding an isogeny between two curves in the same isogeny class. How-
ever, the structure of the isogeny graph is highly dependent on whether we are in an
ordinary or supersingular component, which results in significantly different proto-
cols (and attacks). We discuss them separately.

2.1 Supersingular Isogeny Diffie–Hellman

The key exchange based on (a variant of) the supersingular isogeny problem closely
resembles the Diffie–Hellman key exchange, and is therefore referred to as Super-
singular Isogeny Diffie–Hellman (SIDH). It was introduced by Jao and De Feo [JDF11]
in 2011 and has since received a lot of attention, resulting in the SIKE submission
[Jao+16] to the post-quantum standardization effort by NIST [Nat16]. The descrip-
tion of the SIDH protocol here includes some of the choices made in the SIKE sub-
mission, simplifying the treatment.

As before, we assume to have two parties Alice and Bob that wish to exchange a
secret. An important remark to make is that SIDH is not completely symmetric. That
is, it begins by having Alice and Bob choose between two distinct (small) primes
` and m. In what follows we assume Alice to have chosen the prime ` and Bob
the prime m. In practice this requires communication between Alice and Bob (as
opposed to regular Diffie–Hellman). For that reason, we denote the secret–public
key pair of Alice (resp. Bob) by (SK`, PK`) (resp. (SKm, PKm)).

26 Chapter II. Curve-based Cryptographic Protocols

SIDH. Let ` and m be two small primes, and e` and em be two positive integers such
that p = `e` ·mem − 1 is prime. Let E0/Fp2 be a supersingular elliptic curve with the

Frobenius map π : (x, y) 7→ (xp2
, yp2

) having trace t = −2p. Then #E0(Fp2) =

(p + 1)2 and the eigenvalues of the action of π on E0[`
e`] and E0[mem] are all 1.

Thus, E0(Fp2)[`e`] ∼= (Z/`e`Z)2 and E0(Fp2)[mem] ∼= (Z/mem Z)2. As such, we
can fix (public) bases E0[`

e`] = 〈P`, Q`〉 and E0[mem] = 〈Pm, Qm〉 inside E0(Fp2).
The secret key SK` (resp. SKm) is a random element of Z/`e`Z (resp. Z/mem Z).
It determines a cyclic subgroup 〈P` + [SK`]Q`〉 (resp. 〈Pm + [SKm]Qm〉) of E0 of
order `e` (resp. mem). In turn, these determine (separable) isogenies (up to post-
composition with an isomorphism) ϕ` : E0 → E` and ϕm : E0 → Em of degree
`e` resp. mem , where E` = E0/〈P` + [SK`]Q`〉 and Em = E0/〈Pm + [SKm]Qm〉. The
public keys are PK` = (E`, ϕ`(Pm), ϕ`(Qm)) and PKm = (Em, ϕm(P`), ϕm(Q`)), re-
spectively, while the shared secret K`m is j(E0/〈P` + [SK`]Q`, Pm + [SKm]Qm〉). In
other words, the shared secret is the j-invariant of the curve Em/〈ϕm(P` + [SK`]Q`)〉
resp. E`/〈ϕ`(Pm + [SKm]Qm)〉 that can be computed by Alice resp. Bob.

Security. The security of SIDH (against passive attacks) relates to several problems
that are analogous to classical Diffie–Hellman problems; the Computational Supersin-
gular Isogeny (CSSI) problem asks to compute SK` from PK` [DFJP14, Problem 5.2],
the Supersingular Computational Diffie–Hellman (SSCDH) problem asks to compute
K`m [DFJP14, Problem 5.3], while solving the Supersingular Decisional Diffie–Hellman
(SSDDH) requires to distinguish K`m from random [DFJP14, Problem 5.4]. Although
these problems are not known to be equivalent, they are assumed to be. The best-
known attacks against SIDH are indeed attacks against the CSSI problem. Following
the security definitions of NIST (i. e. λ-bit security means breaking the problem is
at least as hard as recovering a λ-bit AES key), the best-known attacks on SIDH are
classical and are trivial meet-in-the-middle attacks of query and memory complex-
ity O(4

√
p). As a result, for a λ-bit security level one chooses e`, em such that `e` and

mem are greater than 22λ. We emphasize that on the one hand the latter choice is
conservative; it is very hard to obtain efficient access to memory of size 4

√
p. Al-

gorithms that overcome this problem (i. e. Van Oorschot–Wiener [OW99]) lead to
higher run-times [Adj+19]. On the other hand, the described problems that underly
the security of SIDH are quite different from generic isogeny problems. For instance,
the number of possible public keys equals the size of Z/`e`Z (resp. Z/mem Z), which
is approximately

√
p. This is much smaller than the bp/12c+ εp (see §2.1) supersin-

gular isomorphism classes, making the isogeny problem easier. Note that this could
be solved easily, but would naïvely require to move to (possibly large) extension

2. Post-Quantum Cryptography 27

fields [Pet17, §2]. Finally, the inclusion of torsion points to the public key has led to
serious active attacks [Gal+16].

Computational aspects. Typical choices for parameters are ` = 2 and m = 3, in
which case E0 can be chosen as the Montgomery curve y2 = x3 + x [CLN16a]. Such
curves contain the 2-torsion point (0, 0) whose action by translation is very sim-
ple. We show how one can use this action to efficiently compute isogenies on Mont-
gomery curves in Chapter VIII. Moreover, although the bases for E0[2e2] and E0[3e3]

can be chosen arbitrarily, we show that certain choices allow to completely avoid
exceptional cases in the arithmetic.

The sizes of the public keys are naïvely about 8 log2 p bits, since the curve (in
short Weierstrass form) can be represented by two elements of Fp2 , while each point
is represented by its x-coordinate in Fp2 (plus a sign bit). This can be improved to
6 log2 p bits by projecting the curve to the Kummer line [CLN16a]. Alternatively,
one can observe that for the above parameters the curve can always by put in Mont-
gomery form y2 = x3 + Ax2 + x (i. e. with B = 1) and can therefore simply be
represented by the coefficient A ∈ Fp2 (see Remark VIII.8). It can be further com-
pressed to 4 log2 p using point compression techniques [Aza+16]. The main idea is
to transmit basis points P, Q such that 〈P, Q〉 = E(Fp2)[n], where n ∈ {`e` , mem},
as their two-dimensional scalar decomposition with respect to a fixed public basis
〈R1, R2〉 = E(Fp2)[n]. Of course, the curve in each public key is different and thus
there is no public basis that can be fixed once-and-for-all. The idea therefore relies
on Alice and Bob being able to, on input of a given curve E, arrive at the same basis
{R1, R2} for E(Fp2)[n]. Given such a basis, we can write P = [αP]R1 + [βP]R2 and
Q = [αQ]R1 + [βQ]R2, and can solve for (αP, βP, αQ, βQ) ∈ (Z/nZ)4. This is fea-
sible via the Pohlig-Hellman algorithm [PH78] since #E(Fp2)[n] = n2 is extremely
smooth. By noting that wn(R1, P) = wn(R1, R2)

βP and wn(R2, P) = wn(R1, R2)
−αP

(and similarly for αQ, βQ) they reduce the discrete logarithm computation to µn in
F∗p2 , increasing efficiency. As log2 n ≈ 1

2 log2 p, the size of (αP, βP, αQ, βQ) is about

2 log2 p. In Chapter VII we show how to decrease the public keys to 7
2 log2 p bits

while simultaneously significantly increasing the efficiency of the above procedures.

2.2 Ordinary Isogeny Diffie–Hellman

The key exchange based on the isogeny problem in ordinary isogeny graphs was
originally introduced by Couveignes (see the abstract of [Cou06] for details) and was
rediscovered by Rovstovstev–Stolbunov [RS06] a decade later. It is much easier to

28 Chapter II. Curve-based Cryptographic Protocols

describe (on a high level) than SIDH, and its security reduces to a much more natural
problem. Moreover, the scheme is non-interactive. This makes it interesting as a direct
replacement for classical Diffie–Hellman. Its major drawback is its inefficiency.

OIDH. Let Fq be a finite field and E0/Fq an ordinary elliptic curve with endomor-
phism ring O and trace of Frobenius t. Let X be the set of Fq-isomorphism classes
of elliptic curves with trace of Frobenius t whose endomorphism ring is isomorphic
to O. Then the action ∗ : cl(O)× X → X such that [a] ∗ E = E/a is simply transi-
tive, where a is an arbitrary representative of its class and we identify curves with
their Fq-isomorphism class. As such, the secret keys SKA and SKB are chosen to be
random elements of cl(O), and their corresponding public keys are PKA = SKA ∗ E0

and PKB = SKB ∗ E0. The shared secret KAB is now simply (SKA · SKB) ∗ E0.

Security. As usual, there is a separation between the key recovery problem and the
(computational and decisional) Diffie–Hellman problems that are not known to be
equivalent. However, we observe that the key recovery problem is simply the ordi-
nary isogeny problem; given two isogenous ordinary curves E0 and E1 over a finite
field Fq with endomorphism ring O, find an isogeny between them. The isogeny
problem can be phrased as a hidden shift problem [CJS14], which can be solved in
subexponential time on a quantum computer [Kup05; Reg04]. Though these attacks
do of course not lead to a complete break, they are what motivated the development
of SIDH (see [JDF11, §1]).

Computational aspects. Although the protocol is much easier to describe from a
high level, quite the opposite is true for the computation of the group action. In fact,
the evaluation of the group action has sub-exponential complexity [CJS14]. There-
fore, instead of randomly sampling secret keys, we construct them as classes of prod-
ucts of ideals with small norm. That is, we fix a set of (distinct small) Elkies primes
`0, . . . , `s and ideals l0, . . . , ls such that li l̄i = (`i) and such that cl(O) is (expected to
be) generated by the [li]. A secret key is now simply a tuple SK = (e0, . . . , es) of small
elements of Z, while the public key is PK = [l0]

e0 · · · [ls]es ∗ E0. Now it remains to
compute the action of ideals of norm `i, essentially reducing to computing separable
isogenies of degree `i. Ideally, one finds a rational point and applies Vélu’s formu-
las [Vél71]. However, such points are typically only defined over (large) extension
fields, forcing one to resort to other methods. As a result, the protocol is extremely
slow [DFKS18]. In Chapter IX we show how to overcome many of these issues by
instantiating the protocol with supersingular elliptic curves over a prime field Fp.

Part 2

Classical Cryptography

Chapter III
Complete Addition Formulas for
Prime Order Elliptic Curves

An elliptic curve addition law is said to be complete if it correctly computes the sum
of any two rational points in the elliptic curve group. One of the main reasons for
the increased popularity of Edwards curves in the ECC community is that they can
allow a complete group law that is also relatively efficient (e. g. when compared to
all known addition laws on Edwards curves). Such complete addition formulas can
simplify the task of an ECC implementer and, at the same time, can greatly reduce
the potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete
addition laws that are relatively efficient have only been proposed on curves of com-
posite order1 and have thus been incompatible with all of the currently standardized
prime order curves.

In this chapter we present optimized addition formulas that are complete on every
prime order short Weierstrass curve defined over a field k such that char(k) 6= 2, 3.
Compared to their incomplete counterparts, these formulas require a larger number
of field additions, but interestingly require fewer field multiplications. We discuss
how these formulas can be used to achieve secure, exception-free implementations
on all of the prime order curves in the NIST (and many other) standards.

1 The order of an elliptic curve E/Fq is defined as #E(Fq).

32 Chapter III. Complete Addition Formulas

1 Introduction

Extending the works of Lange–Ruppert [LR85] and Bosma–Lenstra [BL95], Arène,
Kohel and Ritzenthaler [AKR12] showed that, under any projective embedding of an
elliptic curve E/k, every addition law has pairs of exceptional points in (E× E)(k̄).
That is, over the algebraic closure of k, there are always pairs of points for which a
given elliptic curve addition law does not work.

Fortunately, in elliptic curve cryptography (ECC), we are most often only con-
cerned with the k-rational points on E. In this case it is possible to have a single ad-
dition law that is well-defined on all pairs of k-rational points, because its exceptional
pairs are found in (E× E)(k̄), but not in (E× E)(k). A celebrated example of this is
the Edwards model [Edw07]; when suitably chosen [BL07], an Edwards curve has a
simple addition law that works for all pairs of k-rational points. This phenomenon
was characterized more generally over elliptic curves by Kohel [Koh11], and further
generalized to arbitrary abelian varieties in [AKR12]. For our purposes it suffices to
state a special case of the more general results in [Koh11; AKR12]: namely, that every
elliptic curve E over a finite field Fq (with q ≥ 5) has an Fq-complete addition law
corresponding to the short Weierstrass model in P2(Fq).

Addition laws that are Fq-complete are highly desirable in ECC. They can signif-
icantly simplify the task of an implementer and greatly reduce the potential vulner-
abilities of a cryptosystem. We elaborate on this below.

Our contributions. In Algorithm 1 we present an optimized ADD : E × E → E
function, i. e. point addition formulas that correctly compute the sum of any two
points on any odd order elliptic curve E/Fq : y2 = x3 + ax + b with q ≥ 5. We do
not claim credit for the complete formulas themselves, as these are exactly the for-
mulas given by Bosma and Lenstra two decades ago [BL95]. What is novel in this
chapter is optimizing the explicit computation of these formulas for cryptographic
application. In particular, Table 1 shows that the computation of the Bosma–Lenstra
complete additions can be performed using fewer general field multiplications than
the best known (incomplete!) addition formulas on short Weierstrass curves: exclud-
ing multiplications by curve constants and field additions, the explicit formulas in
this chapter compute additions in 12 field multiplications (12M), while the fastest
known addition formulas in homogeneous coordinates require 14 field multiplica-
tions (12M + 2S) and the fastest known addition formulas in Jacobian coordinates
require 16 field multiplications (11M + 5S). We immediately note, however, that our
explicit formulas incur a much larger number of field additions than their incom-

1. Introduction 33

Table 1. Summary of explicit formulas for the addition law on prime order short Weierstrass
elliptic curves E/k : y2 = x3 + ax + b in either homogeneous coordinates or Jacobian coor-
dinates, and the corresponding exceptions (excep.) in both point doublings (DBL) and point
additions (ADD). Here the operation counts include multiplications (M), squarings (S), mul-
tiplications by a (ma), multiplications by (small multiples of) b (mb), and additions (a), all in
the ground field k. We note that various trade-offs exist with the above formulas [BLb].

Ref. a ADD(P, Q) DBL(P)

Excep. M S ma mb a Excep. M S ma mb a

This
any

—
12 0 3 2 23

—
8 3 3 2 15

−3 12 0 0 2 29 8 3 0 2 21
−0 12 0 0 2 19 6 2 0 1 9

[CMO98; BLb] any
Q 6= ±P,O

12 2 0 0 7
P 6= O

5 6 1 0 12
[CMO98; BLb] −3 12 2 0 0 7 7 3 0 0 11

−0 — —

[CMO98] any
Q 6= ±P,O

12 4 0 0 7
—

3 6 1 0 13
[CMO98; LG10] −3 12 4 0 0 7 4 4 0 0 8

[CMO98; HLX12] −0 12 4 0 0 7 3 4 0 0 7

plete counterparts. Thus, as is discussed at length below, the relative performance of
the complete additions will be highly dependent on the platform and/or scenario.
However, we stress that outperforming the incomplete addition formulas is not the
point of this chapter: our aim is to provide the fastest possible complete formulas for
prime order curves.

Wide applicability. While the existence of an Fq-complete addition law for prime
order Weierstrass curves is not news to mathematicians (or to anyone that has read,
e. g. [BL95; AKR12]), we hope it might be a pleasant surprise to ECC practitioners.
In particular, the benefits of completeness are now accessible to anyone whose task
it is to securely implement the prime order curves in the standards. These include:

– The example curves specified in the working drafts versions X9.62 and X9.63
[Acc99a; Acc99b] of the American National Standards Institute (ANSI).

– The five NIST prime curves specified in the current USA digital signature stan-
dard (DSS), i. e. FIPS 186-4 – see [Nat00; Nat13]. This includes Curve P-384,
which is the National Security Agency (NSA) recommended curve in the most
recent Suite B fact sheet for both key exchange and digital signatures [Nat15;
Com15]; Curve P-256, which is the most widely supported curve in the Secure
Shell (SSH) and Transport Layer Security (TLS) protocol [Bos+14, §3.2-3.3]; and

34 Chapter III. Complete Addition Formulas

Curve P-192, which is the most common elliptic curve used in Austria’s na-
tional e-ID cards [Bos+14, §3.4].

– The seven curves specified in the German brainpool standard [ECC05]. That
is, brainpoolPXXXr1 where XXX ∈ {160, 192, 224, 256, 320, 384, 512}.

– The eight curves specified by the UK-based company Certivox [Cer], namely
ssc-XXX, where XXX ∈ {160, 192, 224, 256, 288, 320, 384, 512}.

– The curve FRP256v1 recommended by the French Agence nationale de la sécu-
rité des systèmes d’information (ANSSI) [Age14].

– The three curves specified (in addition to the above NIST prime curves) in the
Certicom SEC 2 standard [Cer10]. This includes secp256k1, which is the curve
used in the Bitcoin protocol.

– The recommended curve in the Chinese SM2 [Chi10] digital signature algo-
rithm.

– The example curve in the Russian GOST R 34.10 standard [Gov01].

In particular, implementers can now write secure, exception-free code that supports
all of the above curves without ever having to look further than the ADD function
for curve arithmetic. Moreover, in §4.2 we show how ADD can easily be used to se-
curely implement the two composite order curves, Curve25519 [Ber06a] and Ed448-
Goldilocks [Ham15b], recently recommended for inclusion in future versions of TLS
by the Internet Research Task Force Crypto Forum Research Group (IRTF CFRG).

Side-channel protection. Real-world implementations of ECC have a number of
potential side-channel vulnerabilities that could fall victim to simple timing attacks
[Koc96] or exceptional point attacks [IT02; FGV11]. One of the main reasons these
attacks pose a threat is the branching that is inherent in the schoolbook short Weier-
strass elliptic curve addition operation. For example, among the dozens of if state-
ments in OpenSSL’s2 function ec_GFp_simple_add for point addition, the first three
that check whether the input points are equal, opposite, or at infinity can cause tim-
ing variability (and therefore leak secret data) in ECDH or ECDSA. The complete
formulas in this chapter remove these vulnerabilities and significantly decrease the
attack surface of a cryptosystem. As Bernstein and Lange point out [BL09], com-
pleteness “eases implementations” and “avoids simple side-channel attacks”.

2 See ecp_smpl.c in crypto/ec/ in the latest release at https://openssl.org/source/.

https://openssl.org/source/

1. Introduction 35

Although it is possible to use incomplete formulas safely, e. g. by carefully deriv-
ing uniform scalar multiplication algorithms that avoid exceptional pairs of inputs,
implementing these routines in constant-time and in a provably correct way can be a
cumbersome and painstaking process [Bos+16, §4]. Constant-time ECC implementa-
tions typically recode scalars from their binary encoding to some other form that al-
lows a uniform execution path (c. f. Okeya-Tagaki [OT03] and Joye-Tunstall [JT09]),
and these recodings can complicate the analysis of exceptional inputs to the point
addition functions. For example, it can be difficult to prove that the running value
in a scalar multiplication is never equal to (or the inverse of) elements in the lookup
table; if this equality occurs before an addition, the incomplete addition function is
likely to fail. Furthermore, guaranteeing exception-free, constant-time implementa-
tions of more exotic scalar multiplication routines, e. g. multiscalar multiplication for
ECDSA verification, fixed-base scalar multiplications [LL94], scalar multiplications
exploiting endomorphisms [GLV01], or scalar multiplications using common power
analysis countermeasures [Cor99; FV12], is even more difficult; that is, unless the
routine can call complete addition formulas.

Performance considerations. While the wide applicability and correctness of the
ADD function is at the heart of this chapter, we have also aimed to cater to imple-
menters that do not want to sacrifice free performance gains, particularly those con-
cerned with supporting a special curve or special family of curves. To that end,
Algorithms 2 and 3 give faster complete addition formulas in the special (and stan-
dardized) cases that the Weierstrass curve constant a is a = −3 or a = 0, and in the
special case of point doublings (DBL); Table 1 summarizes the operation counts for
all of these scenarios.

As we mentioned above, outperforming the (previously deployed) incomplete
addition formulas is not the point of this chapter. Indeed, the high number of field
additions present in our complete addition functions are likely to introduce an over-
all slowdown in many scenarios. To give an idea of this performance hit in a common
software scenario, we plugged our complete addition functions into OpenSSL’s im-
plementation of the five NIST prime curves. Using the openssl speed function to
benchmark the performance of the existing incomplete formulas and the new com-
plete formulas shows that the latter incurs between a 1.34x and 1.44x slowdown in
an average run of the elliptic curve Diffie-Hellman (ECDH) protocol (see Table 5 for
the full details). As we discuss below, and in detail in §4.3, this factor slowdown
should be considered an upper bound on the difference in performance between the
fastest incomplete algorithms and our complete ones.

36 Chapter III. Complete Addition Formulas

On the contrary, there are example scenarios where plugging in the complete
formulas will result in an unnoticeable performance difference, or possibly even a
speedup. For example, compared to the incomplete addition function used in the
Bitcoin code3 (secp256k1_gej_add_var), our complete addition function ADD in Al-
gorithm 3 saves 4S at the cost of 8a + 1mul_int4; compared to Bitcoin’s incomplete
mixed addition (secp256k1_gej_add_ge_var), our complete mixed addition saves
3S at the cost of 3M + 2a + 1mul_int; and, compared to Bitcoin’s doubling func-
tion (secp256k1_gej_double_var), our formulas save 2S + 5mul_int at the cost of
3M + 3a. In this case it is unclear which set of formulas would perform faster, but
it is likely to be relatively close and to depend on the underlying field arithmetic
and/or target platform. Furthermore, the overall speed is not just dependent on the
formulas: the if statements present in the Bitcoin code also hamper performance.
On the contrary, the complete formulas in this chapter have no if statements.

There are a number of additional real-world scenarios where the performance
gap between the incomplete and the complete formulas will not be as drastic as
the OpenSSL example above. The operation counts in Table 1 and Table 6 suggest
that this will occur when the cost of field multiplications and squarings heavily out-
weighs the cost of field additions. The benchmarks above were obtained on a 64-bit
processor, where the M/a ratio tends to be much lower than that of low-end (e. g. 8-,
16-, and 32-bit) architectures. For example, field multiplications on wireless sensor
nodes commonly require over 10 times more clock cycles than a field addition (see
e. g. [Liu+13, Table 1] and [Szc+08, Table 1]), and in those cases the complete formu-
las in this chapter are likely to be very competitive in terms of raw performance.

In any case, we believe that many practitioners will agree that a small perfor-
mance difference is a worthwhile cost to pay for branch-free point addition formu-
las that culminate in much simpler and more compact code, which guarantees cor-
rectness of the outputs and eliminates several side-channel vulnerabilities. We also
note that the Bitcoin curve is not an isolated example of the more favorable formula
comparison above: several families of pairing-friendly curves, including Barreto-
Naehrig (BN) curves [BN06] which have appeared in recent IETF drafts, also have
a = 0. In those cases, our specialized, exception-free formulas give implementers an
easy way to correctly implement curve arithmetic in both G1 and G2 in the setting
of cryptographic pairings. On a related note, we point that the word “prime” in our
title can be relaxed to “odd”; the completeness of the Bosma–Lenstra formulas only

3 See https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1.
4 mul_int denotes the cost of Bitcoin’s specialized function that multiplies field elements by small

integers.

https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1

1. Introduction 37

requires the non-existence of rational two-torsion points (see §2), i. e. that the group
order #E(Fq) is not even. The BN curves define G2 as (being isomorphic to) a proper
subgroup of a curve E′/Fp2 , whose group order #E′(Fp2) is the product of a large
prime with odd integers [BN06, §3], meaning that our explicit formulas are not only
complete in G2 ⊂ E′(Fp2), but also in E′(Fp2).

Related work. Complete addition laws have been found and studied on different
models of elliptic curves, e. g. on the (twisted) Edwards [BL07; Ber+08] and (twisted)
Hessian models [Ber+15b]. Unfortunately, in all of those scenarios, the models are
not compatible with prime order curves and therefore all of the standardized curves
mentioned above.

In terms of obtaining a complete and computationally efficient addition algo-
rithm for prime order curves, there has been little success to date. Bernstein and
Lange [BL09] found complete formulas on a non-Weierstrass model that would be
compatible with, e. g. the NIST curves, reporting explicit formulas that (ignoring
additions and multiplications by curve constants) cost 26M + 8S. Bos et al. [Bos+16]
considered applying the set of two Bosma–Lenstra addition laws to certain prime or-
der Weierstrass curves, missing the observation (c. f. [AKR12, Remark 4.4]) that one
of the addition laws is enough, and abandoning the high cost of computing both ad-
dition laws for an alternative but more complicated approach towards side-channel
protection [Bos+16, Appendix C]. Brier and Joye [BJ02] developed unified formulas5

for general Weierstrass curves, but these formulas still have exceptions and (again,
ignoring additions and multiplications by curve constants) require 11M + 6S, which
is significantly slower than our complete algorithms.

Prime order curves can be safe. Several of the standardized curves of prime order
mentioned above have recently been critiqued in [BLc], where they were deemed not
to meet (some or all of) the four “ECC security” requirements: (i) Ladder, (ii) Twists,
(iii) Completeness, and (iv) Indistinguishability.

On the contrary, this chapter shows that prime order curves have complete for-
mulas that are comparably efficient. In addition, Brier and Joye [BJ02, §4] extended
the Montgomery ladder to all short Weierstrass curves. In particular, when the curve
E/Fq : y2 = x3 + ax + b has prime order, their formulas give rise to a function
LADDER that computes x([m]P) = LADDER(x(P), m, a, b) for the points P ∈ E(Fq2)

with (x, y) ∈ Fq × Fq2 . That is, a function that works for all x ∈ Fq and that does
not distinguish whether x corresponds to a point on the curve E, or to a point on its

5 These are addition formulas that also work for point doublings.

38 Chapter III. Complete Addition Formulas

quadratic twist E′ : dy2 = x3 + ax + b, where d is non-square in Fq. If E is chosen
to be twist-secure (this presents no problem in the prime order setting), then for all
x ∈ Fq, the function LADDER(x, m, a, b) returns an instance of the discrete logarithm
problem (whose solution is m) on a cryptographically strong curve, just like the anal-
ogous function on twist-secure Montgomery curves [Ber06a]. Finally, we note that
Tibouchi [Tib14] presented a prime-order analogue of the encoding given for certain
composite-order curves in [Ber+13], showing that the indistinguishability property
can also be achieved on prime order curves.

As is discussed in [BLc], adopting the Brier-Joye ladder (or, in our case, the com-
plete formulas) in place of the fastest formulas presents implementers with a trade-
off between “simplicity, security and speed”. However, these same trade-offs also
exist on certain choices of Edwards curves, where, for example, the fastest explicit
formulas are also not complete: the Curve41417 implementation chooses to sacri-
fice the fastest coordinate system for the sake of completeness [BCL14, §3.1], while
the Goldilocks implementation goes to more complicated lengths to use the fastest
formulas [Ham14; Ham15a; Ham15b]. Furthermore, there is an additional category
that is not considered in [BLc], i. e. the non-trivial security issues related to having a
cofactor h greater than 1 [Ham15a, §1.1].

Given the complete explicit formulas in this chapter, it is our opinion that well-
chosen prime order curves can be considered safe choices for elliptic curve cryptog-
raphy. It is well-known that curves with cofactors offer efficiency benefits in certain
scenarios, but to our knowledge, efficiency and/or bandwidth issues are the only
valid justifications for choosing a curve with a cofactor h > 1.

Organization. In §2 we present the complete addition function ADD. In §3 we give
intuition as to why these explicit formulas are optimal, or close to optimal, for prime
order curves in short Weierstrass form. In §4 we discuss how these formulas can be
used in practice. We also provide Magma [BCP97] scripts that can be used to verify
our explicit algorithms and operation counts (see https://joostrenes.nl).

2 Complete Addition Formulas

The complete addition formulas optimized in this section follow from the theorem
of Bosma and Lenstra [BL95, Theorem 2], which states that, for any extension field
K/k, there exists a 1–to–1 correspondence between lines in P2(K) and addition laws
of bidegree (2, 2) on E(K). Two points P and Q in E(K) are then exceptional for
an addition law if and only if P − Q lies on the corresponding line. When K = k̄,

https://joostrenes.nl

2. Complete Addition Formulas 39

the algebraic closure of k, every line intersects E(K); thus, one consequence of this
theorem is that every addition law of bidegree (2, 2) has an exceptional pair over the
algebraic closure.

The addition law considered in this chapter is the addition law corresponding to
the line Y = 0 in P2 in [BL95], specialized to the short Weierstrass embedding of
E above. For two points P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E, the sum
(X3 : Y3 : Z3) = P + Q is given by

X3 = Y1Y2(X1Y2 + X2Y1)− aX1X2(Y1Z2 + Y2Z1)

− a(X1Y2 + X2Y1)(X1Z2 + X2Z1)− 3b(X1Y2 + X2Y1)Z1Z2

− 3b(X1Z2 + X2Z1)(Y1Z2 + Y2Z1) + a2(Y1Z2 + Y2Z1)Z1Z2 ,

Y3 = Y2
1 Y2

2 + 3aX2
1X2

2 + 9bX1X2(X1Z2 + X2Z1)

− 2a2X1Z2(X1Z2 + 2X2Z1) + a2(X1Z2 + X2Z1)(X1Z2 − X2Z1)

− 3abX1Z1Z2
2 − 3abX2Z2

1 Z2 − (a3 + 9b2)Z2
1 Z2

2 ,

Z3 = 3X1X2(X1Y2 + X2Y1) + Y1Y2(Y1Z2 + Y2Z1) + a(X1Y2 + X2Y1)Z1Z2

+ a(X1Z2 + X2Z1)(Y1Z2 + Y2Z1) + 3b(Y1Z2 + Y2Z1)Z1Z2 .

Bosma and Lenstra prove that a pair of points (P, Q) is exceptional for this addition
law if and only if P−Q is a point of order two.

Exceptions. Throughout this chapter, we fix q ≥ 5 and assume throughout that
E(Fq) has prime order to exclude Fq-rational points of order two, so that the above
formulas are complete. However, we note that the explicit algorithms that are de-
rived in §2 will, firstly, be complete for any short Weierstrass curves of odd order,
and secondly, also be exception-free for all pairs of points inside odd order sub-
groups on any short Weierstrass curve. In particular, this means that they can also
be used to compute exception-free additions and scalar multiplications on certain
curves with an even order. We come back to this in §4.2.

2.1 The General Case

Despite the attractive properties that come with completeness, this addition law
seems to have been overlooked6 due to its apparent inefficiency. We now show
that these formulas are not as inefficient as they seem, to the point where the per-
formance will be competitive with the fastest, incomplete addition laws in current

6 Some (unpublished) results were obtained by Joye (see http://joye.site88.net/techreps/
complete.pdf), but this chapter improves on it further.

http://joye.site88.net/techreps/complete.pdf
http://joye.site88.net/techreps/complete.pdf

40 Chapter III. Complete Addition Formulas

Table 2. Operation counts for group op-
erations on the short Weierstrass curve
E/Fq : y2 = x3 + ax + b.

M S ma m3b a

ADD 12 0 3 2 23
MADD 11 0 3 2 17

DBL 8 3 3 2 15

implementations of prime order curves. We start by rewriting the above formulas as

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2) ,

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2) +

(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2) ,

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)

+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2) . (1)

The rewritten formulas still appear somewhat cumbersome, but a closer inspection
of (1) reveals that several terms are repeated. Although they are sufficient for cryp-
tographic implementations, performance gains can be obtained by specializing the
point additions to the useful scenarios of mixed additions7 (i. e. where Z2 = 1)
and/or point doublings (i. e. where P = Q). The mixed addition follows the same
formulas as for point addition, while for a point P = (X : Y : Z), doubling is com-
puted as

X3 = 2XY(Y2 − 2aXZ− 3bZ2)

− 2YZ(aX2 + 6bXZ− a2Z2) ,

Y3 = (Y2 + 2aXZ + 3bZ2)(Y2 − 2aXZ− 3bZ2)

+ (3X2 + aZ2)(aX2 + 6bXZ− a2Z2) ,

Z3 = 8Y3Z .

Throughout this chapter we write ADD for the function that maps P = (X1 : Y1 : Z1)

7 We note that it is not technically correct to call “mixed” additions complete, since Z2 = 1 precludes
the second point being the point at infinity. However, this is not a problem in practice as the second
point is typically taken from a precomputed lookup table consisting of small multiples of the input point
P 6= O. For prime order curves, these small multiples can never be at infinity.

2. Complete Addition Formulas 41

and Q = (X2 : Y2 : Z2) to P + Q = (X3 : Y3 : Z3), we denote by MADD the ADD

function under the assumption that Z2 = 1 and we write DBL for the ADD function
assuming that P = Q. We summarize the costs of these algorithms in Table 2, and
we refer to Algorithm 1 for a (non-unique) way of attaining these operation counts.

Algorithm 1. Group operations in the prime order group E(Fq) on an arbitrary short
Weierstrass curve E/Fq : y2 = x3 + ax + b

Function: ADD

1 t0 ← X1 · X2

2 t1 ← Y1 ·Y2

3 t2 ← Z1 · Z2

4 t3 ← X1 + Y1

5 t4 ← X2 + Y2

6 t3 ← t3 · t4

7 t4 ← t0 + t1

8 t3 ← t3 − t4

9 t4 ← X1 + Z1

10 t5 ← X2 + Z2

11 t4 ← t4 · t5

12 t5 ← t0 + t2

13 t4 ← t4 − t5

14 t5 ← Y1 + Z1

15 X3 ← Y2 + Z2

16 t5 ← t5 · X3

17 X3 ← t1 + t2

18 t5 ← t5 − X3

19 Z3 ← a · t4

20 X3 ← b3 · t2

21 Z3 ← X3 + Z3

22 X3 ← t1 − Z3

23 Z3 ← t1 + Z3

24 Y3 ← X3 · Z3

25 t1 ← t0 + t0

26 t1 ← t1 + t0

27 t2 ← a · t2

28 t4 ← b3 · t4

29 t1 ← t1 + t2

30 t2 ← t0 − t2

31 t2 ← a · t2

32 t4 ← t4 + t2

33 t0 ← t1 · t4

34 Y3 ← Y3 + t0

35 t0 ← t5 · t4

36 X3 ← t3 · X3

37 X3 ← X3 − t0

38 t0 ← t3 · t1

39 Z3 ← t5 · Z3

40 Z3 ← Z3 + t0

Function: MADD

41 t0 ← X1 · X2

42 t1 ← Y1 ·Y2

43 t3 ← X2 + Y2

44 t4 ← X1 + Y1

45 t3 ← t3 · t4

46 t4 ← t0 + t1

47 t3 ← t3 − t4

48 t4 ← X2 · Z1

49 t4 ← t4 + X1

50 t5 ← Y2 · Z1

51 t5 ← t5 + Y1

52 Z3 ← a · t4

53 X3 ← b3 · Z1

54 Z3 ← X3 + Z3

55 X3 ← t1 − Z3

56 Z3 ← t1 + Z3

57 Y3 ← X3 · Z3

58 t1 ← t0 + t0

59 t1 ← t1 + t0

60 t2 ← a · Z1

61 t4 ← b3 · t4

62 t1 ← t1 + t2

63 t2 ← t0 − t2

64 t2 ← a · t2

65 t4 ← t4 + t2

66 t0 ← t1 · t4

67 Y3 ← Y3 + t0

68 t0 ← t5 · t4

69 X3 ← t3 · X3

70 X3 ← X3 − t0

71 t0 ← t3 · t1

72 Z3 ← t5 · Z3

73 Z3 ← Z3 + t0

Function: DBL

74 t0 ← X · X
75 t1 ← Y ·Y
76 t2 ← Z · Z
77 t3 ← X ·Y
78 t3 ← t3 + t3

79 Z3 ← X · Z

80 Z3 ← Z3 + Z3

81 X3 ← a · Z3

82 Y3 ← b3 · t2

83 Y3 ← X3 + Y3

84 X3 ← t1 −Y3

85 Y3 ← t1 + Y3

86 Y3 ← X3 ·Y3

87 X3 ← t3 · X3

88 Z3 ← b3 · Z3

89 t2 ← a · t2

90 t3 ← t0 − t2

91 t3 ← a · t3

92 t3 ← t3 + Z3

93 Z3 ← t0 + t0

94 t0 ← Z3 + t0

95 t0 ← t0 + t2

96 t0 ← t0 · t3

97 Y3 ← Y3 + t0

98 t2 ← Y · Z
99 t2 ← t2 + t2

100 t0 ← t2 · t3

101 X3 ← X3 − t0

102 Z3 ← t2 · t1

103 Z3 ← Z3 + Z3

104 Z3 ← Z3 + Z3

42 Chapter III. Complete Addition Formulas

Table 3. Operation counts for group op-
erations on the short Weierstrass curve
E/Fq : y2 = x3 − 3x + b.

M S mb a

ADD 12 0 2 29
MADD 11 0 2 23

DBL 8 3 2 21

Table 4. Operation counts for group op-
erations on the short Weierstrass curve
E/Fq : y2 = x3 + b.

M S m3b a

ADD 12 0 2 19
MADD 11 0 2 13

DBL 6 2 1 9

2.2 The Case a = −3

Several standards (e. g. [Cer; Nat13; Kir+15; Age14; Cer10; ECC05]) adopt short
Weierstrass curves with the constant a being a = −3, which gives rise to faster ex-
plicit formulas for point doubling.8 In this case, the complete formulas in (1) special-
ize to

X3 = (X1Y2 + X2Y1)(Y1Y2 + 3(X1Z2 + X2Z1 − bZ1Z2))

− 3(Y1Z2 + Y2Z1)(b(X1Z2 + X2Z1)− X1X2 − 3Z1Z2) ,

Y3 = 3(3X1X2 − 3Z1Z2)(b(X1Z2 + X2Z1)− X1X2 − 3Z1Z2) +

(Y1Y2 − 3(X1Z2 + X2Z1 − bZ1Z2))(Y1Y2 + 3(X1Z2 + X2Z1 − bZ1Z2)) ,

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 − 3(X1Z2 + X2Z1 − bZ1Z2))

+ (X1Y2 + X2Y1)(3X1X2 − 3Z1Z2) .

The doubling formulas simplify to

X3 = 2XY(Y2 + 3(2XZ− bZ2))

− 6YZ(2bXZ− X2 − 3Z2) ,

Y3 = (Y2 − 3(2XZ− bZ2))(Y2 + 3(2XZ− bZ2))

+ 3(3X2 − 3Z2)(2bXZ− X2 − 3Z2) ,

Z3 = 8Y3Z .

We describe the costs of these algorithms in Table 3, and we refer to Algorithm 2 for
a (non-unique) way of achieving these operation counts.

8 When Fq is a large prime field, the case a = −3 covers 1/2 resp. 1/4 of the isomorphism classes for
q ≡ 3 (mod 4) resp. q ≡ 1 (mod 4) — see [BJ03, §3].

2. Complete Addition Formulas 43

Algorithm 2. Group operations in the prime order group E(Fq) on the short Weier-
strass curve E/Fq : y2 = x3 − 3x + b

Function: ADD

1 t0 ← X1 · X2
2 t1 ← Y1 ·Y2
3 t2 ← Z1 · Z2
4 t3 ← X1 + Y1
5 t4 ← X2 + Y2
6 t3 ← t3 · t4
7 t4 ← t0 + t1
8 t3 ← t3 − t4
9 t4 ← Y1 + Z1

10 X3 ← Y2 + Z2
11 t4 ← t4 · X3
12 X3 ← t1 + t2
13 t4 ← t4 − X3
14 X3 ← X1 + Z1
15 Y3 ← X2 + Z2
16 X3 ← X3 ·Y3
17 Y3 ← t0 + t2
18 Y3 ← X3 −Y3
19 Z3 ← b · t2
20 X3 ← Y3 − Z3
21 Z3 ← X3 + X3
22 X3 ← X3 + Z3
23 Z3 ← t1 − X3
24 X3 ← t1 + X3
25 Y3 ← b ·Y3
26 t1 ← t2 + t2
27 t2 ← t1 + t2
28 Y3 ← Y3 − t2
29 Y3 ← Y3 − t0

30 t1 ← Y3 + Y3
31 Y3 ← t1 + Y3
32 t1 ← t0 + t0
33 t0 ← t1 + t0
34 t0 ← t0 − t2
35 t1 ← t4 ·Y3
36 t2 ← t0 ·Y3
37 Y3 ← X3 · Z3
38 Y3 ← Y3 + t2
39 X3 ← t3 · X3
40 X3 ← X3 − t1
41 Z3 ← t4 · Z3
42 t1 ← t3 · t0
43 Z3 ← Z3 + t1

Function: MADD

44 t0 ← X1 · X2
45 t1 ← Y1 ·Y2
46 t3 ← X2 + Y2
47 t4 ← X1 + Y1
48 t3 ← t3 · t4
49 t4 ← t0 + t1
50 t3 ← t3 − t4
51 t4 ← Y2 · Z1
52 t4 ← t4 + Y1
53 Y3 ← X2 · Z1
54 Y3 ← Y3 + X1
55 Z3 ← b · Z1
56 X3 ← Y3 − Z3
57 Z3 ← X3 + X3

58 X3 ← X3 + Z3
59 Z3 ← t1 − X3
60 X3 ← t1 + X3
61 Y3 ← b ·Y3
62 t1 ← Z1 + Z1
63 t2 ← t1 + Z1
64 Y3 ← Y3 − t2
65 Y3 ← Y3 − t0
66 t1 ← Y3 + Y3
67 Y3 ← t1 + Y3
68 t1 ← t0 + t0
69 t0 ← t1 + t0
70 t0 ← t0 − t2
71 t1 ← t4 ·Y3
72 t2 ← t0 ·Y3
73 Y3 ← X3 · Z3
74 Y3 ← Y3 + t2
75 X3 ← t3 · X3
76 X3 ← X3 − t1
77 Z3 ← t4 · Z3
78 t1 ← t3 · t0
79 Z3 ← Z3 + t1

Function: DBL

80 t0 ← X · X
81 t1 ← Y ·Y
82 t2 ← Z · Z
83 t3 ← X ·Y
84 t3 ← t3 + t3
85 Z3 ← X · Z

86 Z3 ← Z3 + Z3
87 Y3 ← b · t2
88 Y3 ← Y3 − Z3
89 X3 ← Y3 + Y3
90 Y3 ← X3 + Y3
91 X3 ← t1 −Y3
92 Y3 ← t1 + Y3
93 Y3 ← X3 ·Y3
94 X3 ← X3 · t3
95 t3 ← t2 + t2
96 t2 ← t2 + t3
97 Z3 ← b · Z3
98 Z3 ← Z3 − t2
99 Z3 ← Z3 − t0
100 t3 ← Z3 + Z3
101 Z3 ← Z3 + t3
102 t3 ← t0 + t0
103 t0 ← t3 + t0
104 t0 ← t0 − t2
105 t0 ← t0 · Z3
106 Y3 ← Y3 + t0
107 t0 ← Y · Z
108 t0 ← t0 + t0
109 Z3 ← t0 · Z3
110 X3 ← X3 − Z3
111 Z3 ← t0 · t1
112 Z3 ← Z3 + Z3
113 Z3 ← Z3 + Z3

44 Chapter III. Complete Addition Formulas

2.3 The Case a = 0

Short Weierstrass curves with a = 0, i. e. with j-invariant 0, have also appeared in
the standards. For example, Certicom’s SEC-2 standard [Cer10] specifies three such
curves; one of these is secp256k1, which is the curve used in the Bitcoin protocol.
In addition, in the case that pairing-based cryptography becomes standardized, it is
possible that the curve choices will be short Weierstrass curves with a = 0, e. g. BN
curves [BN06]. In this case, the complete additions simplify to

X3 = (X1Y2 + X2Y1)(Y1Y2 − 3bZ1Z2)− 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1) ,

Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 − 3bZ1Z2) + 9bX1X2(X1Z2 + X2Z1) ,

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 + X2Y1) .

The doubling formulas are

X3 = 2XY(Y2 − 9bZ2) ,

Y3 = (Y2 − 9bZ2)(Y2 + 3bZ2) + 24bY2Z2 ,

Z3 = 8Y3Z .

The costs of these algorithms can be found in Table 4, while Algorithm 3 provides a
(non-unique) way of achieving these operation counts.

3 Some Intuition Towards Optimality

In this section we motivate the choice of the complete formulas in (1) that were taken
from Bosma and Lenstra [BL95], by providing reasoning as to why, among the many
possible complete addition laws on prime order curves, we chose the set correspond-
ing to the line Y = 0 in P2(k) under the straightforward homogeneous projection.

We do not claim that this choice is truly optimal, since proving that a certain
choice of projective embedding and/or complete addition law for any particular
prime order curve is faster than all of the other choices for that curve seems extremely
difficult, if not impossible. We merely explain why, when aiming to write down ex-
plicit functions that will simultaneously be complete on all prime order short Weier-
strass curves, choosing the Bosma–Lenstra formulas makes sense.

Furthermore, we also do not claim that our explicit algorithms to compute the
addition law in (1) are computationally optimal. It is likely that trade-offs can be
advantageously exploited on some platforms (c. f. [His10, §3.6]) or that alternative

3. Some Intuition Towards Optimality 45

Algorithm 3. Group operations in the prime order group E(Fq) on the short Weier-
strass curve E/Fq : y2 = x3 + b

Function: ADD

1 t0 ← X1 · X2
2 t1 ← Y1 ·Y2
3 t2 ← Z1 · Z2
4 t3 ← X1 + Y1
5 t4 ← X2 + Y2
6 t3 ← t3 · t4
7 t4 ← t0 + t1
8 t3 ← t3 − t4
9 t4 ← Y1 + Z1

10 X3 ← Y2 + Z2
11 t4 ← t4 · X3
12 X3 ← t1 + t2
13 t4 ← t4 − X3
14 X3 ← X1 + Z1
15 Y3 ← X2 + Z2
16 X3 ← X3 ·Y3
17 Y3 ← t0 + t2
18 Y3 ← X3 −Y3
19 X3 ← t0 + t0
20 t0 ← X3 + t0

21 t2 ← b3 · t2
22 Z3 ← t1 + t2
23 t1 ← t1 − t2
24 Y3 ← b3 ·Y3
25 X3 ← t4 ·Y3
26 t2 ← t3 · t1
27 X3 ← t2 − X3
28 Y3 ← Y3 · t0
29 t1 ← t1 · Z3
30 Y3 ← t1 + Y3
31 t0 ← t0 · t3
32 Z3 ← Z3 · t4
33 Z3 ← Z3 + t0

Function: MADD

34 t0 ← X1 · X2
35 t1 ← Y1 ·Y2
36 t3 ← X2 + Y2
37 t4 ← X1 + Y1
38 t3 ← t3 · t4
39 t4 ← t0 + t1

40 t3 ← t3 − t4
41 t4 ← Y2 · Z1
42 t4 ← t4 + Y1
43 Y3 ← X2 · Z1
44 Y3 ← Y3 + X1
45 X3 ← t0 + t0
46 t0 ← X3 + t0
47 t2 ← b3 · Z1
48 Z3 ← t1 + t2
49 t1 ← t1 − t2
50 Y3 ← b3 ·Y3
51 X3 ← t4 ·Y3
52 t2 ← t3 · t1
53 X3 ← t2 − X3
54 Y3 ← Y3 · t0
55 t1 ← t1 · Z3
56 Y3 ← t1 + Y3
57 t0 ← t0 · t3
58 Z3 ← Z3 · t4
59 Z3 ← Z3 + t0

Function: DBL

60 t0 ← Y ·Y
61 Z3 ← t0 + t0
62 Z3 ← Z3 + Z3
63 Z3 ← Z3 + Z3
64 t1 ← Y · Z
65 t2 ← Z · Z
66 t2 ← b3 · t2
67 X3 ← t2 · Z3
68 Y3 ← t0 + t2
69 Z3 ← t1 · Z3
70 t1 ← t2 + t2
71 t2 ← t1 + t2
72 t0 ← t0 − t2
73 Y3 ← t0 ·Y3
74 Y3 ← X3 + Y3
75 t1 ← X ·Y
76 X3 ← t0 · t1
77 X3 ← X3 + X3

46 Chapter III. Complete Addition Formulas

operation scheduling could reduce the number of field additions.9

3.1 Choice of Y = 0 for Bidegree (2, 2) Addition Laws

Let L(α,β,γ) denote the line given by αX + βY + γZ = 0 inside P2(Fq), and, under
the necessary assumption that L(α,β,γ) does not intersect the Fq-rational points of the
curve E : Y2Z = X3 + aXZ2 + bZ3, let A(α,β,γ) denote the complete addition law of
bidegree (2, 2) corresponding to L(α,β,γ) given by [BL95, Theorem 2]. So far we have
given optimizations for A(0,1,0), but the question remains as to whether there are
other lines L(α,β,γ) which give rise to even faster addition laws A(α,β,γ).

We first point out that L(0,1,0) is the only line that does not intersect E(Fq) inde-
pendently of a, b and q. That is, it is easy to show that any other line in P2(Fq) that
does not intersect the group of Fq-rational points of any elliptic curve E such that
#E(Fq) is odd will have a dependency on at least one of a, b and q, and the resulting
addition law will therefore only be complete on a subset of prime order curves.

Nevertheless, it is possible that there is a better choice than A(0,1,0) for a given
short Weierstrass curve, or that there are special choices of prime order curves that
give rise to more efficient complete group laws. We now sketch some intuition as
to why this is unlikely. For A(α,β,γ) to be complete, it is necessary that, in particular,
L(α,β,γ) does not intersect E at the point at infinity (0 : 1 : 0). This implies that β 6= 0.
From [LR85; BL95], we know that the space of all addition laws has dimension 3 and
that

A(α,β,γ) = αA(1,0,0) + βA(0,1,0) + γA(0,0,1) ,

where A(1,0,0), A(0,1,0) and A(0,0,1) are the three addition laws given in [BL95, p. 236-
239], specialized to short Weierstrass curves. Given that β 6= 0, our only hope of
finding a more simple addition law than A(0,1,0) is by choosing α and/or γ in a way
that causes an advantageous cross-cancellation of terms. Close inspection of the
formulas in [BL95] strongly suggests that no such cancellation exists.

Remark 1. Interestingly, both A(1,0,0) and A(0,0,1) vanish to zero when specialized
to doubling. This means that any doubling formula in bidegree (2, 2) that is not
exceptional at the point at infinity is a scalar multiple of A(0,1,0), i. e. the formulas
used in this chapter.

Remark 2. Although a more efficient addition law might exist for larger bidegrees,
it is worth reporting that our experiments to find higher bidegree analogues of the
Bosma and Lenstra formulas suggest that this, too, is unlikely. The complexity (and

9 Our experimentation did suggest that computing (1) in any reasonable way with fewer than 12
generic multiplications appears to be difficult.

3. Some Intuition Towards Optimality 47

computational cost) of the explicit formulas grows rapidly as the bidegree increases,
which is most commonly the case across all models of elliptic curves and projective
embeddings (c. f. [His10]). We could hope for an addition law of bidegree lower than
(2, 2), but in [BL95, §3] Bosma and Lenstra prove that this is not possible under the
short Weierstrass embedding10 of E.

3.2 Jacobian Coordinates

Since first suggested for short Weierstrass curves by Miller in his seminal paper
[Mil86, p. 424], Jacobian coordinates have proven to offer significant performance
advantages over other coordinate systems. Given their ubiquity in real-world ECC
code, and the fact that their most commonly used sets of efficient point doubling for-
mulas turn out to be exception-free on prime order curves (see Table 1), it is highly
desirable to go searching for a Jacobian coordinate analogue of the Bosma–Lenstra
(homogeneous coordinates) addition law. Unfortunately, we now show that such
addition formulas in Jacobian coordinates must have a higher bidegree, intuitively
making them slower to compute.

For the remainder of this section only, let E(Fq) ⊂ P(2, 3, 1)(Fq) have odd order.
If an addition law f = (fX : fY : fZ) has fZ of bidegree (µ, ν), then the bidegrees of
fX and fY are (2µ, 2ν) and (3µ, 3ν), respectively. Below we show that any complete
formulas must have µ, ν ≥ 3.

Consider the addition of two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2),
using the addition law

f (P, Q) = (fX(P, Q) : fY(P, Q) : fZ(P, Q)) ,

with fZ of bidegree (µ, ν). Suppose that f is complete, and that µ < 3. Then fZ,
viewed as a polynomial in X1, Y1, Z1, has degree µ < 3, and in particular cannot
contain Y1. Now, since −P = (X1 : −Y1 : Z1) on E, it follows that fZ(P, Q) =

fZ(−P, Q) for all possible Q, and in particular when Q = P. But given that P cannot
have order 2, we have fZ(P, P) 6= 0 and fZ(−P, P) = 0, a contradiction. We conclude
that µ ≥ 3, and (by symmetry) that ν ≥ 3. It follows that fX and fY have bidegrees at
least (6, 6) and (9, 9), respectively, which destroys any hope of comparable efficiency
to the homogeneous Bosma–Lenstra formulas.

10 Lower bidegree addition laws are possible for other embeddings (i. e. models) of E in the case where
E has a k-rational torsion structure – see [Koh11].

48 Chapter III. Complete Addition Formulas

4 Using These Formulas in Practice

In this section we discuss the practical application of the complete formulas in this
chapter. We discuss how they can be used for both the prime order curves (§4.1)
and composite order curves (§4.2) in the standards. In §4.3, we give performance
numbers that shed light on the expected cost of completeness in certain software sce-
narios, before discussing why this cost is likely to be significantly reduced in many
other scenarios, e. g. in hardware.

4.1 Application to Prime Order Curves

Using the ADD function in Algorithm 1 as a black-box point addition routine, non-
experts now have a straightforward way to implement the standardized prime order
elliptic curves. So long as scalars are recoded correctly, the subsequent scalar multi-
plication routine will always compute the correct result.

Given the vulnerabilities exposed in already deployed ECC implementations (see
§1), we now provide some implementation recommendations, e. g. for an imple-
menter whose task it is to (re)write a simple and timing-resistant scalar multiplica-
tion routine for prime order curves from scratch. The main point is that branches
(e. g. if statements) inside the elliptic curve point addition algorithms can now be
avoided entirely. Our main recommendation is that more streamlined versions of
the ADD function should only be introduced to an implementation if they are guar-
anteed to be exception-free; subsequently, we stress that branching should never be
introduced into any point addition algorithms.

Assuming access to branch-free, constant-time field arithmetic in Fq, a first step is
to implement the ADD in Algorithm 1 to be used for all point (doubling and addition)
operations, working entirely in homogeneous projective space. The natural next step
is to implement a basic scalar recoding (e. g. [OT03; JT09]) that gives rise to a fixed,
uniform, scalar-independent main loop. This typically means that the main loop
repeats the same pattern of a fixed number of doublings followed by a single table
lookup/extraction and, subsequently, an addition. The important points are that this
table lookup must be done in a cache-timing resistant manner (c. f. [Käs12, §3.4]), and
that the basic scalar recoding must itself be performed in a uniform manner.

Once the above routine is running correctly, an implementer that is seeking fur-
ther performance gains can start by viewing stages of the routine where ADD can
safely be replaced by its specialized, more efficient variants. If the code is intended to
support only short Weierstrass curves with either a = −3 or a = 0, then Algorithm 1

4. Using These Formulas in Practice 49

should be replaced by (the faster and more compact) Algorithm 2 or Algorithm 3,
respectively. If the performance gains warrant the additional code, then at all stages
where the addition function is called to add a point to itself (i. e. the point doubling
stages), the respective exception-free point doubling routine(s) DBL in Algorithms 1–
3 should be implemented and called there instead.

Incomplete short Weierstrass addition routines (e. g. the prior works summarized
in Table 1) should only be introduced for further performance gains if the imple-
menter can guarantee that exceptional pairs of points can never be input into the al-
gorithms, and subsequently can implement them without introducing any branches.
For example, Bos et al. [Bos+16, §4.1] proved that, under their particular choice of
scalar multiplication algorithm, all-but-one of the point additions in a variable-base
scalar multiplication can be performed without exception using an incomplete ad-
dition function. The high-level argument used there was that such additions almost
always took place between elements of the lookup table and a running value that
had just been output from a point doubling, the former being small odd multiples
of the input point (e. g. P, [3]P, [5]P, etc.) and the latter being some even multiple.
Subsequently, they showed that the only possible time when the input points to the
addition algorithm could coincide with (or be inverses of) each other is in the final
addition, ruling out the exceptional points in all prior additions. On the other hand,
as we mentioned in §1 and as was encountered in [Bos+16, §4.1], it can be signifi-
cantly more complicated to rule out exceptional input points in more exotic scalar
multiplication scenarios like fixed-base scalar multiplications, multiscalar multipli-
cations, or those that exploit endomorphisms. In those cases, it could be that the
only option to rule out any exceptional points is to always call complete addition
algorithms.

Remark 3 (The best of both worlds?). We conclude this subsection by mentioning
one more option that may be of interest to implementers who want to combine the
fastest complete point addition algorithms with the fastest exception-free point dou-
bling algorithms. Recall from Table 1 that the fastest doubling algorithms for short
Weierstrass curves work in Jacobian coordinates and happen to be exception-free in
the prime order setting, but recall from §3.2 that there is little hope of obtaining rel-
atively efficient complete addition algorithms in Jacobian coordinates. This prompts
the question as to whether the doubling algorithms that take place in P(2, 3, 1)(k)
can be combined with our complete addition algorithms that take place in P2(k).
Generically, we can map the elliptic curve point (X : Y : Z) ∈ P(2, 3, 1)(k) to
(XZ : Y : Z3) ∈ P2(k), and conversely, we can map the point (X : Y : Z) ∈ P2(k)
to (XZ : YZ2 : Z) ∈ P(2, 3, 1)(k); both maps cost 2M + 1S. We note that in the

50 Chapter III. Complete Addition Formulas

first direction there are no exceptions: in particular, the point at infinity (1 : 1 : 0) ∈
P(2, 3, 1)(k) correctly maps to (0 : 1 : 0) ∈ P2(k). However, in the other direction, the
point at infinity (0 : 1 : 0) ∈ P2(k) does not correctly map to (1 : 1 : 0) ∈ P(2, 3, 1)(k),
but rather to the point (0 : 0 : 0) 6∈ P(2, 3, 1)(k).

For a variable-base scalar multiplication using a fixed window of width w, one
option would be to store the precomputed lookup table in P2(k) (or in A2(k) if nor-
malizing for the sake of complete mixed additions is preferred), and to compute
the main loop as follows. After computing each of the w consecutive doublings in
P(2, 3, 1)(k), the running value is converted to P2(k) at a cost of 2M + 1S, then the
result of a complete addition (between the running value and a lookup table ele-
ment) is converted back to P(2, 3, 1)(k) at a cost of 2M + 1S. Even for small window
sizes that result in additions (and thus the back-and-forth conversions) occurring
relatively often, the operation counts in Table 1 suggest that this trade-off will be
favorable; and, for larger window sizes, the resulting scalar multiplication will be
significantly faster than one that works entirely in P2(k).

The only possible exception that could occur in the above routine is when the
result of an addition is the point at infinity (0 : 1 : 0) ∈ P2(k), since the conversion
back to P(2, 3, 1)(k) fails here. Thus, this strategy should only be used if the scalar
multiplication routine is such that the running value is never the inverse of any el-
ement in the lookup table, or if the conversion from P2(k) to P(2, 3, 1)(k) is written
to handle this possible exception in a constant-time fashion. In the former case, if (as
in [Bos+16, §4.1]) this can only happen in the final addition, then the workaround is
easy: either guarantee that the scalars cannot be a multiple of the group order (which
rules out this possibility), or else do not apply the conversion back to P(2, 3, 1)(k) af-
ter the final addition.

4.2 Interoperability With Composite Order Curves

The IRTF CFRG recently selected two composite order curves as a recommendation
to the TLS working group for inclusion in upcoming versions of TLS: Bernstein’s
Curve25519 [Ber06a] and Hamburg’s Goldilocks [Ham15b]. The current IETF inter-
net draft11 specifies the wire format for these curves to be the u-coordinate corre-
sponding to a point (u, v) on the Montgomery model of these curves EM/Fq : v2 =

u3 + Au2 + u. Curve25519 has q = 2255 − 19 with A = 486662 and Goldilocks has
q = 2448 − 2224 − 1 with A = 156326. Since our complete formulas are likely to be
of interest to practitioners concerned with global interoperability, e. g. those invest-

11 See https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/.

https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/

4. Using These Formulas in Practice 51

ing a significant budget into one implementation that may be intended to support as
many standardized curves as possible, we now show that ADD in Algorithm 1 can
be adapted to interoperate with the composite order curves in upcoming TLS cipher-
suites. We make no attempt to disguise the fact that this will come with a significant
performance penalty over the Montgomery ladder, but in this case we are assuming
that top performance is not the priority.

A trivial map EM → E from the Montgomery curve to a short Weierstrass curve
is (u, v) 7→ (x, y) = (u + A/3, v); here the short Weierstrass curve is E : y2 =

x3 + ax + b, with a = 1− A2/3 and b = A(2A2 − 9)/27. Thus, a dedicated short
Weierstrass implementation can interoperate with Curve25519 (resp. Goldilocks) as
follows. After receiving the u-coordinate on the wire, set x = u + A/3 (i. e. add a
fixed, global constant), and decompress to compute the corresponding y-coordinate
on E via the square root y =

√
x3 + ax + b as usual; the choice of square root here

does not matter. Setting P = (x, y) and validating that P ∈ E, we can then call ADD

to compute 3 (resp. 2) successive doublings to get Q. This is in accordance with the
scalars being defined with 3 (resp. 2) fixed zero bits to clear the cofactor [Ber06a]. The
point Q is then multiplied by the secret part of the scalar (using, e. g. the methods we
just described in §4.1), then normalized to give Q = (x′, y′), and the Montgomery
u-coordinate of the result is output as u′ = x′ − A/3.

Note that the above routine is exception free: ADD only fails to add the points P1

and P2 when P1 − P2 is a point of exact order 2. Thus, it can be used for point dou-
blings on all short Weierstrass curves (including those of even order). Furthermore,
the point Q is in the prime order subgroup, so the subsequent scalar multiplication
(which only encounters multiples of Q) cannot find a pair of points that are excep-
tional to ADD.

Finally, we note that although neither Curve25519 or Goldilocks are isomorphic
to a Weierstrass curve with a = −3, both curves have simple isomorphisms to Weier-
strass curves with small a values, e. g. a = 2 and a = 1, respectively. Making use of
this would noticeably decrease the overhead of our complete formulas.

4.3 An OpenSSL Implementation

In Table 5 we report the factor slowdown obtained when substituting the MADD

and DBL functions in Algorithm 2 for OpenSSL’s MADD (ec_GFp_simple_add) and
DBL (ec_GFp_simple_dbl) functions inside the OpenSSL scalar multiplication rou-
tine for the five NIST prime curves (which all have a = −3). We intentionally left
OpenSSL’s scalar multiplication routines unaltered in order to provide an unbiased

52 Chapter III. Complete Addition Formulas

Table 5. Number of ECDH operations in 10 seconds for the OpenSSL implementation of the
five NIST prime curves, using complete and incomplete addition formulas. Timings were
obtained by running the “openssl speed ecdhpXXX” command on an Intel Core i5-5300 CPU
@ 2.30GHz, averaged over 100 trials of 10s each.

NIST curve No. of ECDH operations (per 10 s) Factor slowdown
Complete Incomplete

P-192 35 274 47 431 1.34×
P-224 24 810 34 313 1.38×
P-256 21 853 30 158 1.38×
P-384 10 109 14 252 1.41×
P-521 4 580 6 634 1.44×

upper bound on the performance penalty that our complete algorithms will intro-
duce. For the remainder of this subsection, we discuss why the performance differ-
ence is unlikely to be this large in many practical scenarios.

Referring to Table 6 (which, as well as the counts given in Table 1, includes the
operation counts for mixed additions), we see that the mixed addition formulas in
Jacobian coordinates (i. e. [CMO98; BLb; HLX12]) are 4M + 1S faster than full ad-
ditions, while for our complete formulas the difference is only 1M + 6a. Thus, in
Jacobian coordinates, it is often advantageous to normalize the lookup table (using
one shared inversion [Mon87]) in order to save 4M + 1S per addition. On the other
hand, in the case of the complete formulas, this will not be a favorable trade-off and
(assuming there is ample cache space) it is likely to be better to leave all of the lookup
elements in P2. The numbers reported in Table 5 use OpenSSL’s scalar multiplication
which does normalize the lookup table to use mixed additions, putting the complete
formulas at a disadvantage.

As we mentioned in §1, the slowdowns reported in Table 5 (which were ob-
tained on a 64-bit machine) are likely to be significantly less on low-end architectures
where the relative cost of field additions drops. Furthermore, in embedded scenarios
where implementations must be protected against more than just timing attacks, a
common countermeasure is to randomize the projective coordinates of intermediate
points [Cor99]. In these cases, normalized lookup table elements could also give rise
to side-channel vulnerabilities [FV12, §3.4–3.6], which would take mixed additions
out of the equation. As Table 6 suggests, when full additions are used throughout,
our complete algorithms will give much better performance relative to their incom-
plete counterparts.

We remark that runtime is not the only metric of concern to ECC practitioners;

5. Hardware Implementations 53

Table 6. Operation counts for the prior incomplete addition algorithms and our complete
ones, with the inclusion of mixed addition formulas. Credits for the incomplete formulas are
the same as in Table 1, except for the additional mixed formulas which are, in homogeneous
coordinates, due to Cohen, Miyaji and Ono [CMO98], and in Jacobian coordinates, due to
Hankerson, Menezes and Vanstone [HMV06, p. 91].

a Ref. ADD MADD DBL

M S ma mb a M S ma mb a M S ma mb a

any
This 12 0 3 2 23 11 0 3 2 17 8 3 3 2 15

[CMO98; BLb] 12 4 0 0 7 8 3 0 0 7 3 6 1 0 13
[CMO98] 12 2 0 0 7 9 2 0 0 7 5 6 1 0 12

−3
This 12 0 0 2 29 11 0 0 2 23 8 3 0 2 21

[CMO98; BLb] 12 4 0 0 7 8 3 0 0 7 4 4 0 0 8
[CMO98; LG10] 12 2 0 0 7 9 2 0 0 7 7 3 0 0 11

0 This 12 0 0 2 19 11 0 0 2 13 6 2 0 1 9
[CMO98; HLX12] 12 4 0 0 7 8 3 0 0 7 3 4 0 0 7

in fact, there was wide consensus (among both speakers and panelists) at the recent
NIST workshop12 that security and simplicity are far more important in real-world
ECC than raw performance. While our complete algorithms are likely to be slower
in some scenarios, we reiterate that complete formulas reign supreme in all other
aspects, including total code size, ease of implementation, and issues relating to side-
channel resistance.

5 Hardware Implementations

In the setting of hardware implementations, different assumptions on the cost of op-
erations should be made. That is, hardware implementations of ECC typically rely
on using general field hardware multipliers that are often based on the algorithm of
Montgomery [Mon85]. These types of hardware modules use a multiplier for both
multiplications and squarings [CBC07; GP08], meaning that the squarings our addi-
tion algorithms save (over the prior formulas) are full multiplications. Moreover,
hardware architectures that are based on Montgomery multiplication can benefit
from modular additions/subtractions computed as non-modular operations. The
concept is explained in [BBMÖ04], which is a typical ECC hardware architecture
using the “relaxed” Montgomery parameter such that the conditional subtraction
(from the original algorithm of Montgomery) can be omitted. In this way, the modu-

12 See https://www.nist.gov/itl/csd/ct/ecc-workshop.cfm.

https://www.nist.gov/itl/csd/ct/ecc-workshop.cfm

54 Chapter III. Complete Addition Formulas

Table 7. Dependencies of multiplications inside the complete addition formulas.

Stage Result Multiplication Dependent on

0 `0 X1 · X2 —
0 `1 Y1 ·Y2 —
0 `2 Z1 · Z2 —
0 `3 (X1 + Y1) · (X2 + Y2) —
0 `4 (X1 + Z1) · (X2 + Z2) —
0 `5 (Y1 + Z1) · (Y2 + Z2) —
1 `6 b3 · `2 `2
1 `7 a · `2 `2
1 `8 a · (`4 − `0 − `2) `0, `2, `4
1 `9 b3 · (`4 − `0 − `2) `0, `2, `4
2 `10 a · (`0 − `7) `0, `7
2 `11 (`3 − `0 − `1) · (`1 − `8 − `6) `0, `1, `3, `6, `8
2 `13 (`1 + `8 + `6) · (`1 − `8 − `6) `1, `6, `8
2 `15 (`5 − `1 − `2) · (`1 + `8 + `6) `1, `2, `5, `6, `8
2 `16 (`3 − `0 − `1) · (3`0 + `7) `0, `1, `3, `7
3 `12 (`5 − `1 − `2) · (`10 + `9) `1, `2, `5, `9, `10
3 `14 (3`0 + `7) · (`10 + `9) `0, `7, `9, `10

lar addition/subtraction is implemented not just very efficiently, but also as a time-
constant operation. Using this approach implies the only cost to be taken into ac-
count is the one of modular multiplication, i. e. modular additions come almost for
free. Similar conclusions apply for multiplications with a constant as they can be
implemented very efficiently in hardware, assuming a constant is predefined and
hence “hardwired”.

A second benefit of implementing the algorithms in hardware is that one can
efficiently run multiple (say n) processors in parallel. Here we focus on the ADD

function in Algorithm 1, but an analogous analysis can be performed when a = −3

Table 8. Efficiency approximation of the number of Montgomery multipliers against the area
used.

n Cost n × Cost Ref.

1 17M + 23a 17M + 23a Alg. 1
2 9M2 + 12a2 18M + 24a Appendix A
3 6M3 + 8a3 18M + 24a Appendix A
4 5M4 + 7a4 20M + 28a Appendix A
5 4M5 + 6a5 20M + 30a Appendix A
6 3M6 + 6a6 18M + 36a Appendix A

5. Hardware Implementations 55

or a = 0. As explained in the previous paragraph, we assume the cost of this function
to be 17M. These multiplications are of course not independent, but we can easily
work out their interdependencies (see Table 7). Using this table we can write down
algorithms for implementations running n processors in parallel. Denote by Mn resp.
an the cost of doing n multiplications resp. additions (or subtractions) in parallel. In
Table 8 we present the costs for 1 ≤ n ≤ 6 (for n = 6 we assume to have the constant
a2 precomputed). Note that typically Mn > M and an > a. For example, a larger
number of Montgomery multipliers can result in scheduling overhead. Verification
code in Magma for all algorithms can be found in Appendix A.

56 Chapter III. Complete Addition Formulas

A Magma Verification Code for Parallel ADD

function ADD_two(X1,Y1,Z1,X2,Y2,Z2,a,b3)

t0 := X1+Y1; t1 := X2+Y2; // 1

t2 := Y1+Z1; t3 := Y2+Z2; // 2

t0 := t0*t1; t1 := t2*t3; // 3

t4 := X1*X2; t6 := Z1*Z2; // 4

t2 := X1+Z1; t3 := X2+Z2; // 5

t0 := t0-t4; t1 := t1-t6; // 6

t5 := Y1*Y2; t2 := t2*t3; // 7

t7 := a*t6; t8 := b3*t6; // 8

t9 := t4-t7; t10 := t4+t4; // 9

t11 := t4+t7; t2 := t2-t4; // 10

t0 := t0-t5; t1 := t1-t5; // 11

t2 := t2-t6; t10 := t10+t11; // 12

t9 := a*t9; t11 := b3*t2; // 13

t2 := a*t2; // 14

t9 := t9+t11; t8 := t2+t8; // 15

t6 := t5-t8; t5 := t5+t8; // 16

t3 := t1*t9; t9 := t9*t10; // 17

t10 := t0*t10; t0 := t0*t6; // 18

t6 := t5*t6; t1 := t1*t5; // 19

X3 := t0-t3; Y3 := t6+t9; // 20

Z3 := t1+t10; // 21

return X3,Y3,Z3;

end function;

function ADD_three(X1,Y1,Z1,X2,Y2,Z2,a,b3);

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2; // 1

t3 := X1+Y1; t4 := X2+Y2; t5 := Y1+Z1; // 2

t6 := Y2+Z2; t7 := X1+Z1; t8 := X2+Z2; // 3

t9 := t3*t4; t10 := t5*t6; t11 := t7*t8; // 4

t3 := t0+t1; t4 := t1+t2; t5 := t0+t2; // 5

t6 := b3*t2; t8 := a*t2; // 6

t2 := t9-t3; t9 := t0+t0; t3 := t10-t4; // 7

t10 := t9+t0; t4 := t11-t5; t7 := t0-t8; // 8

A. Magma Verification Code for Parallel ADD 57

t0 := a*t4; t5 := b3*t4; t9 := a*t7; // 9

t4 := t0+t6; t7 := t5+t9; t0 := t8+t10; // 10

t5 := t1-t4; t6 := t1+t4; // 11

t1 := t5*t6; t4 := t0*t7; t8 := t3*t7; // 12

t9 := t2*t5; t10 := t3*t6; t11 := t0*t2; // 13

X3 := t9-t8; Y3 := t1+t4; Z3 := t10+t11; // 14

return X3,Y3,Z3;

end function;

function ADD_four(X1,Y1,Z1 ,X2 ,Y2 ,Z2,a,b3);

t0 := X1+Y1; t1 := X2+Y2;

t2 := Y1+Z1; t3 := Y2+Z2; // 1

t0 := t0*t1; t1 := t2*t3;

t4 := X1*X2; t6 := Z1*Z2; // 2

t2 := X1+Z1; t3 := X2+Z2;

t0 := t0-t4; t1 := t1-t6; // 3

t5 := Y1*Y2; t2 := t2*t3;

t7 := a*t6;; t8 := b3*t6; // 4

t9 := t4-t7; t10 := t4+t4;

t11 := t4+t7; t2 := t2-t4; // 5

t0 := t0-t5; t1 := t1-t5;

t2 := t2-t6; t10 := t10+t11; // 6

t9 := a*t9; t11 := b3*t2; t2 := a*t2; // 7

t9 := t9+t11; // 8

t3 := t1*t9; t9 := t9*t10;

t10 := t0*t10; t8 := t2+t8; // 9

t6 := t5-t8; t5 := t5+t8; // 10

t0 := t0*t6; t6 := t5*t6; t1 := t1*t5; // 11

X3 := t0-t3; Y3 := t6+t9; Z3 := t1+t10; // 12

return X3,Y3,Z3;

end function;

function ADD_five(X1,Y1,Z1,X2,Y2,Z2,a,b3);

t5 := X1+Y1; t6 := X2+Y2; t7 := X1+Z1;

t8 := X2+Z2; t9 := Y1+Z1; // 1

t0 := X1*X2; t1 := Y1*Y2; t2 := Z1*Z2;

t3 := t5*t6; t4 := t7*t8; // 2

58 Chapter III. Complete Addition Formulas

t10 := Y2+Z2; t3 := t3-t0; t4 := t4-t0;

t11 := t0+t0; // 3

t3 := t3-t1; t4 := t4-t2; t11 := t11+t0; // 4

t5 := t9*t10; t6 := b3*t2; t7 := a*t2;

t8 := a*t4; t9 := b3*t4; // 5

t5 := t5-t1; t11 := t11+t7; t4 := t0-t7;

t10 := t6+t8; // 6

t0 := a*t4; t6 := t3*t11; // 7

t0 := t0+t9; t7 := t1-t10; t10 := t1+t10;

t5 := t5-t2; // 8

t1 := t3*t7; t2 := t5*t0; t4 := t10*t7;

t8 := t11*t0; t9 := t5*t10; // 9

X3 := t1-t2; Y3 := t4+t8; Z3 := t9+t6; // 10

return X3,Y3,Z3;

end function;

function ADD_six(X1,Y1,Z1,X2,Y2,Z2,a,b3)

t0 := X1+Y1; t1 := X2+Y2; t2 := Y1+Z1;

t3 := Y2+Z2; t4 := X1+Z1; t5 := X2+Z2; // 1

t0 := t0*t1; t1 := t2*t3; t2 := t4*t5;

t3 := X1*X2; t4 := Y1*Y2; t5 := Z1*Z2; // 2

t0 := t0-t3; t1 := t1-t4; t2 := t2-t5; // 3

t0 := t0-t4; t1 := t1-t5; t2 := t2-t3; // 4

t6 := b3*t5; t7 := a*t5; t8 := a*t2;

t9 := b3*t2; t10 := a*t3; t11 := a^2*t5; // 5

t6 := t6+t8; t7 := t3+t7; t8 := t3+t3;

t9 := t9+t10; // 6

t9 := t9-t11; t8 := t8+t7; t7 := t4-t6;

t6 := t4+t6; // 7

t3 := t0*t7; t4 := t0*t8; t5 := t1*t9;

t8 := t8*t9; t7 := t6*t7; t6 := t1*t6; // 8

X3 := t3-t5; Y3 := t7+t8; Z3 := t6+t4; // 9

return X3,Y3,Z3;

end function;

Chapter IV
µKummer: Efficient
Hyperelliptic Signatures and Key
Exchange on Microcontrollers

We describe the design and implementation of efficient signature and key-exchange
schemes for the AVR ATmega and ARM Cortex M0 microcontrollers, targeting the
128-bit security level. Our algorithms are based on an efficient Montgomery lad-
der scalar multiplication on the Kummer surface of Gaudry and Schost’s genus-2
hyperelliptic curve [GS12], combined with the Jacobian point recovery technique of
Chung, Costello, and Smith [CCS17]. Our results are the first to show the feasibil-
ity of software-only hyperelliptic cryptography on constrained platforms, and rep-
resent a significant improvement on the elliptic-curve state-of-the-art for both key
exchange and signatures on these architectures. Notably, our key-exchange scalar-
multiplication software runs in under 9520k cycles on the ATmega and under 2640k
cycles on the Cortex M0, improving on the current speed records by 32% and 75%
respectively.

1 Introduction

The current state of the art in asymmetric cryptography, not only on microcon-
trollers, is elliptic-curve cryptography; the most widely accepted reasonable secu-
rity is the 128-bit security level. All current speed records for 128-bit secure key

60 Chapter IV. µKummer

exchange and signatures on microcontrollers are held — until now — by elliptic-
curve-based schemes. Outside the world of microcontrollers, it is well known that
genus-2 hyperelliptic curves and their Kummer surfaces present an attractive alter-
native to elliptic curves [Ber06c; Bos+13]. For example, at Asiacrypt 2014 Bernstein,
Chuengsatiansup, Lange and Schwabe [Ber+14] presented speed records for timing-
attack-protected 128-bit-secure scalar multiplication on a range of architectures with
Kummer-based software. These speed records are currently only being surpassed by
the elliptic-curve-based FourQ software by Costello and Longa [CL15] presented at
Asiacrypt 2015, which makes heavy use of efficiently computable endomorphisms
(i. e. of additional structure of the underlying elliptic curve). The Kummer-based
speed records in [Ber+14] were achieved by exploiting the computational power of
vector units of recent “large” processors such as Intel Sandy Bridge, Ivy Bridge, and
Haswell, or the ARM Cortex-A8. Surprisingly, very little attention has been given to
Kummer surfaces on embedded processors. Indeed, this is the first work showing
the feasibility of software-only implementations of hyperelliptic-curve based crypto
on constrained platforms. There have been some investigations of binary hyperel-
liptic curves targeting the much lower 80-bit security level, but those are actually
examples of software-hardware co-design showing that using hardware accelera-
tion for field operations was necessary to get reasonable performance figures (see
e. g. [Bat+05; Hod+07]).

In this chapter we investigate the potential of genus-2 hyperelliptic curves for
both key exchange and signatures on the “classical” 8-bit AVR ATmega architec-
ture, and the more modern 32-bit ARM Cortex M0 processor. The former has the
most previous results to compare to, while ARM is becoming more relevant in real-
world applications. We show that not only are hyperelliptic curves competitive, they
clearly outperform state-of-the art elliptic-curve schemes in terms of speed and size.
For example, our variable-basepoint scalar multiplication on a 127-bit Kummer sur-
face is 31% faster on AVR and 26% faster on the M0 than the recently presented
speed records for Curve25519 software by Düll, Haase, Hinterwälder, Hutter, Paar,
Sánchez, and Schwabe [Dül+15]; our implementation is also smaller, and requires
less RAM.

We use a recent result by Chung, Costello, and Smith [CCS17] to also set new
speed records for 128-bit secure signatures. Specifically, we present a new signature
scheme based on fast Kummer surface arithmetic. It is inspired by the EdDSA con-
struction by Bernstein, Duif, Lange, Schwabe, and Yang [Ber+12]. On the ATmega,
it produces shorter signatures, achieves higher speeds and needs less RAM than the
Ed25519 implementation presented in [NLD15].

2. High-level Overview 61

Table 1. Cycle counts and stack usage in bytes of all functions related to the signature and key
exchange schemes, for the AVR ATmega and ARM Cortex M0 microcontrollers.

Func. AVR ARM

Cycles Stack Cycles Stack

KEYGEN 10 206 181 812 B 2 774 087 1 056 B
SIGN 10 404 033 926 B 2 865 351 1 360 B

VERIFY 16 240 510 992 B 4 453 978 1 432 B
DH_EXCHANGE 9 739 059 429 B 2 644 604 584 B

Our routines handling secret data are constant-time, and are thus naturally resis-
tant to timing attacks. These algorithms are built around the Montgomery ladder,
which improves resistance against simple power analysis (SPA) attacks. Resistance
to DPA attacks can easily be added to the implementation by randomizing the scalar
and/or Jacobian points. Re-randomizing the latter after each ladder step would also
guarantee resistance against horizontal types of attacks.

Organization. We begin by describing the details of our signature and key exchange
schemes, explaining the choices we made in their design. Concrete implementation
details appear in §3 and §4 below. Experimental results and comparisons follow
in §5.

2 High-level Overview

2.1 Signatures

Our signature scheme, defined at the end of this section, adheres closely to the pro-
posal of [CCS15, §8], which in turn is a type of Schnorr signature [Sch90]. There are
however some differences and trade-offs, which we discuss below.

Group structure. We build the signature scheme on top of the group structure from
the Jacobian JC(Fp) of a genus-2 hyperelliptic curve C. More specifically, C is the
Gaudry–Schost curve over the prime field Fp with p = 2127 − 1 (c. f. §3.2). The
Jacobian is a group of order #JC(Fp) = 24N, where

N = 2250 − 0x334D69820C75294D2C27FC9F9A154FF47730B4B840C05BD

is a 250-bit prime. For more details on the Jacobian and its elements, see §3.3.

62 Chapter IV. µKummer

Hash function. We may use any hash function H with a 128-bit security level. For
our purposes, H(M) = SHAKE128(M, 512) suffices [Dwo15]. Although SHAKE128
has variable-length output, we only use the 512-bit output implementation.

Encoding. At the highest level, we operate on points Q in JC(Fp). To minimize
communication costs, we compress the usual 508-bit representation of Q into a 256-
bit encoding Q (see §3.3). (This notation is the same as in [Ber+12].)

Public generator. The public generator can be any element P of JC(Fp) such that
[N]P = 0. In our implementation we have made the arbitrary choice P = (X2 +

u1X + u0, v1X + v0), where

u1 = 0x7D5D9C3307E959BF27B8C76211D35E8A ,

u0 = 0x2703150F9C594E0CA7E8302F93079CE8 ,

v1 = 0x444569AF177A9C1C721736D8F288C942 ,

v0 = 0x7F26CFB225F42417316836CFF8AEFB11 .

This is the point which we use the most for scalar multiplication. Since it remains
fixed, we assume we have its decompressed representation precomputed, so as to
avoid having to perform the relatively expensive decompression operation when-
ever we need a scalar multiplication; this gives a low-cost speed gain. We further
assume we have a “wrapped” representation of the projection of P to the Kummer
surface, which is used to speed up the XDBLADD function. See §4.1 for more details
on the XWRAP function.

Public keys. In contrast to the public generator, we assume public keys are com-
pressed: they are communicated much more frequently, and we therefore benefit
much more from smaller keys. Moreover, we include the public key in one of the
hashes during the SIGN operation [KW03; MRa99], computing h = H(R || Q || M)

instead of the h = H(R || M) originally suggested by Schnorr [Sch90]. This protects
against adversaries attacking multiple public keys simultaneously.

Compressed signatures. Schnorr [Sch90] mentions the option of compressing signa-
tures by hashing one of their two components: the hash size only needs to be b/2
bits, where b is the key length. Following this suggestion, our signatures are 384-bit
values of the form (h128 || s), where h128 means the lowest 128 bits of h = H(R ||
Q || M), and s is a 256-bit scalar. The most obvious upside is that signatures are

2. High-level Overview 63

smaller, reducing communication overhead. Another big advantage is that we can
exploit the half-size scalar to speed up signature verification. On the other hand, we
lose the possibility of efficient batch verification.

Verification efficiency. The most costly operation in signature verification is the two-
dimensional scalar multiplication T = [s]P + [h128]Q. In [CCS17], the authors pro-
pose an algorithm relying on the differential addition chains presented in [Ber06b].
However, since we are using compressed signatures, we have a small scalar h128. Un-
fortunately the two-dimensional algorithm in [CCS17] cannot directly exploit this
fact, therefore not obtaining much benefit from the compressed signature. On the
other hand, we can simply compute [s]P and [h128]Q separately using the fast scalar
multiplication on the Kummer surface and finally add them together on the Jacobian.
Here [s]P is a 256-bit scalar multiplication, whereas [h128]Q is only a 128-bit scalar
multiplication. Not only do we need fewer cycles compared to the two-dimensional
routine, but we also reduce code size by reusing the one-dimensional scalar multi-
plication routine.

The scheme. We now define our signature scheme, taking the above into account.

Key generation (KEYGEN). Let d be a 256-bit secret key, and P the public generator.
Compute (d′ || d′′) ← H(d) (with d′ and d′′ both 256 bits), then Q ← [16d′]P.
The public key is Q.

Signing (SIGN). Let M be a message, d a 256-bit secret key, P the public generator,
and Q a compressed public key. Compute (d′ || d′′) ← H(d) (with d′ and d′′

both 256 bits), then r ← H(d′′ || M), then R ← [r]P, then h ← H(R || Q || M),
and finally s← (r− 16h128d′) mod N. The signature is (h128 || s).

Verification (VERIFY). Let M be a message with a signature (h128 || s) corresponding
to a public key Q, and let P be the public generator. Compute T ← [s]P +

[h128]Q, then g ← H(T || Q || M). The signature is correct if g128 = h128, and
incorrect otherwise.

Remark 1. We note that there may be faster algorithms to compute the “one-and-a-
half-dimensional” scalar multiplication in VERIFY, especially since we do not have
to worry about being constant-time. One option might be to adapt Montgomery’s
PRAC [Sta03, §3.3.1] to make use of the half-size scalar. But while this may lead to
a speedup, it would also cause an increase in code size compared to simply re-using
the one-dimensional scalar multiplication. We have chosen not to pursue this line,
preferring the solid benefits of reduced code size instead.

64 Chapter IV. µKummer

2.2 Diffie-Hellman Key Exchange.

For key exchange it is not necessary to have a group structure; it is enough to have
a pseudo-multiplication. We can therefore carry out our the key exchange directly
on the Kummer surface KC = JC/±, gaining efficiency by not projecting from and
recovering to the Jacobian JC . If Q is a point on JC , then its image in KC is ±Q. The
common representation for points in KC(Fp) is a 512-bit 4-tuple of field elements.
For input points (i. e. the generator or public keys), we prefer the 384-bit “wrapped”
representation (see §3.5). This not only reduces key size, but it also allows a speedup
in the core XDBLADD subroutine. The wrapped representation of a point ±Q on KC
is denoted by ±Q.

Key exchange (DH_EXCHANGE). Let d be a 256-bit secret key, and ±P the public
generator (respectively public key). Compute ±Q ← ±[d]P. The generated
public key (respectively shared secret) is ±Q.

Remark 2. While it might be possible to reduce the key size even further to 256 bits,
we would then have to pay the cost of compressing and decompressing, and also
wrapping for XDBLADD (see the discussion in [CCS15, App. A]). We therefore choose
to keep the 384-bit representation, which is consistent with [Ber+14].

3 Algorithms and Their Implementation

We begin by presenting the finite field F2127−1 in §3.1. We then define the curve C
in §3.2, before giving basic methods for the elements of JC in §3.3. We then present
the fast Kummer KC and its differential addition operations in §3.4.

3.1 The Field Fp

We work over the prime finite field Fp, where p is the Mersenne prime p = 2127 − 1.
For complete field arithmetic we implement modular reduction, addition, subtrac-
tion, multiplication, and inversion. We comment on some important aspects here,
giving cycle counts in Table 2. We can represent elements of Fp as 127-bit values; but
since the ATmega and Cortex M0 work with 8- and 32-bit words, respectively, the
obvious choice is to represent field elements with 128 bits. That is, an element g ∈ Fp

is represented as g = ∑15
i=0 gi28i on the AVR ATmega platform and as g = ∑3

i=0 g̃i232i

on the Cortex M0, where gi ∈ {0, . . . , 28 − 1}, g̃i ∈ {0, . . . , 232 − 1}.
Working with the prime field Fp, we need integer reduction modulo p; this is

implemented as BIGINT_RED. Reduction is very efficient because 2128 ≡ 2 (mod p),

3. Algorithms and Their Implementation 65

which enables us to reduce using only shifts and integer additions. Given this re-
duction, we implement addition and subtraction operations for Fp (as GFE_ADD

and GFE_SUB, respectively) in the obvious way.

The most costly operations in Fp are multiplication (GFE_MUL) and squaring
(GFE_SQR), which are implemented as 128× 128-bit big integer operations (named
BIGINT_MUL and BIGINT_SQR) followed by a call to BIGINT_RED. Since we are work-
ing on the same platforms as [Dül+15] in which both of these operations are already
highly optimized, we took the necessary code from those implementations:

– On the AVR ATmega the authors of [HS15] implement a 3-level Karatsuba
multiplication of two 256-bit integers, representing elements f of F2255−19 as
f = ∑31

i=0 fi28i with fi ∈ {0, . . . , 28 − 1}. Since the first level of Karatsuba relies
on a 128 × 128-bit integer multiplication routine named MUL128, we simply
lift this function out to form a 2-level 128× 128-bit Karatsuba multiplication.
Similarly, their 256× 256-bit squaring relies on a 128× 128-bit routine SQR128,
which we can (almost) directly use. Since the 256× 256-bit squaring is 2-level
Karatsuba, the 128× 128-bit squaring is 1-level Karatsuba.

– On the ARM Cortex M0 the authors of [Dül+15] use optimized Karatsuba mul-
tiplication and squaring. Their assembly code does not use subroutines, but
fully inlines 128× 128-bit multiplication and squaring. The 256× 256-bit mul-
tiplication and squaring are both 3-level Karatsuba implementations. Hence,
using these, we end up with 2-level 128× 128-bit Karatsuba multiplication and
squaring.

The function GFE_INVERT computes inversions in Fp as exponentiations, using
the fact that g−1 = gp−2 for all g in F∗p. To do this efficiently we use an addition
chain for p − 2, doing the exponentiation in 10M + 126S. Finally, to speed up our
Jacobian point decompression algorithms, we define a function GFE_POWMINHALF

which computes g 7→ g−1/2 for g in Fp (up to a choice of sign). To do this, we note
that g−1/2 = ±g−(p+1)/4 = ±g(3p−5)/4 in Fp; this exponentiation can be done with
an addition chain of length 136, using 11M + 125S. We can then define a function
GFE_SQRTINV, which given (x, y) and a bit b, computes (

√
x, 1/y) as (±xyz, xyz2)

where z = GFE_POWMINHALF(xy2), choosing the sign so that the square root has
least significant bit b. Including the GFE_POWMINHALF call, this costs 15M + 126S +
1neg.

66 Chapter IV. µKummer

Table 2. Cycle counts of field arithmetic (including function-call overhead) on the AVR AT-
mega and ARM Cortex M0 platforms.

AVR ARM Symbolic cost

BIGINT_MUL 1 654 410
BIGINT_SQR 1 171 260
BIGINT_RED 438 71
GFE_MUL 1 952 502 M
GFE_SQR 1469 353 S
GFE_MULCONST 569 83 mc
GFE_ADD 400 62 a
GFE_SUB 401 66 s
GFE_INVERT 169 881 46 091 I
GFE_POWMINHALF 169 881 46 294 11M + 125S
GFE_SQRTINV 178 041 48 593 15M + 126S + 1neg

3.2 The Curve C and Its Theta Constants

We define the curve C “backwards”, starting from its (squared) theta constants

a = −11 , b = 22 , c = 19 , and d = 3 in Fp .

From these, we define the dual theta constants

A = a + b + c + d = 33 , B = a + b− c− d = −11 ,

C = a− b + c− d = −17 , D = a− b− c + d = −49 .

Observe that projectively, (1/a : 1/b : 1/c : 1/d) = (114 : −57 : −66 : −418)
and (1/A : 1/B : 1/C : 1/D) = (−833 : 2499 : 1617 : 561). Crucially, all of
these constants can be represented using just 16 bits each. Since Kummer arithmetic
involves many multiplications by these constants, we implement a separate 16 ×
128-bit multiplication function GFE_MULCONST. For the AVR ATmega, we store the
constants in two 8-bit registers. For the Cortex M0, the values fit into a halfword; this
works well with the 16× 16-bit multiplication. Multiplication by any of these 16-bit
constants costs mc.

Continuing, we define e/ f := (1 + α)/(1− α), where α2 = CD/AB (we take the

3. Algorithms and Their Implementation 67

square root with least significant bit 0), and thus

λ := ac/bd = 0x15555555555555555555555555555552 ,

µ := ce/d f = 0x73E334FBB315130E05A505C31919A746 ,

ν := ae/b f = 0x552AB1B63BF799716B5806482D2D21F3 .

These are the Rosenhain invariants of the curve C, found by Gaudry and Schost [GS12],
which we are (finally!) ready to define as

C : Y2 = fC(X) := X(X− 1)(X− λ)(X− µ)(X− ν) .

The curve constants are the coefficients of fC(X) = ∑5
i=0 fiXi; so f0 = 0, f5 = 1,

f1 = 0x1EDD6EE48E0C2F16F537CD791E4A8D6E ,

f2 = 0x73E799E36D9FCC210C9CD1B164C39A35 ,

f3 = 0x4B9E333F48B6069CC47DC236188DF6E8 ,

f4 = 0x219CC3F8BB9DFE2B39AD9E9F6463E172 .

We store the squared theta constants (a : b : c : d), along with (1/a : 1/b : 1/c : 1/d)
and (1/A : 1/B : 1/C : 1/D); the Rosenhain invariants λ, µ, and ν, together with
λµ and λν; and the curve constants f1, f2, f3, and f4 for use in our Kummer and
Jacobian arithmetic functions. Obviously, none of the Rosenhain or curve constants
are small; multiplying by these costs a full M.

3.3 Compressed and Decompressed Elements of JC
Our algorithms use the usual Mumford representation for elements of JC(Fp); they
correspond to pairs 〈u(X), v(X)〉, where u and v are polynomials over Fp with u
monic, deg v < deg u ≤ 2, and v(X)2 ≡ fC(X) (mod u(X)). We compute the
group operation + in JC(Fp) using a function ADD, which implements1 the algo-
rithm found in [HC14] (after a change of coordinates to meet their Assumption 1) at
a cost of 28M + 2S + 11a + 24s + I. For transmission, we compress the 508-bit Mum-
ford representation to a 256-bit form. Our functions COMPRESS and DECOMPRESS

(Algorithm 1) implement Stahlke’s compression technique (see [Sta04] and [CCS15,
App. A] for details).

1 We only call ADD once in our algorithms, while its very cumbersome to write down. We refer to the
code (on either platform) for its implementation.

68 Chapter IV. µKummer

Algorithm 1. Point (de)compression on JC .

Function: COMPRESS

Input:
〈

X2 + u1X + u0, v1X + v0
〉
= P ∈ JC

Output: A string b0 · · · b255 of 256 bits
Cost: 3M + 1S + 2a + 2s

1 w← 4((u1 · v0 − u0 · v1) · v1 − v2
0)

2 b0 ← LEASTSIGNIFICANTBIT(v1)

3 b128 ← LEASTSIGNIFICANTBIT(w)

4 return b0 || u0 || b128 || u1

Function: DECOMPRESS

Input: A string b0 · · · b255 of 256 bits.
Output:

〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC

Cost: 46M + 255S + 17a + 12s + 6neg
5 U1 = b129 · · · b256 as an element of Fp

6 U0 = b1 · · · b127 as an element of Fp

7 T1 ← U2
1

8 T2 ← U0 − T1

9 T3 ← U0 + T2

10 T4 ← U0 · (T3 · f4 + (U1 · f3 − 2 f2))

11 T3 ← −T3

12 T1 ← T3 −U0

13 T4 ← 2(T4 + (T1 ·U0 + f1) ·U1)

14 T1 ← 2(T1 −U0))

15 T5 ← ((U0 − (f3 + U1 · (U1 − f4))) ·U0 + f1)
2

16 T5 ← T2
4 − 2T5 · T1

17 (T6, T5)← GFE_SQRTINV(T5, T1, b1)

18 T4 ← (T5 − T4) · T6

19 T5 ← − f4 · T2 − ((T3 − f3) ·U1) + f2 + T4

20 T6 = GFE_POWMINHALF(4T6)

21 V1 ← 2T5 · T6

22 if b0 6= LEASTSIGNIFICANTBIT(V1) then (V1, T6)← (−V1,−T6)

23 T5 ← (U1 · f4 + (T2 − f3)) ·U0

24 V0 ← (U1 · T4 + T5 + f1) · T6

25 return
〈

X2 + U1X + U0, V1X + V0
〉

3. Algorithms and Their Implementation 69

3.4 The Kummer SurfaceKC
The Kummer surface of C is the quotient KC = JC/±; points on KC correspond to
points on JC taken up to sign. If P is a point in JC , then we write

±P = (xP : yP : zP : tP)

for its image inKC . To avoid subscript explosion, we make the following convention:
when points P and Q on JC are clear from the context, we write

±(P + Q) = (x⊕ : y⊕ : z⊕ : t⊕) and ± (P−Q) = (x	 : y	 : z	 : t) .

The Kummer surface of this C has a “fast” model in P3 defined by

KC : E · xyzt =

(
(x2 + y2 + z2 + t2)

−F · (xt + yz)− G · (xz + yt)− H · (xy + zt)

)2

where

F =
a2 − b2 − c2 + d2

ad− bc
, G =

a2 − b2 + c2 − d2

ac− bd
, H =

a2 + b2 − c2 − d2

ab− cd
,

and E = 4abcd (ABCD/((ad− bc)(ac− bd)(ab− cd)))2 (see e. g. [CC86], [Cos11]
and [Gau07]). The identity point 〈1, 0〉 of JC maps to ±0JC = (a : b : c : d). The
PROJECT function (Algorithm 2) maps general points fromJC(Fp) intoKC . The “spe-
cial” case where u is linear is treated in [CCS15, §7.2]; this is not implemented, since
PROJECT only operates on public generators and keys, none of which are special.

3.5 Pseudo-addition onKC
While the points of KC do not form a group, we have a pseudo-addition operation
(differential addition), which computes±(P + Q) from±P,±Q, and±(P−Q). The
function XADD (Algorithm 3) implements the standard differential addition. The
special case where P = Q yields a pseudo-doubling operation. To simplify the
presentation of our algorithms, we define three operations on points in P3. First,
M : P3 ×P3 → P3 multiplies corresponding coordinates. That is, it takes as input a
pair of vectors (x1 : y1 : z1 : t1) and (x2 : y2 : z2 : t2) and returns the coordinate-wise
product vector (x1x2 : y1y2 : z1z2 : t1t2). The special case (x1 : y1 : z1 : t1) = (x2 :
y2 : z2 : t2) is denoted by S : (x : y : z : t) 7→ (x2 : y2 : z2 : t2). Finally, the Hadamard

70 Chapter IV. µKummer

Algorithm 2. Projection from JC to KC and point (un)wrapping on KC .

Function: PROJECT

Input:
〈

X2 + u1X + u0, v1X + v0
〉
= P ∈ JC

Output: (xP : yP : zP : tP) = ±P ∈ KC
Cost: 8M + 1S + 4mc + 7a + 4s

1 (T1, T2, T3, T4)← (µ− u0, λν− u0, ν− u0, λµ− u0)

2 T5 ← λ + u1

3 T7 ← u0 · ((T5 + µ) · T3)

4 T5 ← u0 · ((T5 + ν) · T1)

5 (T6, T8)← (u0 · ((µ + u1) · T2 + T2), u0 · ((ν + u1) · T4 + T4))

6 T1 ← v2
0

7 (T5, T6, T7, T8)← (T5 − T1, T6 − T1, T7 − T1, T8 − T1)

8 return (a · T5 : b · T6 : c · T7 : d · T8)

Function: XWRAP

Input: (x : y : z : t) ∈ P3

Output: (x/y, x/z, x/t) ∈ F3
p

Cost: 7M + I
9 V1 ← y · z

10 V2 ← x/(V1 · t)
11 V3 ← V2 · t
12 return (V3 · z, V3 · y, V1 ·V2)

Function: XUNWRAP

Input: (u, v, w) ∈ F3
p s.t. u = xP/yP, v = xP/zP, w = xP/tP for ±P ∈ KC

Output: (±[m]P,±[m + 1]P) ∈ K2
C (xP : yP : zP : tP) ∈ P3

Cost: 4M
13 (T1, T2, T3)← (v · w, u · w, u · v)
14 return (T3 · w : T1 : T2 : T3)

4. Scalar Multiplication 71

transform2 is defined by

H : (x : y : z : t) 7→
(

x + y + z + t : x + y− z− t :
x− y + z− t : x− y− z + t

)
.

ClearlyM and S cost 4M and 4S, respectively. The Hadamard transform can easily
be implemented with 4a+ 4s. However, the additions and subtractions are relatively
cheap, making function call overhead a large factor. To minimize this we inline the
Hadamard transform, trading a bit of code size for efficiency.

Lines 6 and 7 of Algorithm 3 only involve the third argument, ±(P − Q); es-
sentially, they compute the point (y	z	t	 : x	z	t	 : x	y	t	 : x	y	z) (which
is projectively equivalent to (1/x	 : 1/y	 : 1/z	 : 1/t), but requires no inver-
sions; note that this is generally not a point on KC). In practice, the pseudoadditions
used in our scalar multiplication all use a fixed third argument, so it makes sense
to precompute this “inverted” point and to scale it by x	 so that the first coordinate
is 1, thus saving 7M in each subsequent differential addition for a one-off cost of
1I. The resulting data can be stored as the 3-tuple (x	/y	, x	/z	, x	/t), ignor-
ing the trivial first coordinate: this is the wrapped form of ±(P − Q). The function
XWRAP (Algorithm 2) applies this transformation. The differential double-and-add
XDBLADD (Algorithm 3) combines the pseudo-doubling with the differential addi-
tion, sharing intermediate operands. This is the fundamental building block of the
Montgomery ladder.

4 Scalar Multiplication

All of our cryptographic routines are built around scalar multiplication in JC and
pseudo-scalar multiplication in KC . We implement pseudo-scalar multiplication us-
ing the classic Montgomery ladder in §4.1. In §4.2, we extend this to full scalar
multiplication on JC using the point recovery technique proposed in [CCS17].

4.1 Pseudomultiplication onKC
Since [m](−P) = −[m]P for all m and P, we have a pseudo-scalar multiplication op-
eration (m,±P) 7→ ±[m]P on KC , which we compute using Algorithm 4 (the Mont-
gomery ladder), implemented as CRYPTO_SCALARMULT. The loop of Algorithm 4

2 Note that (A : B : C : D) = H((a : b : c : d)) and (a : b : c : d) = H((A : B : C : D)).

72 Chapter IV. µKummer

Algorithm 3. Doubling and differential addition on KC .

Function: XADD

Input: (±P,±Q,±(P−Q)) ∈ K3
C for some P and Q on JC .

Output: ±(P + Q) ∈ KC
Cost: 14M + 4S + 4mc + 12a + 12s

1 (V1, V2)← (H(±P),H(±Q))

2 V1 ←M(V1, V2)

3 V1 ←M(V1, (1/A : 1/B : 1/C : 1/D))

4 V1 ← H(V1)

5 V1 ← S(V1)

6 (C1, C2)← (z	 · t	, x	 · y)
7 V2 ←M((C1 : C1 : C2 : C2), (y	 : x	 : t	 : z))
8 returnM(V1, V2)

Function: XDBLADD

Input: (±P,±Q, (x	/y	, x	/z	, x	/t)) ∈ K2
C ×F3

p

Output: (±[2]P,±(P + Q)) ∈ K2
C

Cost: 7M + 12S + 12mc + 16a + 16s
9 (V1, V2)← (S(±P),S(±Q))

10 (V1, V2)← (H(V1),H(V2))

11 (V1, V2)← (S(V1),M(V1, V2))

12 (V1, V2)← (M(V1, (1
A : 1

B : 1
C : 1

D)),M(V2, (1
A : 1

B : 1
C : 1

D)))

13 (V1, V2)← (H(V1),H(V2))

14 return (M(V1, (1
a : 1

b : 1
c : 1

d)),M(V2, (1 : x	
y	 : x	

y	 : x	
t)))

4. Scalar Multiplication 73

maintains the following invariant: at the end of iteration i we have

(V1, V2) = (±[k]P,±[k + 1]P) where k = ∑
β−1
j=i mj2β−1−i .

Hence, at the end we return ±[m]P, and also ±[m + 1]P as a (free) byproduct. We
suppose we have a constant-time conditional swap CSWAP defined as

CSWAP : (b, (V1, V2)) 7→ (V1+b, V2−b) .

This makes the execution of Algorithm 4 uniform and constant-time, and thus suit-
able for use with secret m.

Algorithm 4. Uniform and constant-time scalar multiplication on KC and JC .

Function: CRYPTO_SCALARMULT

Input: (m = ∑
β−1
i=0 mi2i, (xP/yP, xP/zP, xP/tP)) ∈ [0, 2β)×F3

p for ±P in KC
Output: (±[m]P,±[m + 1]P) ∈ K2

C
Cost: (7β + 4)M + 12βS + 12βmc + 16βa + 16βs

1 V1 ← (a : b : c : d)
2 V2 ← XUNWRAP(xP/yP, xP/zP, xP/tP)

3 for i = β− 1 down to 0 do
4 (V1, V2)← CSWAP(mi, (V1, V2))

5 (V1, V2)← XDBLADD(V1, V2, (xP/yP, xP/zP, xP/tP))

6 (V1, V2)← CSWAP(mi, (V1, V2))

7 return (V1, V2)

Function: JACOBIAN_SCALARMULT

Input: (m, P, (xP/yP, xP/zP, xP/tP)) ∈ [0, 2β)×JC ×F3
p

Output: [m]P ∈ JC
Cost: (7β+143)M+(12β+12)S+(12β+4)mc+(16β+70)a+(16β+22)s+3neg+I

8 (X0, X1)← CRYPTO_SCALARMULT(m, (xP/yP, xP/zP, xP/tP))

9 V ← XUNWRAP((xP/yP, xP/zP, xP/tP))

10 return RECOVERFAST(P, V, X0, X1)

Our implementation of CRYPTO_SCALARMULT assumes that its input Kummer
point ±P is wrapped. This follows the approach of [Ber+14]. Indeed, many calls
to CRYPTO_SCALARMULT involve Kummer points that are stored or transmitted in
wrapped form. However, CRYPTO_SCALARMULT does require the unwrapped point
internally—if only to initialize one variable. We therefore define a function XUN-
WRAP (Algorithm 2) to invert the XWRAP transformation at a cost of only 4M.

74 Chapter IV. µKummer

4.2 Point Recovery fromKC to JC

Point recovery means efficiently computing [m]P on JC given ±[m]P on KC and
some additional information. In our case, the additional information is the base point
P and the second output of the Montgomery ladder, ±[m + 1]P. The RECOVERFAST

function (Algorithm 5) implements the point recovery described in [CCS17]. This is
the genus-2 analogue of the elliptic-curve methods in [LD99; OS01; BJ02]. We refer

Algorithm 5. Recovery from KC to JC .

Function: RECOVERFAST

Input: (P,±P,±Q,±(P + Q)) ∈ JC ×K3
C for some P, Q in JC .

Output: Q ∈ JC
Cost: 139M + 12S + 4mc + 70a + 22s + 3neg + I

1 gP ← FAST2GENPARTIAL(±P)
2 gQ ← FAST2GENFULL(±Q)

3 gS ← FAST2GENPARTIAL(±(P + Q))

4 xD ← XADD(±P,±Q,±(P + Q))

5 gD ← FAST2GENPARTIAL(xD)

6 return RECOVERGENERAL(P, gP, gQ, gS, gD)

Function: FAST2GENFULL

Input: ±P ∈ KC
Output: ±̃P ∈ K̃C
Cost: 15M + 12a

7 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP

8 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP

9 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP

10 t̃P ← (L41/L11)xP + (L42/L11)yP + (L43/L11)zP + (L44/L11)tP

11 return (x̃P : ỹP : z̃P : t̃P)

Function: FAST2GENPARTIAL

Input: ±P ∈ KC
Output: (x̃P : ỹP : z̃P) ∈ P2

Cost: 11M + 9a
12 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP

13 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP

14 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP

15 return (x̃P : ỹP : z̃P)

4. Scalar Multiplication 75

the reader to [CCS17] for technical details on this method, but there is one important
mathematical detail that we should mention (since it is reflected in the structure of
our code): point recovery is more natural starting from the general Flynn model
K̃C of the Kummer, because it is more closely related to the Mumford model for
JC . The RECOVERFAST function (Algorithm 5) therefore proceeds in two steps: first
the functions FAST2GENFULL and FAST2GENPARTIAL map the problem into K̃C , and
then we recover from K̃C to JC using RECOVERGENERAL (Algorithm 6).

Since the general Kummer K̃C only appears briefly in our recovery procedure
(we never use its relatively slow arithmetic operations), we will not investigate it
in detail here—but the curious reader may refer to [CF96] for the general theory.
For our purposes, it suffices to recall that K̃C is, like KC , embedded in P3; and the
isomorphismKC → K̃C is defined (in e. g. [CCS15, §7.4]) by the linear transformation

(xP : yP : zP : tP) 7→ (x̃P : ỹP : z̃P : t̃P) := (xP : yP : zP : tP)L ,

where L is (any scalar multiple of) the matrix
a−1(ν− λ) a−1(µν− λ) a−1λν(µ− 1) a−1λν(µν− λ)

b−1(µ− 1) b−1(µν− λ) b−1µ(ν− λ) b−1µ(µν− λ)

c−1(λ− µ) c−1(λ− µν) c−1λµ(1− ν) c−1λµ(λ− µν)

d−1(1− ν) d−1(λ− µν) d−1ν(λ− µ) d−1ν(λ− µν)

 ,

which we precompute and store. If ±P is a point on KC , then ±̃P denotes its image
on K̃C ; we compute ±̃P using the function FAST2GENFULL (Algorithm 5). Some-
times we only require the first three coordinates of ±̃P. We save 4M + 3a per point
in the function FAST2GENPARTIAL (Algorithm 5) by not computing t̃P.

4.3 Full Scalar Multiplication on JC
We now combine the pseudo-scalar multiplication CRYPTO_SCALARMULT with the
point-recovery function RECOVERFAST to define a full scalar multiplication function
JACOBIAN_SCALARMULT (Algorithm 4) on JC .

Remark 3. The function JACOBIAN_SCALARMULT takes not only a scalar m and a Ja-
cobian point P in its Mumford representation, but also the wrapped form of±P as an
auxiliary argument: that is, we assume that xP ← PROJECT(P) and XWRAP(xP) have
already been carried out. This saves redundant PROJECT and XWRAP calls when
operating on fixed base points, as is often the case in our protocols. Nevertheless,
JACOBIAN_SCALARMULT could easily be converted to a “pure” Jacobian scalar mul-

76 Chapter IV. µKummer

Algorithm 6. A map from K̃C to JC .

Function: RECOVERGENERAL

Input: (P, ±̃P, ±̃Q, ˜±(P+Q), ˜±(P−Q)) ∈ JC × K̃4
C for some P and Q in JC .

Output: Q ∈ JC
Cost: 77M + 8S + 19a + 10s + 3neg + I

1 (Z1, Z2)← (ỹP · x̃Q − x̃Q · ỹP, x̃P · z̃Q − z̃P · x̃Q)

2 T1 ← Z1 · z̃P

3 Z3 ← Z2 · ỹP + T1

4 D ← Z2
2 · x̃P + Z3 · Z1

5 T2 ← Z1 · Z2

6 T3 ← x̃P · x̃Q

7 E← T3 · (T3 · (f2 · Z2
2 − f1 · T2) + t̃Q · D)

8 E← E + Z3 · x̃2
Q · (f3 · Z2 · x̃P + f4 · Z3)

9 E← E + Z3 · x̃Q · (Z3 · ỹQ − Z2 · x̃P · z̃Q)

10 X1 ← x̃P · (Z2 · v1(P)− Z1 · v0(P))
11 T4 ← Z1 · ỹP + Z2 · x̃P

12 X2 ← T1 · v1(P) + T4 · v0(P)
13 C5 ← Z2

1 − T4 · x̃Q

14 C6 ← T1 · x̃Q + T2

15 T5 ← z̃⊕ · x̃	 − x̃⊕ · z̃	
16 X3 ← X1 · T5 − X2 · (x̃⊕ · ỹ	 − ỹ⊕ · x̃)
17 (X5, X6)← (X3 · C5, X3 · C6)

18 X4 ← T3 · (X1 · (z̃⊕ · ỹ	 − ỹ⊕ · z̃) + T5 · X2)

19 (X7, X8)← (X5 + Z1 · X4, X6 + Z2 · Z4)

20 T6 ← x̃⊕ · x̃	
21 E← −T6 · T3 · (E · x̃2

P + (X1 · T3)
2)

22 (X9, X10)← (E · X7, E · X8)

23 F ← X2 · (x̃⊕ · ỹ	 + ỹ⊕ · x̃) + X1 · (z̃⊕ · x̃	 + x̃⊕ · z̃)
24 F ← X1 · F + 2(X2

2 · T6)

25 F ← −2(F · D · T6 · T3 · T2
3 · x̃P)

26 (U1, U0)← (−F · ỹQ, F · z̃Q)

27 Fi ← 1/(F · x̃Q)

28 (u′1, u′0, v′1, v′0)← (Fi ·U1, Fi ·U0, Fi · X9, Fi · X10)

29 return
〈

X2 + u′1X + u′0, v′1X + v′0
〉

5. Results and Comparison 77

Table 3. Operation and cycle counts of basic functions on the Kummer and Jacobian.

M S mc a s neg I AVR ARM

ADD 28 2 0 11 24 0 1 228 552 62 886
PROJECT 8 1 4 7 8 0 0 20 205 5 667
XWRAP 7 0 0 0 0 0 1 182 251 49 609
XUNWRAP 4 0 0 0 0 0 0 7 297 2 027
XADD 14 4 4 12 12 0 0 34 774 9 598
XDBLADD 7 12 12 16 16 0 0 36 706 9 861
RECOVERGENERAL 77 8 0 19 10 3 1 318 910 88 414
FAST2GENPARTIAL 11 0 0 9 0 0 0 21 339 6 110
FAST2GENFULL 15 0 0 12 0 0 0 29 011 8 333
RECOVERFAST 139 12 4 70 22 5 1 447 176 124 936
COMPRESS 3 1 0 2 2 0 0 8 016 2 186
DECOMPRESS 46 255 0 17 12 6 0 386 524 106 013

tiplication function (with no auxiliary input) by inserting appropriate PROJECT and
XWRAP calls at the start, and removing the XUNWRAP call at Line 2, increasing the
total cost by 11M + 1S + 4mc + 7a + 8s + 1I.

5 Results and Comparison

The high-level cryptographic functions for our signature scheme are named KEY-
GEN, SIGN and VERIFY. Their implementations contain no surprises: they do exactly
what was specified in §2.1, calling the lower-level functions described in §3 and §4
as required. Our Diffie-Hellman key generation and key exchange use only the func-
tion DH_EXCHANGE, which implements exactly what we specified in §2.2: one call
to CRYPTO_SCALARMULT plus a call to XWRAP to convert to the correct 384-bit rep-
resentation. Table 1 (in the introduction) presents the cycle counts and stack usage
for all of our high-level functions.

Code and compilation. For our experiments, we compiled our AVR ATmega code
with avr-gcc -O2, and our ARM Cortex M0 code with clang -O2 (the optimization
levels -O3, -O1, and -Os gave fairly similar results). The total program size is 20 242
bytes for the AVR ATmega, and 19 606 bytes for the ARM Cortex M0. This consists
of the full signature and key-exchange code, including the reference implementation
of the hash function SHAKE128 with 512-bit output.3

3 We used the reference C implementation for the Cortex M0, and the assembly implementation for
AVR; both are available from [Ber+16]. The only change required is to the padding, which must take
domain separation into account according to [Dwo15, p.28].

78 Chapter IV. µKummer

Table 4. Comparison of scalar multiplication routines on the AVR ATmega architecture at the
128-bit security level. S denotes signature-compatible full scalar multiplication; DH denotes
Diffie–Hellman pseudo-scalar multiplication. The code size and stack size are measured in
bytes. The implementation marked ∗ also contains a fixed-basepoint scalar multiplication
routine, whereas the implementation marked † does not report code size for the separated
scalar multiplication.

Implementation Object Clock cycles Code size Stack

DH [LWG14] 256-bit curve ≈ 21 078 200 ∗14 700 B 556 B
S, DH [WUW13] NIST P-256 ≈ 34 930 000 16 112 B 590 B

DH [HS13] Curve25519 22 791 579 †— 677 B
DH [Dül+15] Curve25519 13 900 397 17 710 B 494 B
DH This KC 9 513 536 ≈ 9 490 B 99 B

S This JC 9 968 127 ≈ 16 516 B 735 B

Basis for comparison. As we believe ours to be the first genus-2 hyperelliptic curve
implementation on both the AVR ATmega and the ARM Cortex M0 architectures,
we can only compare with elliptic curve-based alternatives at the same 128-bit se-
curity level: notably [LWG14; HS13; WUW13; Dül+15]. This comparison is not
superficial: the key exchanges in [LWG14; HS13; Dül+15] use the highly efficient
x-only arithmetic on Montgomery elliptic curves, while [WUW13] uses similar tech-
niques for Weierstrass elliptic curves, and x-only arithmetic is the exact elliptic-curve
analogue of Kummer surface arithmetic. To provide full scalar multiplication in a
group, [WUW13] appends y-coordinate recovery to its x-only arithmetic (using the
approach of [BJ02]); again, this is the elliptic-curve analogue of our methods.

Results for AVR ATmega. Looking at Table 4, on the AVR ATmega architecture we
reduce the cycle count for Diffie–Hellman by about 32% compared with the current
record [Dül+15], again roughly halving the code size, and reducing stack usage by
about 80%. The cycle count for Jacobian scalar multiplication (for signatures) is re-
duced by 71% compared with [WUW13], while increasing the stack usage by 25%.

Finally we can compare to the current fastest full signature implementation by
Nascimento, López and Dahab [NLD15], shown in Table 5. We almost halve the
number of cycles, while reducing stack usage by a decent margin (code size is not
reported in [NLD15]).

Results for ARM Cortex M0. As we see in Table 6, genus-2 techniques give great
results for Diffie–Hellman key exchange on the ARM Cortex M0 architecture. Com-
pared with the current fastest implementation [Dül+15], we reduce the number of

5. Results and Comparison 79

Table 5. Comparison of signature schemes on the AVR ATmega architecture at the 128-bit
security level. The stack size is measured in bytes.

Implementation Object Function Clock cycles Stack

[NLD15] Ed25519 Sig. Gen. 19 047 706 1 473 B
This JC SIGN 10 404 033 926 B

[NLD15] Ed25519 Sig. Ver. 30 776 942 1 226 B
This JC VERIFY 16 240 510 992 B

clock cycles by about 27%, while roughly halving code size and stack space. For
signatures, the state-of-the-art is [WUW13]: here we reduce the cycle count for the
underlying scalar multiplications by a very impressive 75%, at the cost of an increase
in code size and stack usage.

Table 6. Comparison of scalar multiplication routines on the ARM Cortex M0 architecture at
the 128-bit security level. S denotes signature-compatible full scalar multiplication; DH de-
notes Diffie–Hellman pseudo-scalar multiplication. The code size and stack size are measured
in bytes.

Implementation Object Clock cycles Code size Stack

S, DH [WUW13] NIST P-256 ≈ 10 730 000 7 168 B 540 B
DH [Dül+15] Curve25519 3 589 850 7 900 B 548 B
DH This KC 2 633 662 ≈ 4 328 B 248 B

S This JC 2 709 401 ≈ 9 874 B 968 B

80 Chapter IV. µKummer

Chapter V
qDSA: Small and Secure Digital
Signatures with Curve-based
Diffie-Hellman Key Pairs

The qDSA protocol is a high-speed, high-security signature scheme that facilitates im-
plementations with a very small memory footprint, a crucial requirement for embed-
ded systems and IoT devices, and that uses the same public keys as modern Diffie–
Hellman schemes based on Montgomery curves (such as Curve25519) or Kummer
surfaces. It resembles an adaptation of EdDSA to the world of Kummer varieties,
which are quotients of algebraic groups by ±1. Interestingly, qDSA does not require
any full group operations or point recovery: all computations, including signature
verification, occur on the quotient where there is no group law. We include details
on four implementations of qDSA, using Montgomery and fast Kummer surface arith-
metic on the 8-bit AVR ATmega and 32-bit ARM Cortex M0 platforms. We find that
qDSA significantly outperforms state-of-the-art signature implementations in terms
of stack usage and code size. We also include an efficient compression algorithm
for points on fast Kummer surfaces, reducing them to the same size as compressed
elliptic curve points for the same security level.

82 Chapter V. qDSA

1 Introduction

Modern asymmetric cryptography based on elliptic and hyperelliptic curves [Kob87;
Mil86] achieves two important goals. The first is efficient key exchange using the
Diffie–Hellman protocol [DH76], using the fact that the (Jacobian of the) curve car-
ries the structure of an abelian group. But in fact, as Miller observed [Mil86], we
do not need the full group structure for Diffie–Hellman: the associated Kummer va-
riety (the quotient by ±1) suffices, which permits more efficiently-computable arith-
metic [Mon87; Gau07]. A well-known example is Curve25519 [Ber06a], which offers
fast scalar multiplications based on x-only arithmetic.

The second objective is efficient digital signatures, which are critical for authen-
tication. There are several group-based signature schemes, the most important of
which are ECDSA [Acc99a], Schnorr [Sch90], and now EdDSA [Ber+12] signatures.
In contrast to the Diffie–Hellman protocol, all of these signature schemes explicitly
require the group structure of the (Jacobian of the) curve. An unfortunate side-effect
of this is that users essentially need two public keys to support both curve-based
protocols. Further, basic cryptographic libraries need to provide implementations
for arithmetic on both the Jacobian and the Kummer variety, thus complicating and
increasing the size of the trusted code base. For example, the NaCl library [BLS12]
uses Ed25519 [Ber+12] for signatures, and Curve25519 [Ber06a] for key exchange.
This problem is worse for genus-2 hyperelliptic curves, where the Jacobian is signif-
icantly harder to use safely than its Kummer surface.

There have been several partial solutions to this problem. By observing that ele-
ments of the Kummer variety are elements of the Jacobian up to sign, one can build
scalar multiplication on the Jacobian based on the fast Kummer arithmetic [OS01;
CCS17]. This avoids the need for a separate scalar multiplication on the Jacobian,
but does not avoid the need for its group law; it also introduces the need for project-
ing to and recovering from the Kummer. In any case, it does not solve the problem
of having different public key types. Another proposal is XEdDSA [Per], which uses
the public key on the Kummer variety to construct EdDSA signatures. In essence,
it creates a key pair on the Jacobian by appending a sign bit to the public key on
the Kummer variety, which can then be used for signatures. In [Ham12] Hamburg
shows that one can actually verify signatures using only the x-coordinates of points
on an elliptic curve, which is applied in the recent STROBE framework [Ham17]. We
generalize this approach to allow Kummer varieties of curves of higher genera, and
naturally adapt the scheme by only allowing challenges up to sign. This allows us
to provide a proof of security, which has thus far not been attempted (in [Ham12]

2. The qDSA Signature Scheme 83

Hamburg remarks that verifying up to sign does “probably not impact security at
all”). Similar techniques have been applied for batch verification of ECDSA signa-
tures [KD14], using the theory of summation polynomials [Sem04].

In this chapter we show that there is no intrinsic reason why Kummer varieties
cannot be used for signatures. We present qDSA, a signature scheme relying only on
Kummer arithmetic, and prove it secure in the random oracle model. It should not
be surprising that the reduction in our proof is slightly weaker than the standard
proof of security of Schnorr signatures [PS96], but not by more than we should ex-
pect. There is no difference between public keys for qDSA and Diffie–Hellman. We
also provide an efficient compression method for points on fast Kummer surfaces,
solving a long-standing open problem [Ber06c]. Our technique means that qDSA pub-
lic keys for g = 2 can be efficiently compressed to 32 bytes, and that qDSA signatures
fit into 64 bytes; it also finally reduces the size of Kummer-based Diffie–Hellman
public keys from 48 to 32 bytes. Finally, we provide constant-time software imple-
mentations of genus-1 and genus-2 qDSA instances for the AVR ATmega and ARM
Cortex M0 platforms. The performance of all four qDSA implementations comfort-
ably beats earlier implementations in terms of stack usage and code size.

Organization. After an abstract presentation in §2, we give a detailed description
of elliptic-curve qDSA instances in §3. We then move on to genus-2 instances based
on fast Kummer surfaces, which give better performance. The necessary arithmetic
appears in §4, before §5 describes the new verification algorithm. The method for
compression of points on fast Kummer surfaces appears in §6, and the performance
results for our implementations appear in §7.

2 The qDSA Signature Scheme

In this section we define qDSA, the quotient Digital Signature Algorithm. We start by
recalling the basics of Kummer varieties in §2.1 and defining key operations in §2.2.
The rest of the section is dedicated to the definition of the qDSA signature scheme,
which is presented in full in Algorithm 1, and its proof of security, which follows
Pointcheval and Stern [PS96; PS00]. The qDSA scheme closely resembles the Schnorr
signature scheme [Sch90], as it results from applying the Fiat–Shamir heuristic [FS87]
to an altered Schnorr identification protocol, together with a few standard changes
as in EdDSA [Ber+12]. We comment on some special properties of qDSA in §2.5.
Throughout, we work over finite fields Fp with p > 3.

84 Chapter V. qDSA

2.1 The Kummer Variety Setting

Let C be a (hyper)elliptic curve and J its Jacobian.1 The Jacobian is a commutative
algebraic group with group operation +, inverse− and identity 0. We assume J has
a subgroup of large prime order N. The associated Kummer variety K is the quotient
K = J /±. By definition, working with K corresponds to working on J up to sign.
If P is an element of J , we denote its image in K by ±P. In this chapter we take
log2 N ≈ 256, and consider two important cases.

Genus 1. Here J = C/Fp is an elliptic curve with log2 p ≈ 256, while K = P1 is the
x-line. We choose C to be Curve25519 [Ber06a], which is the topic of §3.

Genus 2. Here J is the Jacobian of a genus-2 curve C/Fp, where log2 p ≈ 128, and
K is a Kummer surface. We use the Gaudry–Schost parameters [GS12] for our
implementations. The Kummer arithmetic, including some new constructions
we need for signature verification and compression, is described in §4-6.

A point ±P in K(Fp) is the image of a pair of points {P,−P} on J . It is important
to note that P and −P are not necessarily in J (Fp); if not, then they are conjugate
points in J (Fp2), and correspond to points in J ′(Fp), where J ′ is the quadratic twist
of J . Both J and J ′ always have the same Kummer variety; we return to this fact,
and its implications for our scheme, in §2.5 below.

2.2 Basic Operations

While a Kummer variety K has no group law, the operation that maps {±P,±Q} 7→
{±(P + Q),±(P−Q)} is well-defined. We can therefore define a pseudo-addition
operation by XADD : (±P,±Q,±(P−Q)) 7→ ±(P + Q). The special case where
±(P − Q) = ±0 is the pseudo-doubling XDBL : ±P 7→ ±[2]P. In our applications
we can often improve efficiency by combining two of these operations in a single
function XDBLADD : (±P,±Q,±(P−Q)) 7→ (±[2]P,±(P + Q)). For any integer
m, the scalar multiplication [m] on J induces the key cryptographic operation of
pseudomultiplication on K, defined by LADDER : (m,±P) 7→ ±[m]P. As its name sug-
gests, we compute LADDER using Montgomery’s famous ladder algorithm [Mon87],
i. e. as a uniform sequence of XDBLADDs and constant-time conditional swaps.2 This

1 In what follows, we could replace J by an arbitrary abelian group and all the proofs would be com-
pletely analogous. For simplicity we restrict to the cryptographically most interesting case of a Jacobian.

2 In contemporary implementations such as NaCl, the LADDER function is sometimes named
CRYPTO_SCALARMULT.

2. The qDSA Signature Scheme 85

constant-time nature will be important for signing. Our signature verification re-
quires a function CHECK on K3 defined by

CHECK : (±P,±Q,±R) 7→

True if ± R ∈ {±(P + Q),±(P−Q)}

False otherwise
.

Since we are working with projective points, we need a way to uniquely represent
them. Moreover, we want this representation to be as small as possible, to mini-
mize communication overhead. For this purpose we define the function COMPRESS :
K(Fp)→ {0, 1}256 and, writing ±P = COMPRESS(±P), the function

DECOMPRESS : {0, 1}256 → K(Fp) ∪ {⊥}

such that DECOMPRESS(±P) = ±P for ±P in K(Fp) and DECOMPRESS(X) = ⊥ for
X ∈ {0, 1}256 \ Im(COMPRESS). For the remainder of this section we assume that
LADDER, CHECK, COMPRESS, and DECOMPRESS are defined. Their implementation
depends on whether we are in the genus 1 or 2 setting; we return to this in later
sections.

2.3 The qID Identification Protocol

Let P be a generator of a prime order subgroup of J of order N, and let ±P be its
image in K. Let Z+

N denote the subset of ZN with zero least significant bit (where
we identify elements of ZN with their representatives in [0, N − 1]). Note that since
N is odd, LSB(−x) = 1 − LSB(x) for all x ∈ Z∗N . The private key is an element
d ∈ ZN . Let Q = [d]P and let the public key be ±Q. Now consider the following
Schnorr-style identification protocol, which we call qID:

1. The prover sets r ←R Z∗N , ±R← ±[r]P and sends ±R to the verifier;

2. The verifier sets c←R Z+
N and sends c to the prover;

3. The prover sets s← (r− cd) mod N and sends s to the verifier;

4. The verifier accepts only if ±R ∈ {±([s]P + [c]Q),±([s]P− [c]Q)}.

There are some important differences between qID and the basic Schnorr identifica-
tion protocol in [Sch90].

Scalar multiplications onK. It is well-known that one can use K to perform the
scalar multiplication [OS01; CCS17] within a Schnorr identification or signa-

86 Chapter V. qDSA

ture scheme, but with this approach one must always lift back to an element of
a group. In contrast, in our scheme this recovery step is not necessary.

Verification onK. The original verification [Sch90] requires checking R = [s]P +

[c]Q for some R, [s]P, [c]Q ∈ J . Working on K, we only have these values up
to sign (i. e. ±R, ±[s]P and ±[c]Q), which is not enough to check that R =

[s]P + [c]Q. Instead, we only verify whether ±R = ± ([s]P± [c]Q).

Challenge from Z
+
N . A Schnorr protocol using the weaker verification above would

not satisfy the special soundness property: although the transcripts (±R, c, s)
and (±R,−c, s) are both valid, they do not allow us to extract a witness. Choos-
ing c from Z+

N instead of Z eliminates this possibility, and allows a security
proof (this is the main difference with Hamburg’s STROBE [Ham17]).

Proposition 1. The qID identification protocol is a sigma protocol.

Proof. We prove the required properties (see [HL10, §6]).

Completeness. If the protocol is followed, then r = s + cd, and therefore [r]P =

[s]P + [c]Q on J . Mapping to K, it follows that ±R = ±([s]P + [c]Q).

Special soundness. Let (±R, c0, s0) and (±R, c1, s1) be two valid transcripts such
that c0 6= c1. By verification, each si ≡ ±r ± cid mod N, so that s0 ± s1 ≡
(c0 ± c1) d mod N, where the signs are chosen to cancel r. Now c0 ± c1 6≡
0 mod N because c0 and c1 are both in Z+

N , so we can extract a witness d ≡
(s0 ± s1) (c0 ± c1)

−1 mod N.

Honest-verifier zero-knowledge. A simulator S generates c ←R Z+
N and sets s ←R

ZN and3 R ← [s]P + [c]Q. If R = O, it restarts. It outputs (±R, c, s). As
in [PS00, Lemma 5], we let

δ =
{
(±R, c, s) : c ∈R Z+

N , r ∈R Z∗N ,±R = ±[r]P , s = r− cd
}

,

δ′ =
{
(±R, c, s) : c ∈R Z+

N , s ∈R ZN , R = [s]P + [c]Q , R 6= O
}

be the distributions of honest and simulated signatures, respectively. The ele-
ments of δ and δ′ are the same. First, consider δ. There are exactly N− 1 choices
for r, and exactly (N + 1)/2 for c; all of them lead to distinct tuples. There are
thus (N2 − 1)/2 possible tuples, all of which have probability 2/(N2 − 1) of
occurring. Now consider δ′. Again, there are (N + 1)/2 choices for c. We have

3 As we only know Q up to sign, we may need two attempts to construct S .

2. The qDSA Signature Scheme 87

N choices for s, exactly one of which leads to R = O. Thus, given c, there
are N − 1 choices for s. We conclude that δ′ also contains (N2 − 1)/2 possible
tuples, which all have probability 2/(N2 − 1) of occurring.

This concludes the proof.

2.4 Applying Fiat–Shamir

Applying the Fiat–Shamir transform [FS87] to qID yields a signature scheme qSIG.
We will need a hash function H : {0, 1}∗ → Z+

N , which we define by taking a hash
function H : {0, 1}∗ → ZN and then setting H by

H(M) 7−→

H(M) if LSB(H(M)) = 0

−H(M) if LSB(H(M)) = 1
.

The qSIG signature scheme is defined as follows:

1. To sign a message M ∈ {0, 1}∗ with private key d ∈ ZN and public key ±Q ∈
K, the prover sets r ←R Z∗N , ±R ← ±[r]R, h ← H(±R || M), and s ←
(r− hd) mod N, and sends (±R || s) to the verifier.

2. To verify a signature (±R || s) ∈ K × ZN on a message M ∈ {0, 1}∗ with
public key ±Q ∈ K, the verifier sets h ← H(±R || M), ±T0 ← ±[s]P, and
±T1 ← ±[h]Q, and accepts only if ±R ∈ {±(T0 + T1),±(T0 − T1)}.

Proposition 2 asserts that the security properties of qID carry over to qSIG.

Proposition 2. In the random oracle model, if an existential forgery of the qSIG signature
scheme under an adaptive chosen message attack has non-negligible probability of success,
then the DLP in J can be solved in polynomial time.

Proof. This is the standard proof of applying the Fiat–Shamir transform to a sigma
protocol: see [PS96, Theorem 13] or [PS00, §3.2].

2.5 The qDSA Signature Scheme

Moving towards the real world, we slightly alter the qSIG protocol with some prag-
matic choices, following Bernstein et al. [Ber+12].

1. We replace the randomness r by the output of a pseudo-random function,
which makes the signatures deterministic.

88 Chapter V. qDSA

2. We include the public key ±Q in the generation of the challenge, to prevent
attackers from attacking multiple public keys at the same time.

3. We compress and decompress points on K where necessary.

The resulting signature scheme, qDSA, is summarized in Algorithm 1.

Unified keys. Signatures are entirely computed and verified on K, which is also the
natural setting for Diffie–Hellman key exchange. We can therefore use identical key
pairs for Diffie–Hellman and for qDSA signatures. This significantly simplifies the
implementation of cryptographic libraries, as we no longer need arithmetic for the
two distinct objects J and K. Technically, there is no reason not to use a single key
pair for both key exchange and signing; but one should be very careful in doing so,
as using one key across multiple protocols could potentially lead to attacks. The
primary interest of this aspect of qDSA is not necessarily in reducing the number of
keys, but in unifying key formats and reducing the size of the trusted code base.

Security level. The security reduction to the discrete logarithm problem is almost
identical to the case of Schnorr signatures [PS96]. Notably, the challenge space has
about half the size (Z+

N versus ZN) while the proof of soundness computes either
s0 + s1 or s0− s1. This results in a slightly weaker reduction, as should be expected by
moving from J to K and by weakening verification. By choosing log2 N ≈ 256 we
obtain a scheme with about the same security level as state-of-the-art schemes (e. g.
EdDSA combined with Ed25519). This could be made more precise (c. f. [PS00]), but
we do not provide this analysis here.

Key and signature sizes. Public keys fit into 32 bytes in both the genus 1 and genus 2
settings. This is standard for Montgomery curves; for Kummer surfaces it requires
a new compression technique, which we present in §6. In both cases log2 N < 256,
which means that signatures (±R || s) fit in 64 bytes.

Twist security. Rational points on K correspond to pairs of points on either J or its
quadratic twist. As opposed to Diffie–Hellman, in qDSA scalar multiplications with
secret scalars are only performed on the public parameter±P, which is chosen as the
image of large prime order element of J . Therefore J is not technically required
to have a secure twist, unlike in the modern Diffie–Hellman setting. But if K is also
used for key exchange (which is the whole point!), then twist security is crucial. We
therefore strongly recommend twist-secure parameters for qDSA implementations.

2. The qDSA Signature Scheme 89

Algorithm 1. The qDSA signature scheme

Function: KEYPAIR

Input: ()
Output: (±Q || (d′ || d′′)): a compressed public key±Q ∈ {0, 1}256 where±Q ∈ K,

and a private key (d′ || d′′) ∈
(
{0, 1}256)2

1 d← Random({0, 1}256)

2 (d′ || d′′)← H(d)
3 ±Q← LADDER(d′,±P) . ±Q = ±[d′]P
4 ±Q← COMPRESS(±Q)

5 return (±Q || (d′ || d′′))

Function: SIGN

Input: d′, d′′ ∈ {0, 1}256, ±Q ∈ {0, 1}256, M ∈ {0, 1}∗

Output: (±R || s) ∈
(
{0, 1}256)2

6 r ← H(d′′ || M)

7 ±R← LADDER(r,±P) . ±R = ±[r]P
8 ±R← COMPRESS(±R)
9 h← H(±R || ±Q || M)

10 s← (r− hd′) mod N
11 return (±R || s)

Function: VERIFY

Input: M ∈ {0, 1}∗, the compressed public key ±Q ∈ {0, 1}256, and a putative
signature (±R || s) ∈

(
{0, 1}256)2

Output: True if (±R || s) is a valid signature on M under ±Q, False otherwise
12 ±Q← DECOMPRESS(±Q)

13 if ±Q = ⊥ then return False
14 h← H(±R || ±Q || M)

15 ±T0 ← LADDER(s,±P) . ±T0 = ±[s]P
16 ±T1 ← LADDER(h,±Q) . ±T1 = ±[h]Q
17 ±R← DECOMPRESS(±R)
18 if ±R = ⊥ then return False
19 v← CHECK(±T0,±T1,±R) . is ±R = ± (T0 ± T1)?
20 return v

90 Chapter V. qDSA

Hash function. The function H can be any hash function with a security level of at
least log2

√
N bits and at least 2 log2 N-bit output. Throughout this chapter we take

H to be the extendable output function SHAKE128 [Dwo15] with fixed 512-bit output.
This enables us to implicitly use H as a function mapping into either ZN × {0, 1}256

(e. g. Line 2 of Algorithm 1), ZN (e. g. Line 6 of Algorithm 1), or Z+
N (e. g. Line 9 of

Algorithm 1, by combining it with a conditional negation) by appropriately reducing
(part of) the output modulo N.

Signature compression. Schnorr already mentions in [Sch90] that signatures (R || s)
may be compressed to (H(R || Q || M) || s), taking only the first 128 bits of the hash,
thus reducing signature size from 64 to 48 bytes. This is possible because we can
recompute R from P, Q, s, and H(R || Q || M). However, on K we cannot recover
±R from ±P, ±Q, s, and H(±R || ±Q || M), so Schnorr’s compression technique is
not an option for us.

Batching. Proposals for batch signature verification commonly rely on the group
structure, verifying random linear combinations of points [Nac+95; Ber+12]. Since
K has no group structure, these batching algorithms are not possible.

Scalar multiplication for verification. Instead of computing the full point [s]P + [c]Q
with a two-dimensional multiscalar multiplication operation, we have to compute
±[s]P and ±[c]Q separately. As a result we are unable to use standard tricks for
speeding up two-dimensional scalar multiplications (e. g. [ElG85]), resulting in in-
creased run-time. On the other hand, it has the benefit of relying on the already
implemented LADDER function, mitigating the need for a separate algorithm, and is
more memory-friendly. Our implementations show a significant decrease in stack
usage, at the cost of a small loss of speed (see §7).

3 Implementing qDSA with Elliptic Curves

Our first concrete instantiation of qDSA uses the Kummer variety of an elliptic curve,
which is just the x-line P1.

3.1 Montgomery Curves

Consider the elliptic curve in Montgomery form EAB/Fp : By2 = x(x2 + Ax + 1),
where A2 6= 4 and B 6= 0. The map EAB → K = P1 defined by P = (X : Y :

3. Implementing qDSA with Elliptic Curves 91

Z) 7→ (X : Z) gives rise to efficient x-only arithmetic on P1 (see [Mon87]). We use
the LADDER specified in [Dül+15, Alg. 1]. Compression uses the map COMPRESS :
P1(Fp) → Fp such that (X : Z) 7→ XZp−2 defined by Bernstein, while decompres-
sion is the near-trivial function DECOMPRESS : Fp → P1(Fp) given by x 7→ (x : 1).
Note that DECOMPRESS never returns ⊥, and that

DECOMPRESS(COMPRESS((X : Z))) = (X : Z)

whenever Z 6= 0. However, the points (0 : 1) and (1 : 0) should never appear as
public keys or signatures.

3.2 Signature Verification

It remains to define the CHECK operation for Montgomery curves. In the final step
of verification we are given ±R, ±P, and ±Q in P1, and we need to check whether
±R ∈ {±(P + Q),±(P−Q)}. Proposition 3 reduces this to checking a quadratic
relation in the coordinates of ±R, ±P, and ±Q.

Proposition 3. Write (XT : ZT) = ±T for any T in EAB. If P, Q, and R are points on
EAB, then ±R ∈

{
±(P + Q),±(P−Q)

}
if and only if

BZZ(XR)2 − 2BXZXRZR + BXX(ZR)2 = 0 , (1)

where

BXX =
(
XPXQ − ZPZQ)2 ,

BXZ =
(
XPXQ + ZPZQ)(XPZQ + ZPXQ)+ 2AXPZPXQZQ ,

BZZ =
(
XPZQ − ZPXQ)2 .

Proof. Let S = (XS : ZS) = ±(P + Q) and D = (XD : ZD) = ±(P − Q). If we
temporarily assume ±0 6= ±P 6= ±Q 6= ±0 and put xP = XP/ZP, etc., then
the group law on EAB gives us xSxD = (xPxQ − 1)2/(xP − xQ)

2 and xS + xD =

2((xPxQ + 1)(xP + xQ) + 2AxPxQ). Homogenizing, we obtain(
XSXD : XSZD + ZSXD : ZSZD

)
= (λBXX : λ2BXZ : λBZZ) . (2)

One readily verifies that Equation (2) still holds even when the temporary assump-
tion does not (that is, when ±P = ±Q or ±P = ±0 or ±Q = ±0). Having degree
2, the homogeneous polynomial BZZX2 − BXZXZ + BXXZ2 cuts out two points in

92 Chapter V. qDSA

P1 (which may coincide); by Equation (2), they are ±(P + Q) and ±(P − Q), so if
(XR : ZR) satisfies Equation (1) then it must be one of them.

Algorithm 2. Checking the verification relation for P1

Function: CHECK

Input: ±P, ±Q, ±R = (x : 1) in P1 images of points of EAB(Fp)

Output: True if ±R ∈ {±(P + Q),±(P−Q)}, False otherwise
Cost: 8M + 3S + 1mc + 8a + 4s

1 (BXX , BXZ, BZZ)← BVALUES(±P,±Q)

2 if BXXx2 − BXZx + BZZ = 0 then return True
3 else return False

Function: BVALUES

Input: ±P = (XP : ZP), ±Q = (XQ : ZQ) in K(Fp)

Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3
p

Cost: 6M + 2S + 1mc + 7a + 3s
4 // See Algorithm 8 and Proposition 3

3.3 Using Cryptographic Parameters

We use the elliptic curve E/Fp : y2 = x3 + 486662x2 + x where p = 2255 − 19,
which is commonly referred to as Curve25519 [Ber06a]. Let P ∈ E(Fp) be such that
±P = (9 : 1). Then P has order 8N, where

N = 2252 + 27742317777372353535851937790883648493

is prime. The XDBLADD operation requires us to store (A + 2)/4 = 121666, and we
implement optimized multiplication by this constant. In [Ber06a, §3] Bernstein sets
and clears some bits of the private key, also referred to as “clamping”. This is not
necessary in qDSA, but we do it anyway in KEYPAIR for compatibility.

4 Implementing qDSA with Kummer Surfaces

A number of cryptographic protocols that have been successfully implemented with
Montgomery curves have seen substantial practical improvements when the curves
are replaced with Kummer surfaces. From a general point of view, a Kummer surface
is the quotient of some genus-2 Jacobian J by ±1; geometrically it is a surface in

4. Implementing qDSA with Kummer Surfaces 93

P3 with sixteen point singularities, called nodes, which are the images in K of the
2-torsion points of J (since these are precisely the points fixed by −1). From a cryp-
tographic point of view, a Kummer surface is just a 2-dimensional analogue of the
x-coordinate used in Montgomery curve arithmetic. The algorithmic and software
aspects of efficient Kummer surface arithmetic have already been covered in great
detail elsewhere (see e. g. [Gau07; Ber+14] and Chapter IV). Indeed, the Kummer
scalar multiplication algorithms and software that we use in our signature imple-
mentation are identical to those described in Chapter IV, and use the cryptographic
parameters proposed by Gaudry and Schost [GS12].

This chapter includes two entirely new Kummer algorithms that are essential for
our signature scheme: verification relation testing (CHECK, see Algorithm 3) and
compression/decompression (COMPRESS and DECOMPRESS, see Algorithms 4 and
5). Both of these new techniques require a fair amount of technical development,
which we begin in this section by recalling the basic Kummer equation and con-
stants, and deconstructing the pseudo-doubling operation into a sequence of sur-
faces and maps that will play important roles later. Once the scene has been set, we
will describe our signature verification algorithm in §5 and our point compression
scheme in §6. The reader primarily interested in the resulting performance improve-
ments may wish to skip directly to §7 on first reading. The CHECK, COMPRESS, and
DECOMPRESS algorithms defined below require the following subroutines:

– The function M : F4
p × F4

p → F4
p implements a 4-way parallel multiplica-

tion. It takes a pair of vectors (x1, x2, x3, x4) and (y1, y2, y3, y4) and returns the
coordinate-wise product vector (x1x2 : y1y2 : z1z2 : t1t2).

– The function S : F4
p → F4

p implements a 4-way parallel squaring. It maps
(x1, x2, x3, x4) to (x2

1, x2
2, x2

3, x2
4).

– The function H : F4
p → F4

p is a Hadamard transform. It maps (x1, x2, x3, x4) to
(x1 + x2 + x3 + x4, x1 + x2 − x3 − x4, x1 − x2 + x3 − x4, x1 − x2 − x3 + x4).

– The function Dot : F4
p ×F4

p → Fp computes the sum of a 4-way multiplication.
Given (x1, x2, x3, x4) and (y1, y2, y3, y4), it returns x1y1 + x2y2 + x3y3 + x4y4.

4.1 Constants

Our Kummer surfaces are defined by four fundamental constants α1, α2, α3, α4 and
four dual constants α̂1, α̂2, α̂3, and α̂4, which are related by

2α̂2
1 = α2

1 + α2
2 + α2

3 + α2
4 , 2α̂2

2 = α2
1 + α2

2 − α2
3 − α2

4 ,

2α̂2
3 = α2

1 − α2
2 + α2

3 − α2
4 , 2α̂2

4 = α2
1 − α2

2 − α2
3 + α2

4 .

94 Chapter V. qDSA

Table 1. Relations between our theta constants and others in selected related work.

Source Fundamental constants Dual constants

[Gau07; Ber+14] (α1 : α2 : α3 : α4) (α̂1 : α̂2 : α̂3 : α̂4)
[Bos+13] (α1 : α2 : α3 : α4) (µ̂1 : µ̂2 : µ̂3 : µ̂4)
[Cos11] (µ1 : µ2 : µ3 : µ4) (µ̂1 : µ̂2 : µ̂3 : µ̂4)

Chapter IV (µ1 : µ2 : µ3 : µ4) (µ̂1 : µ̂2 : µ̂3 : µ̂4)

We require all of the αi and α̂i to be nonzero. The fundamental constants determine
the dual constants up to sign, and vice versa. These relations remain true when we
exchange the αi with the α̂i; we call this “swapping x with x̂” operation “dualizing”.
To make the symmetry in what follows clear, we define

µ1 := α2
1 , ε1 := µ2µ3µ4 , κ1 := ε1 + ε2 + ε3 + ε4 ,

µ2 := α2
2 , ε2 := µ1µ3µ4 , κ2 := ε1 + ε2 − ε3 − ε4 ,

µ3 := α2
3 , ε3 := µ1µ2µ4 , κ3 := ε1 − ε2 + ε3 − ε4 ,

µ4 := α2
4 , ε4 := µ1µ2µ3 , κ4 := ε1 − ε2 − ε3 + ε4 ,

along with their respective duals µ̂i, ε̂i, and κ̂i. Note that

(ε1 : ε2 : ε3 : ε4) = (1/µ1 : 1/µ2 : 1/µ3 : 1/µ4)

and µiµj − µkµl = µ̂iµ̂j − µ̂kµ̂l for {i, j, k, l} = {1, 2, 3, 4}. There are many clashing
notational conventions for theta constants in the cryptographic Kummer literature;
Table 1 provides a dictionary for converting between them.

Our applications use only the squared constants µi and µ̂i, so only they need be
in Fp. In practice we want them to be as “small” as possible, both to reduce the cost
of multiplying by them and to reduce the cost of storing them. In fact, it follows from
their definition that it is much easier to find simultaneously small µi and µ̂i than it
is to find simultaneously small αi and α̂i (or a mixture of the two); this is ultimately
why we prefer the squared surface for scalar multiplication. We note that if the µi

are very small, then the εi and κi are also small, and the same goes for their duals.
While we will never actually compute with the unsquared constants, we need them
to explain what is happening in the background below. Finally, the Kummer surface
equations involve some derived constants

E :=
16α1α2α3α4µ̂1µ̂2µ̂3µ̂4

(µ1µ4 − µ2µ3)(µ1µ3 − µ2µ4)(µ1µ2 − µ3µ4)
,

4. Implementing qDSA with Kummer Surfaces 95

and

F := 2
µ1µ4 + µ2µ3

µ1µ4 − µ2µ3
, G := 2

µ1µ3 + µ2µ4

µ1µ3 − µ2µ4
, H := 2

µ1µ2 + µ3µ4

µ1µ2 − µ3µ4
,

and their duals Ê, F̂, Ĝ and Ĥ. We observe that E2 = F2 + G2 + H2 + FGH − 4 and
that Ê2 = F̂2 + Ĝ2 + Ĥ2 + F̂ĜĤ − 4.

4.2 Fast Kummer Surfaces

We compute all of the pseudoscalar multiplications in qDSA on the so-called squared
Kummer surface

KSqr : 4E2 · X1X2X3X4 =

(
X2

1 + X2
2 + X2

3 + X2
4 − F(X1X4 + X2X3)

− G(X1X3 + X2X4)− H(X1X2 + X3X4)

)2

,

which was proposed for factorization algorithms by the Chudnovskys [CC86], then
later for Diffie–Hellman by Bernstein [Ber06c]. Since E only appears as a square,
KSqr is defined over Fp. The zero point on KSqr is ±0 = (µ1 : µ2 : µ3 : µ4). In
our implementations we used the XDBLADD and Montgomery ladder exactly as they
were presented in Algorithm IV.3 and IV.4 (see also Algorithm 9). The doubling
XDBL on KSqr is ±P = (XP

1 : XP
2 : XP

3 : XP
4) 7→ (X[2]P

1 : X[2]P
2 : X[2]P

3 : X[2]P
4), where

X[2]P
1 = ε1(U1 + U2 + U3 + U4)

2 , X[2]P
2 = ε2(U1 + U2 −U3 −U4)

2 ,

X[2]P
3 = ε3(U1 −U2 + U3 −U4)

2 , X[2]P
4 = ε4(U1 −U2 −U3 + U4)

2 ,
(3)

with

U1 = ε̂1(XP
1 + XP

2 + XP
3 + XP

4)
2 , U2 = ε̂2(XP

1 + XP
2 − XP

3 − XP
4)

2 ,

U3 = ε̂3(XP
1 − XP

2 + XP
3 − XP

4)
2 , U4 = ε̂4(XP

1 − XP
2 − XP

3 + XP
4)

2 .

for ±P with all XP
i 6= 0; more complicated formulæ exist for other ±P (c. f. §5.1).

4.3 Deconstructing Pseudo-doubling

In Figure 1 we deconstruct the pseudo-doubling on KSqr from §4.2 into a cycle of
atomic maps between different Kummer surfaces, which form a sort of hexagon.
Starting at any one of the Kummers and doing a complete cycle of these maps carries
out pseudo-doubling on that Kummer. Doing a half-cycle from a given Kummer
around to its dual computes a (2, 2)-isogeny, splitting pseudo-doubling. Six different

96 Chapter V. qDSA

KCan S
(2,2)

// KSqr

H
∼=

!!
K̂Int

C
∼=

==

KInt

Ĉ

∼=

}}
K̂Sqr

Ĥ

∼=

aa

K̂Can
Ŝ

(2,2)oo

Figure 1. Decomposition of pseudo-doubling on fast Kummer surfaces into a cycle of mor-
phisms. Here, KSqr is the “squared” surface we mostly compute with; KCan is the related
“canonical” surface; and KInt is a new “intermediate” surface which we use in signature veri-
fication. (The surfaces K̂Sqr, K̂Can, and K̂Int are their duals.)

Kummer surfaces may seem like a lot to keep track of (even if there are really only
three, together with their duals). However, the new surfaces are important, because
they are crucial in deriving our CHECK routine (of course, once the algorithm has
been written down, the reader is free to forget about the existence of these other
surfaces).

The cycle actually begins one step before KSqr, with the canonical surface

KCan : 2E · T1T2T3T4 =
T4

1 + T4
2 + T4

3 + T4
4 − F(T2

1 T2
4 + T2

2 T2
3)

− G(T2
1 T2

3 + T2
2 T2

4)− H(T2
1 T2

2 + T2
3 T2

4) .

This was the model proposed for cryptographic applications by Gaudry in [Gau07];
we call it “canonical” because it is the model arising from a canonical basis of theta
functions of level (2, 2). Now we can begin our tour around the hexagon, moving
from KCan to KSqr via the squaring map S (as defined above) which corresponds to
a (2, 2)-isogeny of Jacobians. Moving on from KSqr, the Hadamard transform isomor-
phismH maps (X1 : X2 : X3 : X4) 7→ (Y1 : Y2 : Y3 : Y4), where

Y1 = X1 + X2 + X3 + X4 , Y2 = X1 + X2 − X3 − X4 ,

Y3 = X1 − X2 + X3 − X4 , Y4 = X1 − X2 − X3 + X4 .

4. Implementing qDSA with Kummer Surfaces 97

It takes us into a third kind of Kummer, which we call the intermediate surface

KInt :
2Ê

α1α2α3α4
·Y1Y2Y3Y4 =

Y4
1

µ2
1
+

Y4
2

µ2
2
+

Y4
3

µ2
3
+

Y4
4

µ2
4
− F̂

(
Y2

1
µ1

Y2
4

µ4
+

Y2
2

µ2

Y2
3

µ3

)
− Ĝ

(
Y2

1
µ1

Y2
3

µ3
+

Y2
2

µ2

Y2
4

µ4

)
− Ĥ

(
Y2

1
µ1

Y2
2

µ2
+

Y2
3

µ3

Y2
4

µ4

)
.

We will use KInt for signature verification. Now the dual scaling isomorphism

Ĉ :
(
Y1 : Y2 : Y3 : Y4

)
7→
(
T̂1 : T̂2 : T̂3 : T̂4

)
=
(
Y1/α̂1 : Y2/α̂2 : Y3/α̂3 : Y4/α̂4

)
takes us into the dual canonical surface

K̂Can : 2Ê · T̂1T̂2T̂3T̂4 =
T̂4

1 + T̂4
2 + T̂4

3 + T̂4
4 − F̂(T̂2

1 T̂2
4 + T̂2

2 T̂2
3)

− Ĝ(T̂2
1 T̂2

3 + T̂2
2 T̂2

4)− Ĥ(T̂2
1 T̂2

2 + T̂2
3 T̂2

4) .

We are now halfway around the hexagon; the return journey is simply the dual of
the outbound trip. The dual squaring map Ŝ : K̂Can → K̂Sqr that maps (T̂1 : T̂2 : T̂3 :
T̂4) 7→ (T̂2

1 : T̂2
2 : T̂2

3 : T̂2
4) = (X̂1 : X̂2 : X̂3 : X̂4) is another (2, 2)-isogeny and carries

us into the dual squared surface

K̂Sqr : 4Ê2 · X̂1X̂2X̂3X̂4 =

(
X̂2

1 + X̂2
2 + X̂2

3 + X̂2
4 − F̂(X̂1X̂4 + X̂2X̂3)

− Ĝ(X̂1X̂3 + X̂2X̂4)− Ĥ(X̂1X̂2 + X̂3X̂4)

)2

,

and the dual Hadamard transform Ĥ :
(
X̂1 : X̂2 : X̂3 : X̂4

)
7→
(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
, where

Ŷ1 = X̂1 + X̂2 + X̂3 + X̂4 , Ŷ2 = X̂1 + X̂2 − X̂3 − X̂4 ,

Ŷ3 = X̂1 − X̂2 + X̂3 − X̂4 , Ŷ4 = X̂1 − X̂2 − X̂3 + X̂4

takes us into the dual intermediate surface

K̂Int :
2E

α1α2α3α4
· Ŷ1Ŷ2Ŷ3Ŷ4 =

Ŷ4
1

µ2
1
+

Ŷ4
2

µ2
2
+

Ŷ4
3

µ2
3
+

Ŷ4
4

µ2
4
− F̂

(
Ŷ2

1
µ1

Ŷ2
4

µ4
− Ŷ2

2
µ2

Ŷ2
3

µ3

)
− Ĝ

(
Ŷ2

1
µ1

Ŷ2
3

µ3
− Ŷ2

2
µ2

Ŷ2
4

µ4

)
− Ĥ

(
Ŷ2

1
µ1

Ŷ2
2

µ2
− Ŷ2

3
µ3

Ŷ2
4

µ4

)
.

A final scaling isomorphism

C :
(
Ŷ1 : Ŷ2 : Ŷ3 : Ŷ4

)
7→
(
T1 : T2 : T3 : T4

)
=
(
Ŷ1/α1 : Ŷ2/α2 : Ŷ3/α3 : Ŷ4/α4

)
takes us from K̂Int back to KCan, where we started.

98 Chapter V. qDSA

The canonical surfaces KCan resp. K̂Can are only defined over Fp(α1α2α3α4)

resp. Fp(α̂1α̂2α̂3α̂4), while the scaling isomorphisms Ĉ resp. C are defined over
Fp(α̂1, α̂2, α̂3, α̂4) resp. Fp(α1, α2, α3, α4). Everything else is defined over Fp. We con-
firm that one cycle around the hexagon starting and ending on KSqr computes the
pseudo-doubling of Equation (3). Similarly, one cycle around the hexagon starting
and ending on KCan computes Gaudry’s pseudo-doubling from [Gau07, §3.2].

5 Signature Verification on Kummer Surfaces

To verify signatures in the Kummer surface implementation, we need to supply a
CHECK algorithm which, given ±P, ±Q, and ±R on KSqr, decides whether ±R ∈
{±(P + Q),±(P−Q)}. For the elliptic version of qDSA described in §3, we saw that
this came down to checking that ±R satisfied one quadratic relation whose three
coefficients were biquadratic forms in ±P and ±Q. The same principle extends to
Kummer surfaces, where the pseudo-group law is similarly defined by biquadratic
forms; but since Kummer surfaces are defined in terms of four coordinates (as op-
posed to the two coordinates of the x-line), this time there are six simple quadratic
relations to verify, with a total of ten coefficient forms.

5.1 Biquadratic Forms and Pseudo-addition

Let K be a Kummer surface. If ±P is a point on K, then we write (ZP
1 : ZP

2 : ZP
3 : ZP

4)

for its projective coordinates. The classical theory of abelian varieties tells us that
there exist biquadratic forms Bij for 1 ≤ i, j ≤ 4 such that for all ±P and ±Q, if
±S = ±(P + Q) and ±D = ±(P−Q) then

(
ZS

i ZD
j + ZS

j ZD
i

)4

i,j=1
= λ

(
Bij(ZP

1 , ZP
2 , ZP

3 , ZP
4 , ZQ

1 , ZQ
2 , ZQ

3 , ZQ
4)
)4

i,j=1
(4)

where λ ∈ k∗ is some common projective factor depending only on the affine rep-
resentatives chosen for ±P, ±Q, ±(P + Q) and ±(P− Q). These biquadratic forms
are the foundation of pseudo-addition and doubling laws on K: if the “difference”
±D is known, then we can use the Bij to compute ±S.

Proposition 4. Let {Bij : 1 ≤ i, j ≤ 4} be a set of biquadratic forms on K ×K satisfying
Equation (4) for all ±P, ±Q, ±(P + Q), and ±(P−Q). Then

±R = (ZR
1 : ZR

2 : ZR
3 : ZR

4) ∈ {±(P + Q),±(P−Q)}

5. Signature Verification on Kummer Surfaces 99

if and only if (writing Bij for Bij(ZP
1 , . . . , ZQ

4)) we have

Bjj · (ZR
i)

2 − 2Bij · ZR
i ZR

j + Bii · (ZR
j)

2 = 0 for all 1 ≤ i < j ≤ 4 . (5)

Proof. Looking at Equation (4), we see that the system of six quadratics from Equa-
tion (5) cuts out a zero-dimensional degree-2 subscheme of K. That is, the pair of
points {±(P + Q),±(P − Q)} (which may coincide). Hence, if (ZR

1 : ZR
2 : ZR

3 :
ZR

4) = ±R satisfies all of the equations, then it must be one of them.

5.2 Deriving Efficiently Computable Forms

Proposition 4 is the exact analogue of Proposition 3 for Kummer surfaces. All that
we need to turn it into a CHECK algorithm for qDSA is an explicit and efficiently
computable representation of the Bij. These forms depend on the projective model

of the Kummer surface. Hence we write BCan
ij , BSqr

ij and BInt
ij for the forms on the

canonical, squared, and intermediate surfaces. On the canonical surface, the forms
BCan

ij are classical (see e. g. [Bai62, §2.2]). The on-diagonal forms BCan
ii are

BCan
11 =

1
4

(V1

µ̂1
+

V2

µ̂2
+

V3

µ̂3
+

V4

µ̂4

)
, BCan

22 =
1
4

(V1

µ̂1
+

V2

µ̂2
− V3

µ̂3
− V4

µ̂4

)
,

BCan
33 =

1
4

(V1

µ̂1
− V2

µ̂2
+

V3

µ̂3
− V4

µ̂4

)
, BCan

44 =
1
4

(V1

µ̂1
− V2

µ̂2
− V3

µ̂3
+

V4

µ̂4

)
,

(6)

where

V1 =
(
(TP

1)
2 + (TP

2)
2 + (TP

3)
2 + (TP

4)
2)((TQ

1)2 + (TQ
2)2 + (TQ

3)2 + (TQ
4)2) ,

V2 =
(
(TP

1)
2 + (TP

2)
2 − (TP

3)
2 − (TP

4)
2)((TQ

1)2 + (TQ
2)2 − (TQ

3)2 − (TQ
4)2) ,

V3 =
(
(TP

1)
2 − (TP

2)
2 + (TP

3)
2 − (TP

4)
2)((TQ

1)2 − (TQ
2)2 + (TQ

3)2 − (TQ
4)2) ,

V4 =
(
(TP

1)
2 − (TP

2)
2 − (TP

3)
2 + (TP

4)
2)((TQ

1)2 − (TQ
2)2 − (TQ

3)2 + (TQ
4)2) ,

while the off-diagonal forms Bij with {i, j, k, l} = {1, 2, 3, 4} and i 6= j are

BCan
ij =

2
µ̂iµ̂j − µ̂kµ̂l

(
αiαj

(
TP

i TP
j TQ

i TQ
j + TP

k TP
l TQ

k TQ
l
)

− αkαl
(
TP

i TP
j TQ

k TQ
l + TP

k TP
l TQ

i TQ
j
)) . (7)

All of these forms can be efficiently evaluated. The off-diagonal BCan
ij have a par-

ticularly compact shape, while the symmetry of the on-diagonal BCan
ii makes them

particularly easy to compute simultaneously. Indeed, that is exactly what we do in

100 Chapter V. qDSA

Gaudry’s fast pseudo-addition algorithm for KCan [Gau07, §3.2].

Ideally, we would like to evaluate the BSqr
ij on KSqr, since that is where our inputs

±P, ±Q, and ±R live. We can compute the BSqr
ij by dualizing the BCan

ij , then pulling

the B̂Can
ij on K̂Can back to KSqr via Ĉ ◦ H. But while the resulting on-diagonal BSqr

ii

maintain the symmetry and efficiency4 of the BCan
ii , the off-diagonal BSqr

ij turn out
to be much less pleasant, with less apparent exploitable symmetry. For our appli-
cations, this means that evaluating BSqr

ij for i 6= j implies taking a significant hit in
terms of stack and code size, not to mention time. We could avoid this difficulty by
mapping the inputs of CHECK from KSqr into K̂Can, and then evaluating the B̂Can

ij .
But this would involve using (and therefore storing) the four large unsquared α̂i,
which is an important drawback.

One can wonder why the nice B̂Can
ij become so ugly when pulled back to KSqr.

The map Ĉ : KInt → K̂Can has no impact on the shape or number of monomials,
so most of the ugliness is due to the Hadamard transform H : KSqr → KInt. In
particular, if we only pull back the B̂Can

ij as far as KInt, then the resulting BInt
ij retain

the nice form of the BCan
ij but do not involve the α̂i. This fact prompts our solution:

we map ±P, ±Q, and ±R throughH onto KInt, and verify using the forms BInt
ij .

Theorem 5. Up to a common projective factor, the on-diagonal biquadratic forms on the
intermediate surface KInt are

BInt
11 = µ̂1 (κ1F1 + κ2F2 + κ3F3 + κ4F4) ,

BInt
22 = µ̂2 (κ2F1 + κ1F2 + κ4F3 + κ3F4) ,

BInt
33 = µ̂3 (κ3F1 + κ4F2 + κ1F3 + κ2F4) ,

BInt
44 = µ̂4 (κ4F1 + κ3F2 + κ2F3 + κ1F4) ,

(8)

where

F1 = P1Q1 + P2Q2 + P3Q3 + P4Q4 , F2 = P1Q2 + P2Q1 + P3Q4 + P4Q3 ,

F3 = P1Q3 + P3Q1 + P2Q4 + P4Q2 , F4 = P1Q4 + P4Q1 + P2Q3 + P3Q2 ,

and where Pi = ε̂i(YP
i)

2 and Qi = ε̂i(Y
Q
i)2 for 1 ≤ i ≤ 4. Up to the same common

projective factor, the off-diagonal forms for {i, j, k, l} = {1, 2, 3, 4} are

BInt
ij = C · Cij ·

(
µ̂kµ̂l

(
YP

ij −YP
kl
)(

YQ
ij −YQ

kl
)
+
(
µ̂iµ̂j − µ̂kµ̂l

)
YP

klY
Q
kl

)
, (9)

4 As they should, since they are the basis of the efficient pseudo-addition on KSqr!

5. Signature Verification on Kummer Surfaces 101

where Cij = µ̂iµ̂j(µ̂iµ̂k − µ̂jµ̂l)(µ̂iµ̂l − µ̂jµ̂k), YP
ij = YP

i YP
j , YQ

ij = YQ
i YQ

j , and

C =
8(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

(µ̂1µ̂2 − µ̂3µ̂4)(µ̂1µ̂3 − µ̂2µ̂4)(µ̂1µ̂4 − µ̂2µ̂3)
.

Proof. By definition, T̂S
i T̂D

j + T̂S
j T̂D

i = B̂Can
ij (T̂P

1 , . . . , T̂Q
4). Pulling back via Ĉ using

T̂i = Yi/α̂i yields

BInt
ij (YP

1 , . . . , YQ
4) = YS

i YD
j + YS

j YD
i = α̂iα̂j

(
T̂S

i T̂D
j + T̂S

j T̂D
i
)

= α̂iα̂j · B̂Can
ij (T̂P

1 , . . . , T̂Q
4)

= α̂iα̂j · B̂Can
ij (YP

1 /α̂1, . . . , YQ
4 /α̂4) .

Dualizing the BCan
ij from Equations (6), and (7), we find

BInt
11 = µ̂1/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2) · (κ1F1 + κ2F2 + κ3F3 + κ4F4
)

,

BInt
22 = µ̂2/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2) · (κ2F1 + κ1F2 + κ4F3 + κ3F4
)

,

BInt
33 = µ̂3/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2) · (κ3F1 + κ4F2 + κ1F3 + κ2F4
)

,

BInt
44 = µ̂4/

(
4µ1µ2µ3µ4(µ̂1µ̂2µ̂3µ̂4)

2) · (κ4F1 + κ3F2 + κ2F3 + κ1F4
)

,

while the off-diagonal forms Bij with i 6= j are

BInt
ij =

2
µ̂kµ̂l(µ̂iµ̂j − µ̂kµ̂l)

(
µ̂kµ̂l

(
YP

ij −YP
kl
)(

YQ
ij −YQ

kl
)

+ (µ̂iµ̂j − µ̂kµ̂l)YP
klY

Q
kl

)

for {i, j, k, l} = {1, 2, 3, 4}. Multiplying all of these forms by a common projective
factor of 4(µ1µ2µ3µ4)(µ̂1µ̂2µ̂3µ̂4)

2 eliminates the denominators in the coefficients,
and yields the forms of the theorem.

5.3 Signature Verification

We are now finally ready to implement the CHECK algorithm for KSqr. Algorithm 3
does this by applyingH to its inputs, then using the biquadratic forms of Theorem 5.
Its correctness is implied by Proposition 4.

5.4 Using Cryptographic Parameters

The surface defined by Gaudry and Schost [GS12] uses p = 2127 − 1 and (µ1 : µ2 :
µ3 : µ4) = (−11 : 22 : 19 : 3). We also need the constants (µ̂1 : µ̂2 : µ̂3 : µ̂4) =

102 Chapter V. qDSA

Algorithm 3. Checking the verification relation for points on KSqr

Function: CHECK

Input: ±P, ±Q, ±R in KSqr(Fp)

Output: True if ±R ∈ {±(P + Q),±(P−Q)}, False otherwise
Cost: 76M + 8S + 88mc + 42a + 42s

1 (YP, YQ)← (H(±P),H(±Q))

2 (B11, B22, B33, B44)← BIIVALUES(YP, YQ)

3 YR ← H(±R)
4 for (i, j) in {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} do
5 LHS← Bii · (YR

j)
2 + Bjj · (YR

i)2

6 Bij ← BIJVALUE(YP, YQ, (i, j))
7 RHS← 2Bij ·YR

i ·YR
j

8 if LHS 6= RHS then return False
9 return True

Function: BIIVALUES

Input: ±P, ±Q in KInt(Fp)

Output: (BInt
ii (±P,±Q))4

i=1 in F4
p

Cost: 16M + 8S + 28mc + 24a
10 // See Algorithm 13 and Theorem 5

Function: BIJVALUE

Input: ±P, ±Q in KInt(Fp) and (i, j) with 1 ≤ i, j ≤ 4 and i 6= j
Output: BInt

ij (±P,±Q) in Fp

Cost: 10M + 10mc + 1a + 5s
11 // See Algorithm 12 and Theorem 5

6. Kummer Point Compression 103

(−33 : 11 : 17 : 49), (κ1 : κ2 : κ3 : κ4) = (−4697 : 5951 : 5753 : −1991), and
(ε̂1 : ε̂2 : ε̂3 : ε̂4) = (−833 : 2499 : 1617 : 561).5 In practice, where these constants are
“negative”, we reverse their sign and amend the formulæ above accordingly. All of
these constants are small, and fit into one or two bytes each (and the ε̂i are already
stored for use in LADDER). We store one large constant

C = 0x40F50EEFA320A2DD46F7E3D8CDDDA843

and recompute the Cij on the fly.

6 Kummer Point Compression

Our public keys are points on KSqr, and each signature includes one point on KSqr.
Minimizing the space required by Kummer points is therefore essential. A projec-
tive Kummer point is composed of four field elements. Normalizing by dividing
through by a nonzero coordinate reduces us to three field elements (this can also be
achieved using Bernstein’s “wrapping” technique [Ber06c], as in [Ber+14] and Chap-
ter IV). But we are talking about Kummer surfaces (i. e. two-dimensional objects) so
we might hope to compress to two field elements, plus a few bits to enable us to
correctly recover the whole Kummer point. This is analogous to elliptic curve point
compression, where we compress projective points (X : Y : Z) by normalizing to
(x, y) = (X/Z, Y/Z), then storing (x, σ), where σ is a bit indicating the “sign” of y.
Decompressing the datum (x, σ) to (X : Y : Z) = (x : y : 1) then requires solving a
simple quadratic to recover the correct y-coordinate.

For some reason, no such Kummer point compression method has explicitly ap-
peared in the literature. Bernstein remarked in 2006 that if we compress a Kummer
point to two coordinates, then decompression appears to require solving a compli-
cated quartic equation [Ber06c]. This would be much more expensive than com-
puting the single square root required for elliptic decompression. This has perhaps
discouraged implementers from attempting to compress Kummer points. But while
it may not always be obvious from their defining equations, the classical theory tells
us that every Kummer surface is in fact a double cover of P2, just as elliptic curves
are double covers of P1. We use this principle below to show that we can always
compress any Kummer point to two field elements plus two auxiliary bits, and then
decompress by solving a quadratic. In our applications, this gives us a convenient

5 Following the definitions of §4.1, the µ̂i are scaled by −2, the ε̂i by 1/11, and C by 2/112. These
changes influence the BInt

ij , but only up to the same projective factor.

104 Chapter V. qDSA

packaging of Kummer points in exactly 256 bits.

6.1 The General Principle

First, we sketch a general method for Kummer point compression that works for any
Kummer presented as a singular quartic surface in P3. Recall that if N is any point in
P3, then projection away from N defines a map πN : P3 → P2 sending points in P3

on the same line through N to the same point in P2. (The map πN is only a rational
map, and not a morphism; the image of N itself is not well-defined.) Now, let N be
a node of a Kummer surface K. That is, N is one of the 16 singular points of K. The
restriction of πN to K forms a double cover of P2. By definition, πN maps the points
on K that lie on the same line through N to the same point of P2. Now K has degree
4, so each line in P3 intersects K in four points. But since N is a double point of K,
every line through N intersects K at N twice, and then in two other points. These
two remaining points may be “compressed” to their common image in P2 under
πN , plus a single bit to distinguish the appropriate preimage.

To make this more concrete, let L1, L2, and L3 be linearly independent linear
forms on P3 vanishing on N. Then N is the intersection of the three planes in P3 cut
out by the Li. We can now realize the projection πN : K → P2 as

πN : (P1 : · · · : P4) 7−→
(

L1(P1, . . . , P4) : L2(P1, . . . , P4) : L3(P1, . . . , P4)
)

.

Replacing (L1, L2, L3) with another basis of 〈L1, L2, L3〉 yields another projection,
which corresponds to composing πN with a linear automorphism of P2.

If L1, L2, and L3 are chosen as above to vanish on N, and L4 is any linear form not
in 〈L1, L2, L3〉, then the fact that πN is a double cover of the (L1, L2, L3)-plane implies
that the defining equation of K can be rewritten in the form

K : K2(L1, L2, L3)L2
4 − 2K3(L1, L2, L3)L4 + K4(L1, L2, L3) = 0

where each Ki is a homogeneous polynomial of degree i in L1, L2, and L3. This form,
quadratic in L4, allows us to replace the L4-coordinate with a single bit indicating the
“sign” in the corresponding root of this quadratic. The remaining three coordinates
can be normalized to an affine plane point. The net result is a compression to two
field elements, plus one bit indicating the normalization, plus another bit to indicate
the correct value of L4.

Remark 6. Stahlke gives a compression algorithm in [Sta04] for points on genus-2
Jacobians in the usual Mumford representation. The first step can be seen as a pro-

6. Kummer Point Compression 105

jection to the most general model of the Kummer (as in [CF96, Chapter 3]), and then
the second is an implicit implementation of the principle above.

6.2 From Squared Kummers to Tetragonal Kummers

We want to define an efficient point compression scheme for KSqr. The general prin-
ciple above makes this possible, but it leaves open the choice of node N and the
choice of forms Li. These choices determine the complexity of the resulting Ki, and
hence the cost of evaluating them. This in turn has a non-negligible impact on the
time and space required to compress and decompress points, as well as the number
of new auxiliary constants that must be stored.

In this section we define a choice of Li reflecting the special symmetry of KSqr. A
similar procedure for KCan appears in more classical language6 in [Hud05, §54]. The
trick is to distinguish not one node of KSqr, but rather the four nodes forming the
kernel of the (2, 2)-isogeny Ŝ ◦ Ĉ ◦ H : KSqr → K̂Sqr, namely

±0 = N0 = (µ1 : µ2 : µ3 : µ4) , N1 = (µ2 : µ1 : µ4 : µ3) ,

N2 = (µ3 : µ4 : µ1 : µ2) , N3 = (µ4 : µ3 : µ2 : µ1) .

We are going to define a coordinate system where these four nodes become the ver-
tices of a coordinate tetrahedron; then, projection onto any three of the four coor-
dinates will represent a projection away from one of these four nodes. The result
will be an isomorphic Kummer KTet whose defining equation is quadratic in all four
of its variables. This might seem like overkill for point compression (quadratic in
just one variable would suffice) but it has the agreeable effect of dramatically reduc-
ing the overall complexity of the defining equation, saving time and memory in our
compression and decompression algorithms.

The key is the matrix identity
κ̂4 κ̂3 κ̂2 κ̂1

κ̂3 κ̂4 κ̂1 κ̂2

κ̂2 κ̂1 κ̂4 κ̂3

κ̂1 κ̂2 κ̂3 κ̂4

µ1 µ2 µ3 µ4

µ2 µ1 µ4 µ3

µ3 µ4 µ1 µ2

µ4 µ3 µ2 µ1

 = 8µ̂1µ̂2µ̂3µ̂4

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

6 The analogous model of KCan in [Hud05, §54] is called “the equation referred to a Rosenhain tetrad”,
whose defining equation “...may be deduced from the fact that Kummer’s surface is the focal surface of
the congruence of rays common to a tetrahedral complex and a linear complex.” Modern cryptographers
will understand why we have chosen to give a little more algebraic detail here.

106 Chapter V. qDSA

which tells us that the projective isomorphism T : P3 → P3 defined by

T :

X1

: X2

: X3

: X4

 7→

L1

: L2

: L3

: L4

 =

κ̂4X1 + κ̂3X2 + κ̂2X3 + κ̂1X4

: κ̂3X1 + κ̂4X2 + κ̂1X3 + κ̂2X4

: κ̂2X1 + κ̂1X2 + κ̂4X3 + κ̂3X4

: κ̂1X1 + κ̂2X2 + κ̂3X3 + κ̂4X4

maps the four “kernel” nodes to the corners of a coordinate tetrahedron. That is,

T (N0) = (0 : 0 : 0 : 1) , T (N2) = (0 : 1 : 0 : 0) ,

T (N1) = (0 : 0 : 1 : 0) , T (N3) = (1 : 0 : 0 : 0) .

The image of KSqr under T is the tetragonal surface

KTet : 4tL1L2L3L4 =

r2
1(L1L2 + L3L4)

2 + r2
2(L1L3 + L2L4)

2 + r2
3(L1L4 + L2L3)

2

− 2r1s1((L2
1 + L2

2)L3L4 + L1L2(L2
3 + L2

4))

− 2r2s2((L2
1 + L2

3)L2L4 + L1L3(L2
2 + L2

4))

− 2r3s3((L2
1 + L2

4)L2L3 + L1L4(L2
2 + L2

3))

where t = 16µ1µ2µ3µ4µ̂1µ̂2µ̂3µ̂4 and

r1 = (µ1µ3 − µ2µ4)(µ1µ4 − µ2µ3) , s1 = (µ1µ2 − µ3µ4)(µ1µ2 + µ3µ4) ,

r2 = (µ1µ2 − µ3µ4)(µ1µ4 − µ2µ3) , s2 = (µ1µ3 − µ2µ4)(µ1µ3 + µ2µ4) ,

r3 = (µ1µ2 − µ3µ4)(µ1µ3 − µ2µ4) , s3 = (µ1µ4 − µ2µ3)(µ1µ4 + µ2µ3) .

As promised, the defining equation ofKTet is quadratic in all four of its variables. For
compression, we project away from T (±0) = (0 : 0 : 0 : 1) onto the (L1 : L2 : L3)-
plane. Rewriting the defining equation as a quadratic in L4 gives

KTet : K4(L1, L2, L3)− 2K3(L1, L2, L3)L4 + K2(L1, L2, L3)L2
4 = 0

where

K2 = r2
3L2

1 + r2
2L2

2 + r2
1L2

3 − 2 (r3s3L2L3 + r2s2L1L3 + r1s1L1L2) ,

K3 = r1s1(L2
1 + L2

2)L3 + r2s2(L2
1 + L2

3)L2 + r3s3(L2
2 + L2

3)L1

+ (2t− (r2
1 + r2

2 + r2
3))L1L2L3 ,

K4 = r2
3L2

2L2
3 + r2

2L2
1L2

3 + r2
1L2

1L2
2 − 2 (r3s3L1 + r2s2L2 + r1s1L3) L1L2L3 .

6. Kummer Point Compression 107

Lemma 7. If (l1 : l2 : l3 : l4) is a point on KTet, then

K2(l1, l2, l3) = K3(l1, l2, l3) = K4(l1, l2, l3) = 0 ⇐⇒ l1 = l2 = l3 = 0 .

Proof. Write ki for Ki(l1, l2, l3). If (l1, l2, l3) = 0 then (k2, k3, k4) = 0, because each Ki

is non-constant and homogeneous. Conversely, if (k2, k3, k4) = 0 and (l1, l2, l3) 6= 0
then we could embed a line inKTet via λ 7→ (l1 : l2 : l3 : λ); but this is a contradiction,
because KTet contains no lines.

6.3 Compression and Decompression for KSqr

In practice, we compress points onKSqr to tuples (l1, l2, τ, σ), where l1 and l2 are field
elements and τ and σ are bits. The recipe is

1. Map (X1 : X2 : X3 : X4) through T to a point (L1 : L2 : L3 : L4) on KTet.

2. Compute the unique (l1, l2, l3, l4) in a form (∗, ∗, 1, ∗), (∗, 1, 0, ∗), (1, 0, 0, ∗), or
(0, 0, 0, 1) such that (l1 : l2 : l3 : l4) = (L1 : L2 : L3 : L4).

3. Compute k2 = K2(l1, l2, l3), k3 = K3(l1, l2, l3) and k4 = K4(l1, l2, l3).

4. Define the bit σ = Sign(k2l4 − k3), so that (l1, l2, l3, σ) determines l4. Indeed,
q(l4) = 0, where q(X) = k2X2 − 2k3X + k4 and Lemma 7 tells us that q(X) is
either quadratic, linear, or identically zero.

– If q is a nonsingular quadratic, then l4 is determined by (l1, l2, l3) and σ,
because σ = Sign(R) where R is the correct square root in the quadratic

formula l4 = (k3 ±
√

k2
3 − k2k4)/k2.

– If q is singular or linear, then (l1, l2, l3) determines l4, and σ is redundant.

– If q = 0 then (l1, l2, l3) = (0, 0, 0), so l4 = 1. Again, σ is redundant.

Setting σ = Sign(k2l4− k3) in every case, regardless of whether or not we need
it to determine l4, avoids ambiguity and simplifies code.

5. The normalization in Step 2 forces l3 ∈ {0, 1}, so encode l3 as a single bit τ.

The datum (l1, l2, τ, σ) completely determines (l1, l2, l3, l4), and thus determines (X1 :
X2 : X3 : X4) = T −1((l1 : l2 : l2 : l4)). Conversely, the normalization in Step 2 en-
sures that (l1, l2, τ, σ) is uniquely determined by (X1 : X2 : X3 : X4), and is indepen-
dent of the representative values of the Xi. Algorithm 4 carries out the compression

108 Chapter V. qDSA

process above. The most expensive step is the computation of an inverse in Fp. Al-
gorithm 5 is the corresponding decompression algorithm, and its cost is dominated
by computing a square root in Fp.

Algorithm 4. Kummer point compression for KSqr

Function: COMPRESS

Input: ±P in KSqr(Fp)

Output: (l1, l2, τ, σ) with l1, l2 ∈ Fp and σ, τ ∈ {0, 1}
Cost: 8M + 5S + 12mc + 8a + 5s + 1I

1 (L1, L2)← (Dot(±P, (κ̂4, κ̂3, κ̂2, κ̂1)), Dot(±P, (κ̂3, κ̂4, κ̂1, κ̂2)))

2 (L3, L4)← (Dot(±P, (κ̂2, κ̂1, κ̂4, κ̂3)), Dot(±P, (κ̂1, κ̂2, κ̂3, κ̂4)))

3 if L3 6= 0 then (τ, λ)← (1, L−1
3) . Normalize to (∗ : ∗ : 1 : ∗)

4 else if L2 6= 0 then (τ, λ)← (0, L−1
2) . Normalize to (∗ : 1 : 0 : ∗)

5 else if L1 6= 0 then (τ, λ)← (0, L−1
1) . Normalize to (1 : 0 : 0 : ∗)

6 else (τ, λ)← (0, L−1
4) . Normalize to (0 : 0 : 0 : 1)

7 (l1, l2, l4)← (L1 · λ, L2 · λ, L4 · λ) . (l1 : l2 : τ : l4) = (L1 : L2 : L3 : L4)

8 (k2, k3)← (K2(l1, l2, τ), K3(l1, l2, τ)) . See Algorithm 14 and 15
9 R← k2 · l4 − k3

10 σ← Sign(R)
11 return (l1, l2, τ, σ)

Proposition 8. Algorithms 4 (COMPRESS) and 5 (DECOMPRESS) satisfy the following
properties: given (l1, l2, τ, σ) in F2

p × {0, 1}2, DECOMPRESS always returns either a valid
point in KSqr(Fp) or ⊥, and for every ±P in KSqr(Fp) we have

DECOMPRESS(COMPRESS(±P)) = ±P .

Proof. In Algorithm 5 we are given (l1, l2, τ, σ). We can immediately set l3 = τ,
viewed as an element of Fp. We want to compute an l4 in Fp, if it exists, such that
k2l2

4 − 2k3l4 + k4 = 0 and Sign(k2l4 − l3) = σ where ki = Ki(l1, l2, l3). If such an l4
exists, then we will have a preimage (l1 : l2 : l3 : l4) in KTet(Fp), and we can return
the decompressed T −1((l1 : l2 : l3 : l4)) in KSqr.

– If (k2, k3) = (0, 0) , then k4 = 2k3l4 − k2l2
4 = 0, so l1 = l2 = τ = 0 by Lemma 7.

The only legitimate datum in this form is (l1 : l2 : τ : σ) = (0 : 0 : 0 : Sign(0)).
If this was the input, then the preimage is (0 : 0 : 0 : 1). Otherwise, we return
⊥.

– If k2 = 0 but k3 6= 0, then k4 = 2k3l4 and (l1 : l2 : τ : l4) = (2k3l1 : 2k3l2 : 2k3τ :

6. Kummer Point Compression 109

Algorithm 5. Kummer point decompression to KSqr

Function: DECOMPRESS

Input: (l1, l2, τ, σ) with l1, l2 ∈ Fp and τ, σ ∈ {0, 1}
Output: The point ±P in KSqr(Fp) such that COMPRESS(±P) = (l1, l2, τ, σ), or ⊥ if

no such ±P exists
Cost: 10M + 9S + 18mc + 13a + 8s + 1E

1 (k2, k3, k4)← (K2(l1, l2, τ), K3(l1, l2, τ), K4(l1, l2, τ)) . Alg. 14, 15, 16
2 if k2 = 0 and k3 = 0 then
3 if (l1, l2, τ, σ) 6= (0, 0, 0, Sign(0)) then
4 return ⊥ . Invalid compression
5 L← (0, 0, 0, 1)
6 else if k2 = 0 and k3 6= 0 then
7 if σ 6= Sign(−k3) then
8 return ⊥ . Invalid compression
9 L← (2 · l1 · k3, 2 · l2 · k3, 2 · τ · k3, k4) . k4 = 2k3l4

10 else
11 ∆← k2

3 − k2k4

12 R← HasSquareRoot(∆, σ) . R = ⊥ or R2 = ∆, Sign(R) = σ

13 if R = ⊥ then
14 return ⊥ . No preimage in KTet(Fp)

15 L← (k2 · l1, k2 · l2, k2 · τ, k3 + R) . k3 + R = k2l4
16 (X1, X2)← (Dot(L, (µ4, µ3, µ2, µ1)), Dot(L, (µ3, µ4, µ1, µ2)))

17 (X3, X4)← (Dot(L, (µ2, µ1, µ4, µ3)), Dot(L, (µ1, µ2, µ3, µ4)))

18 return (X1 : X2 : X3 : X4)

110 Chapter V. qDSA

k4). The datum is a valid compression unless σ 6= Sign(−k3), in which case
we return ⊥. Otherwise, the preimage is (2k3l1 : 2k3l2 : 2k3τ : k4).

– If k2 6= 0, then the quadratic formula tells us that any preimage satisfies k2l4 =

k3 ±
√

k2
3 − k2k4, with the sign determined by Sign(k2l4 − k3). If k2

3 − k2k4 is
not a square in Fp then there is no such l4 in Fp; the input is illegitimate, so we

return ⊥. Otherwise, we have a preimage (k2l1 : k2l2 : k2l3 : l3 ±
√

k2
3 − k2k4).

Lines 16 and 17 map the preimage (l1 : l2 : l3 : l4) in KTet(Fp) back to KSqr(Fp) via
T −1, yielding the decompressed point (X1 : X2 : X3 : X4).

6.4 Using Cryptographic Parameters

Our compression scheme works out particularly nicely for the Gaudry–Schost Kum-
mer over F2127−1. First, since every field element fits into 127 bits, every compressed
point fits into exactly 256 bits. Second, the auxiliary constants are small. We have
(κ̂1 : κ̂2 : κ̂3 : κ̂4) = (−961 : 128 : 569 : 1097), each of which fits into well under 16
bits. Computing the polynomials K2, K3, K4 and dividing them all through by 112

(which does not change the roots of the quadratic) gives

K2(l1, l2, τ) = (q5l1)2 + (q3l2)2 + (q4τ)2 − 2q3
(
q2l1l2 + τ(q0l1 − q1l2)

)
, (10)

K3(l1, l2, τ) = q3
(
q0(l2

1 + τ)l2 − q1l1(l2
2 + τ) + q2(l2

1 + l2
2)τ
)
− q6q7l1l2τ , (11)

K4(l1, l2, τ) =
(
(q3l1)2 + (q5l2)2 − 2q3l1l2

(
q0l2 − q1l1 + q2

))
τ + (q4l1l2)2 , (12)

where (q0, . . . , q7) = (3575, 9625, 4625, 12259, 11275, 7475, 6009, 43991). Each of the
qi fits into 16 bits. In total, the twelve new constants we need for COMPRESS and
DECOMPRESS together fit into less than two field elements’ worth of space.

7 Implementation

In this section we present the results of the implementation of the scheme on the
AVR ATmega and ARM Cortex M0 platforms. We have a total of four implementa-
tions. On both platforms we implemented both the Curve25519-based scheme and
the scheme based on a fast Kummer surface in genus 2. The benchmarks for the
AVR software are obtained from the Arduino MEGA development board contain-
ing an ATmega2560 MCU, compiled with GCC v4.8.1. For the Cortex M0, they are
measured on the STM32F051R8 MCU on the STMF0Discovery board, compiled with

7. Implementation 111

Table 2. Cycle counts for the four key functions of qDSA at the 128-bit security level on the
AVR ATmega and ARM Cortex M0 architectures.

Genus Function Ref. AVR ARM

1

LADDER Alg. 6 12 539 098 3 338 554
CHECK Alg. 2 46 546 17 044
COMPRESS §3.1 1 067 004 270 867
DECOMPRESS §3.1 694 102

2

LADDER Alg. 9 9 624 637 2 683 371
CHECK7 Alg. 3 84 424 24 249
COMPRESS Alg. 4 212 374 62 165
DECOMPRESS Alg. 5 211 428 62 471

Clang v3.5.0. We refer to the (publicly available) code for more detailed compiler
settings. For both Diffie–Hellman and signatures we follow the eBACS API [BLa].

7.1 Core Functionality

The arithmetic of the underlying finite fields is well-studied and optimized, and
we do not reinvent the wheel. For field arithmetic in F2255−19 we use the highly
optimized functions presented by Hutter and Schwabe [HS13] for the AVR ATmega,
and the code from Düll et al. [Dül+15] for the Cortex M0. For arithmetic in F2127−1

we use the functions from Chapter IV, which in turn rely on [HS13] for the AVR
ATmega, and on [Dül+15] for the Cortex M0.

The SHAKE128 functions for the ATmega are taken from [Ber+16], while on the
Cortex M0 we use a modified version from [AJS16]. Cycle counts for the main func-
tions defined in the rest of this chapter are presented in Table 2. Notably, the LADDER

routine is by far the most expensive function. In genus 1 the COMPRESS function is
relatively costly (it is essentially an inversion), while in genus 2 CHECK, COMPRESS

and DECOMPRESS have only minor impact on the total run-time. More interestingly,
as seen in Table 3 and Table 4, the simplicity of operating only on the Kummer vari-
ety allows smaller code and less stack usage.

7.2 Comparison to Previous Work

There are not many implementations of full signature and key exchange schemes
on microcontrollers. On the other hand, there are implementations of scalar multi-

7 The implementation decompresses ±R within CHECK, while Algorithm 3 assumes ±R to be decom-
pressed. We have subtracted the cost of the DECOMPRESS function once.

112 Chapter V. qDSA

Table 3. Performance comparison of the qDSA signature scheme against the best implementa-
tions, on the AVR ATmega architecture. The code size and stack size are measured in bytes.

Ref. Object Func. Cycles Stack Code size8

[NLD15] Ed25519 SIGN 19 047 706 1 473 B —
VERIFY 30 776 942 1 226 B

[Liu+17] FourQ
SIGN 5 174 800 1 572 B 25 354 B
VERIFY 11 003 800 4 957 B 33 372 B

This Curve25519 SIGN 14 067 995 512 B 21 347 B
VERIFY 25 355 140 644 B

Chapter IV Gaudry– SIGN 10 404 033 926 B 20 242 BSchost J VERIFY 16 240 510 992 B

This Gaudry– SIGN 10 477 347 417 B 17 880 BSchost K VERIFY 20 423 937 609 B

plication on elliptic curves. The fastest on our platforms are presented by Düll et
al. [Dül+15], and since we are relying on exactly the same arithmetic, we have essen-
tially the same results. Similarly, the records for scalar multiplication on Kummer
surfaces are presented in Chapter IV. Since we use the same underlying functions,
we have similar results.

More interestingly, we compare the speed and memory usage of signing and ver-
ification to best known results of implementations of complete signature schemes.
To the best of our knowledge, the only other works are the Ed25519-based scheme
by Nascimento et al [NLD15], the FourQ-based scheme (obtaining fast scalar mul-
tiplication by relying on easily computable endomorphisms) by Liu et al [Liu+17],
and the genus-2 implementation from Chapter IV.

AVR ATmega. As we see in Table 3, our implementation of the scheme based on
Curve25519 outperforms the Ed25519-based scheme from [NLD15] in every way. It
reduces the number of clock cycles needed for SIGN resp. VERIFY by more than 26%
resp. 17%, while reducing stack usage by more than 65% resp. 47%. Code size is not
reported in [NLD15]. Comparing against the FourQ implementation of [Liu+17], we
see a clear trade-off between speed and size: FourQ has a clear speed advantage, but
qDSA on Curve25519 requires only a fraction of the stack space.

The implementation based on the Kummer surface of the genus-2 Gaudry–Schost
Jacobian does better than the Curve25519-based implementation across the board.
Compared to Chapter IV the stack usage of SIGN resp. VERIFY decreases by more

8 All reported code sizes except those from [Liu+17, Table 6] include support for both signatures and
key exchange.

7. Implementation 113

Table 4. Performance comparison of the qDSA signature scheme against the current best im-
plementations, on the ARM Cortex M0 platform. The code size and stack size are measured
in bytes.

Ref. Object Func. Cycles Stack Code size9

This Curve25519 SIGN 3 889 116 660 B 18 443 B
VERIFY 6 793 695 788 B

Chapter IV Gaudry– SIGN 2 865 351 1 360 B 19 606 BSchost J VERIFY 4 453 978 1 432 B

This Gaudry– SIGN 2 908 215 580 B 18 064 BSchost K VERIFY 5 694 414 808 B

than 54% resp. 38%, while decreasing code size by about 11%. On the other hand,
verification is about 26% slower. This is explained by the fact that in Chapter IV the
signature is compressed to 48 bytes (following Schnorr’s suggestion), which means
that one of the scalar multiplications in verification is only half length. Comparing to
the FourQ implementation of [Liu+17], again we see a clear trade-off between speed
and size, but this time the loss of speed is less pronounced than in the comparison
with Curve25519-based qDSA.

ARM Cortex M0. In this case there is no elliptic-curve-based signature scheme to
compare to, so we present the first. As we see in Table 4, it is significantly slower than
its genus-2 counterpart in this chapter (as should be expected), while using a similar
amount of stack and code. The genus-2 signature scheme has similar trade-offs on
this platform when compared to the implementation of Chapter IV. The stack usage
for SIGN resp. VERIFY is reduced by about 57% resp. 43%, while code size is reduced
by about 8%. For the same reasons as above, verification is about 28% slower.

9 In this chapter 8 448 bytes come from the SHAKE128 implementation, while in Chapter IV we use
6 938 bytes. One could probably reduce this significantly by optimizing the implementation, or by using
a more memory-friendly hash function.

114 Chapter V. qDSA

A Elliptic Implementation Details

The algorithms in this section complete the description of elliptic qDSA in §3.

A.1 Pseudoscalar Multiplication

The KEYPAIR, SIGN, and VERIFY functions all require LADDER, which we define be-
low. Algorithm 6 describes the scalar pseudomultiplication that we implemented
for Montgomery curves, closely following our C reference implementation. To make
our LADDER constant-time, we use a conditional swap procedure CSWAP. This takes a
single bit and a pair of items as arguments, and swaps those items if and only if the
bit is 1.

Algorithm 6. The Montgomery ladder for elliptic pseudo-multiplication on P1, us-
ing a combined differential double-and-add (Algorithm 7)

Function: LADDER

Input: m = ∑255
i=0 mi2i ∈ Z and ±P = (x : 1) ∈ P1(Fp) , x 6= 0

Output: ±[m]P
Cost: 1280M + 1024S + 256mc + 1024a + 1024s

1 prevbit← 0
2 (V0, V1)← ((1 : 0),±P)
3 for i = 255 down to 0 do
4 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
5 CSWAP(swap, (V0, V1))

6 XDBLADD(V0, V1, x)
7 CSWAP(bit, (V0, V1))

8 return V0

Algorithm 7 implements XDBLADD for Montgomery curves in the usual way.
Note that the assumption that ±(P− Q) 6∈ {(1 : 0), (0 : 1)} implies that XDBLADD

will always return the correct result.

A.2 The BVALUES Subroutine for Signature Verification

The elliptic version of the crucial CHECK subroutine of VERIFY (Algorithm 2) used
a function BVALUES to calculate the values of the biquadratic forms BXX , BXZ, and
BZZ. This function can be implemented in a number of ways, with different opti-
mizations for speed or stack usage. Algorithm 8 illustrates the approach we used for
BVALUES, motivated by simplicity and stack minimization.

A. Elliptic Implementation Details 115

Algorithm 7. Combined pseudo-addition and doubling on P1

Function: XDBLADD

Input: ±P = (XP : ZP) and ±Q = (XQ : ZQ) in P1(Fq), and x ∈ F∗q such that
(x : 1) = ±(P−Q)

Output: (±[2]P,±(P + Q))

Cost: 5M + 4S + 1mc + 4a + 4s
1 (U0, U1)← (XP, ZP)

2 (V0, V1)← (XQ, ZQ)

3 (W0, W1)← (U0 + U1, U0 −U1)

4 (U0, U1)← (V0 + V1, V0 −V1)

5 (V0, U1)← (W0 ·U1, W1 ·U0)

6 (U0, V1)← (V0 + U1, V0 −U1)

7 (U0, V0, V1)← (U2
0 , V2

0 , x ·U0)

8 (W0, U0)← (W2
1 , W2

0)

9 U1 ← U0 −W0

10 U0 ←W0 ·U0

11 W1 ← A+2
4 ·U1

12 W1 ←W0 ·W1

13 U1 ←W1 ·U1

14 return
(
(U0, U1), (V0, V1)

)

Algorithm 8. Evaluates BXX , BXZ, and BZZ on P1

Function: BVALUES

Input: ±P = (XP : ZP), ±Q = (XQ : ZQ) in K(Fp)

Output: (BXX(±P,±Q), BXZ(±P,±Q), BZZ(±P,±Q)) in F3
p

Cost: 6M + 2S + 1mc + 7a + 3s
1 (T0, T1)← (XP · XQ, ZP · ZQ)

2 U ← (T0 − T1)
2

3 T0 ← T0 + T1

4 (T1, T2)← (XP · ZQ, XQ · ZP)

5 W ← (T1 − T2)
2

6 V ← T0 · (T1 + T2)

7 T0 ← 4 · T1 · T2

8 T1 ← 2 · T0

9 T1 ← A+2
4 · T1

10 V ← V + T1 − T0

11 return (U, V, W)

116 Chapter V. qDSA

B Kummer Surface Implementation Details

The algorithms in this section complete the description of Kummer qDSA in §§4-6.
They follow our C reference implementation very closely. Recall that we have the
following subroutines:

– The function M : F4
p × F4

p → F4
p implements a 4-way parallel multiplica-

tion. It takes a pair of vectors (x1, x2, x3, x4) and (y1, y2, y3, y4) and returns the
coordinate-wise product vector (x1x2 : y1y2 : z1z2 : t1t2).

– The function S : F4
p → F4

p implements a 4-way parallel squaring. It maps
(x1, x2, x3, x4) to (x2

1, x2
2, x2

3, x2
4).

– The function H : F4
p → F4

p is a Hadamard transform. It maps (x1, x2, x3, x4) to
(x1 + x2 + x3 + x4, x1 + x2 − x3 − x4, x1 − x2 + x3 − x4, x1 − x2 − x3 + x4).

– The function Dot : F4
p ×F4

p → Fp computes the sum of a 4-way multiplication.
Given (x1, x2, x3, x4) and (y1, y2, y3, y4), it returns x1y1 + x2y2 + x3y3 + x4y4.

B.1 Scalar Pseudomultiplication

The Montgomery LADDER for scalar pseudomultiplication on KSqr is implemented
in Algorithm 9, replicating the approach in Chapter IV. It relies on the XWRAP and
XDBLADD functions, implemented in Algorithm 10 respectively 11. The function
XWRAP takes a Kummer point±P inKSqr(Fp) and returns w2, w3, and w4 in Fp such
that (1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 : 1/XP

3 : 1/XP
4). The resulting values

are required in every XDBLADD within LADDER; the idea is to compute them once
with a single inversion at the start of the procedure, thus avoiding further expensive
inversions. We note that this “wrapped” form of the point ±P was previously used
as a compressed form for Kummer point transmission, but since it requires three full
field values it is far from an optimal compression.

B.2 Subroutines for Signature Verification

The crucial CHECK function for KSqr (Algorithm 3) calls subroutines BIIVALUES and
BIJVALUE to compute the values of the biquadratic forms on KInt. Algorithm 12
and 13 are our simple implementations of these functions. We choose to only store
the four constants µ̂1, µ̂2, µ̂3 and µ̂4, but clearly one can gain some efficiency by
pre-computing more constants (e. g. µ̂1µ̂2, µ̂1µ̂4 − µ̂2µ̂3, etc.). As the speed of this
operation is not critical, it allows us to reduce the number of necessary constants.

B. Kummer Surface Implementation Details 117

Algorithm 9. The Montgomery ladder for pseudomultiplication on KSqr, based on a
combined differential double-and-add (Algorithm 11)

Function: LADDER

Input: m = ∑255
i=0 mi2i ∈ Z and ±P ∈ KSqr(Fp)

Output: ±[m]P
Cost: 1799M + 3072S + 3072mc + 4096a + 4096s + I

1 prevbit← 0
2 W ← XWRAP(±P)
3 (V0, V1)← ((µ1 : µ2 : µ3 : µ4),±P)
4 for i = 255 down to 0 do
5 (bit, prevbit, swap)← (mi, bit, bit⊕ prevbit)
6 CSWAP(swap, (V0, V1))

7 XDBLADD(V0, V1, W)

8 CSWAP(bit, (V0, V1))

9 return V0

Algorithm 10. Precomputes inverted Kummer point coordinates

Function: XWRAP

Input: ±P ∈ KSqr(Fp)

Output: (w2, w3, w4) ∈ F3
p such that (1 : w2 : w3 : w4) = (1/XP

1 : 1/XP
2 : 1/XP

3 :
1/XP

4)

Cost: 7M + I
1 V1 ← XP

2 · XP
3

2 V2 ← XP
1 /(V1 · XP

4)

3 V3 ← V2 · XP
4

4 return (V3 · X3, V3 · X2, V1 ·V2)

118 Chapter V. qDSA

Algorithm 11. Combined pseudo-addition and doubling on KSqr

Function: XDBLADD

Input: ±P,±Q in KSqr(Fp), and (w2, w3, w4) = XWRAP(±(P−Q)) in F3
p

Output: (±[2]P,±(P + Q)) ∈ KSqr(Fp)2

Cost: 7M + 12S + 12mc + 16a + 16s
1 (V1, V2)← (H(V1),H(V2))

2 (V1, V2)← (S(V1),M(V1, V2))

3 (V1, V2)← (M(V1, (ε̂1, ε̂2, ε̂3, ε̂4)),M(V2, (ε̂1, ε̂2, ε̂3, ε̂4)))

4 (V1, V2)← (H(V1),H(V2))

5 (V1, V2)← (S(V1),S(V2))

6 (V1, V2)← (M(V1, (ε1, ε2, ε3, ε4))),M(V2, (1, w2, w3, w4))))

7 return (V1, V2)

The four values of B11, B22, B33, and B44 are computed simultaneously, since many
of the intermediate operands are shared (as is clear from Equation (8)).

Algorithm 12. Evaluates one of the off-diagonal Bij on KInt

Function: BIJVALUE

Input: ±P, ±Q in KInt(Fp) and (i, j) such that {i, j, k, l} = {1, 2, 3, 4}
Output: BInt

ij (±P,±Q) in Fp

Cost: 10M + 10mc + 1a + 5s
1 (V0, V1, V2, V3)← (YP

i ·YP
j , YP

k ·Y
P
l , YQ

i ·Y
Q
j , YQ

k ·Y
Q
l)

2 (V0, V2)← (V0 −V1, V2 −V3)

3 (V0, V1)← (V0 ·V2, V1 ·V3)

4 (V0, V1)← (V0 · µ̂kµ̂l , V1 · (µ̂iµ̂j − µ̂kµ̂l))

5 V0 ← V0 + V1

6 V0 ← V0 · µ̂iµ̂j(µ̂iµ̂k − µ̂jµ̂l)(µ̂iµ̂l − µ̂jµ̂k)

7 V0 ← V0 · C
8 return V0

B.3 Subroutines for Compression and Decompression

The COMPRESS and DECOMPRESS functions in Algorithms 4 and 5 require the evalua-
tion of the polynomials K2, K3, and K4. We used the simple strategy in Algorithms 14,
15, and 16 (GET_K2, GET_K3, and GET_K4 respectively), which prioritizes low stack
usage over speed (which is again not critical here).

B. Kummer Surface Implementation Details 119

Algorithm 13. Evaluates B11, B22, B33, and B44 on KInt

Function: BIIVALUES

Input: ±P, ±Q in KInt(Fp)

Output: (BInt
ii (±P,±Q))4

i=1 in F4
p

Cost: 16M + 8S + 28mc + 24a
1 (V, W)← (±P,±Q)

2 (V, W)← (S(V),S(W))

3 (V, W)← (M(V, (ε̂1, ε̂2, ε̂3, ε̂4)),M(W, (ε̂1, ε̂2, ε̂3, ε̂4)))

4 U ←
(Dot(V, (W1, W2, W3, W4)), Dot(V, (W2, W1, W4, W3)),

Dot(V, (W3, W4, W1, W2)), Dot(V, (W4, W3, W2, W1))

)
5 V ←

(Dot(U, (κ̂1, κ̂2, κ̂3, κ̂4)), Dot(U, (κ̂2, κ̂1, κ̂4, κ̂3)),
Dot(U, (κ̂3, κ̂4, κ̂1, κ̂2)), Dot(U, (κ̂4, κ̂3, κ̂2, κ̂1))

)
6 V ←M(V, (µ̂1, µ̂2, µ̂3, µ̂4))

7 return V

Algorithm 14. Evaluates the polynomial K2 at (l1, l2, τ)

Function: GET_K2
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K2(l1, l2, τ) in Fp as in Equation (10)
Cost: 1M + 3S + 6mc + 4a + 2s

1 V ← l1 · q2

2 V ← l2 ·V
3 if τ = 1 then
4 W ← l1 · q0

5 V ← V + W
6 W ← l2 · q1

7 V ← V −W

8 end if
9 V ← V · q3

10 V ← V + V
11 W ← l1 + q5

12 W ←W2

13 V ←W −V
14 W ← l2 · q3

15 W ←W2

16 V ←W + V
17 if τ = 1 then
18 W ← q2

4
19 V ←W + V
20 end if
21 return V

120 Chapter V. qDSA

Algorithm 15. Evaluates the polynomial K3 at (l1, l2, τ)

Function: GET_K3
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K3(l1, l2, τ) in Fp as in Equation (11)
Cost: 3M + 2S + 6mc + 4a + 2s

1 U ← l2
2

2 V ← l2
1

3 if τ = 1 then
4 W ← U + V
5 W ←W · q2

6 U ← U + 1
7 V ← V + 1
8 end if

9 U ← U · l1
10 V ← V · l2
11 U ← U · q1

12 V ← V · q0

13 V ← V −U
14 if τ = 1 then
15 V ← V + W
16 end if

17 V ← V · q3

18 if τ = 1 then
19 U ← l1 · l2
20 U ← U · q6

21 U ← U · q7

22 V ← V −U
23 end if
24 return V

Algorithm 16. Evaluates the polynomial K4 at (l1, l2, τ)

Function: GET_K4
Input: (l1, l2, τ) with l1, l2 ∈ Fp and τ ∈ {0, 1}
Output: K4(l1, l2, τ) in Fp as in Equation (12)
Cost: 3M + 3S + 6mc + 4a + 2s

1 if τ = 1 then
2 W ← l2 · q0

3 V ← l1 · q1

4 W ←W −V
5 W ←W + q2

6 W ←W · l1
7 W ←W · l2
8 W ←W · q3

9 W ←W + W
10 V ← l1 · q3

11 V ← V2

12 W ← V −W
13 V ← l2 · q5

14 V ← V2

15 W ← V + W
16 end if

17 V ← l1 · q4

18 V ← V · l2
19 V ← V2

20 if τ = 1 then
21 V ← V + W
22 end if
23 return V

Chapter VI
On Kummer Lines with Full
Rational 2-torsion and Their
Usage in Cryptography

A paper by Karati and Sarkar [KS17] has pointed out the potential for Kummer lines
in genus one, by observing that its SIMD-friendly arithmetic is competitive with
the status quo. A more recent preprint explores the connection with (twisted) Ed-
wards curves. In this chapter we extend this work and significantly simplify their
treatment. We show that their Kummer line is the x-line of a Montgomery curve
translated by a point of order two, and exhibit a natural isomorphism to a twisted
Edwards curve. Moreover, we show that the Kummer line presented by Gaudry and
Lubicz can be obtained via the action of a point of order two on the y-line of an Ed-
wards curve. The maps connecting these curves and lines are all very simple. As a
result, a cryptographic implementation can use the arithmetic that is optimal for its
instruction set at negligible cost.

1 Introduction

A decade after the introduction of public-key cryptography by Diffie and Hellman
[DH76] it was observed (independently) by Miller [Mil86] and Koblitz [Kob87] that
one can instantiate protocols based on the hardness of the discrete logarithm prob-
lem with the group of rational points of an elliptic curve E defined over a finite field.

122 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Moreover, it was immediately noted by Miller that one can do a full key exchange by
solely relying on the line of x-coordinates of points. That is, one can identify points
with their inverses and as a result only work with points up to sign. In other words,
one can work on the corresponding Kummer line K = E/{±1}, possibly simplify-
ing the arithmetic. One can also directly use K for digital signatures very efficiently
with the qDSA scheme (c. f. §V.2). In short, Kummer lines are a very interesting
topic of study from a cryptographic perspective.

Because a reduction in the number of field operations needed for a scalar mul-
tiplication directly affects the efficiency of the cryptographic scheme, there have
been multiple proposals for Kummer lines. Probably the most available example
is Curve25519 [Ber06a], which is the Kummer line of a Montgomery curve. One can
show that every Montgomery curve is birationally equivalent to a twisted Edwards
curve [Ber+08, Theorem 3.2], which currently needs the least number of field oper-
ations to perform group operations [His+08] and underlies the very efficient FourQ

curve [CL15]. As a result, the Kummer lines of Montgomery and twisted Edwards
curves are strongly related, and one can move easily from one to the other [Ber+08;
CGF08]. Through the usage of theta functions Gaudry and Lubicz [GL09, §6] de-
rived yet another Kummer line. We shall refer to this as the canonical Kummer line,
following the terminology of the genus-2 analogue presented in §V.4. By squaring its
coefficients we arrive on a different variety, which we refer to as the squared Kummer
line (again c. f. the genus-2 analogue [CC86; Ber06c]). Although Gaudry and Lubicz
only presented arithmetic on the canonical line, the differential addition formulae
on the squared Kummer line are well-known [BLb]. The squared Kummer line has
the advantage that it is easier to find suitable small parameters, and it was shown by
Karati and Sarkar [KS17] that its arithmetic leads to very efficient implementations
when single-instruction multiple-data (SIMD) instructions are available. In a follow-
up paper [KS19] the same authors present connections to twisted Edwards curves.
This requires the associated Legendre curve to be put in Montgomery form or have
a rational point of order 4, or otherwise relies on the usage of a 2-isogeny. Conse-
quently, there are case distinctions and one must deal with the doubling induced by
moving through a 2-isogeny and its dual. In [KS19, Table 7] they present the possibil-
ity of birational maps and isogenies between the Legendre form for certain choices
of small constants.

In this chapter we significantly simplify the connections between the various
Kummer lines. Since the field of definition of the canonical and squared Kummer
lines corresponds to their rational 2-torsion, we shall assume all points of order 2
to be rational. In that case, we show that the squared (resp. canonical) Kummer

2. Notation 123

arises as the x-line (resp. y-line) of a Montgomery (resp. Edwards) curve translated
by a suitable point of order 2. Moreover, a third Kummer line (referred to as the
intermediate Kummer) appears as the y-line of a twisted Edwards curve via a trans-
lation by a point of order 2. These observations induce very simple isomorphisms
between them. Furthermore, the respective translations by a point of order 2 lead
to fast isomorphisms (in fact, involutions) with the well-known x-lines (or y-lines)
of Montgomery, Edwards and twisted Edwards curves. As a result, we unify the
most popular Kummer lines in the literature and conclude that their usage is com-
pletely interchangeable on an implementation level. For example, we can directly
use the squared Kummer line in the qDSA scheme through its connection with a
Montgomery curve (see §V.3). Moreover, although there exist efficient implementa-
tions of Montgomery curves based on 4-way SIMD parallelization by optimizing the
field arithmetic [FHL15], it is unclear how to optimally parallelize instructions 4-way
on the level of the x-line [Cho15]. This is straightforward on the squared Kummer
line, and therefore by extension becomes trivial on Montgomery curves with full
rational 2-torsion by moving through the isomorphism. Of course, if desired, one
can also do arithmetic on the full group of points of the twisted Edwards curve (as
also noted by Karati and Sarkar [KS19]). In particular, we provide isomorphic Mont-
gomery and twisted Edwards models for all the Kummer lines present in [KS19,
Table 7] (see Table 1 in §3.2).

Organization. We establish notation in §2, while the main contribution appears as
Theorem 5 in §3. In §4 we count the number of Kummer lines up to isomorphism.

2 Notation

We begin by fixing notation, referring back for preliminaries to §I.2.1. For simplicity
and readability of this chapter we recall some notions.

As usual, we let k be a field. Throughout the whole document we assume that
char(k) 6= 2 unless mentioned otherwise. An elliptic curve is a smooth projective
curve C of genus 1 with specified base point OC . We denote it by (C,OC), or simply
by C if the base point is implicit. For example, the Weierstrass form1 y2 + a1xy+ a3y =

x3 + a2x2 + a4x + a6 ⊂ P2 has implicit base point O = (0 : 1 : 0), but the curves we

1 We shall in many cases talk about affine curves and maps for simplicity, but always mean their pro-
jective counterparts. This depends on the particular embedding of the affine curve into projective space,
but the embedding should be clear from context. In particular, we always embed Montgomery curves
into P2 while (twisted) Edwards curves are embedded into P3 (as opposed to P1 × P1, which is also
commonplace).

124 Chapter VI. On Kummer Lines with Full Rational 2-torsion

consider in this chapter are not necessarily in this standard model.

Montgomery form. For A, B ∈ k such that B(A2 − 4) 6= 0, we denote by

M/k : By2 = x3 + Ax2 + x

an elliptic curve in Montgomery form, with base pointOM = (0 : 1 : 0). We have the
usual projection map x : M → P1 mapping (X : Y : Z) onto (X : Z) on its Kummer
line denoted by KOM

M , inheriting a pseudo-group structure from (M,OM).
Suppose that T ∈ (M,OM) is a point such that [2]T = OM. Then the translation-

by-T map τT : (M,OM)→ (M, T) that maps P 7→ P+ T is an isomorphism of elliptic
curves. Moreover, the map x is again well-defined on M and we denote its Kummer
line by KT

M. Note that KOM
M
∼= KT

M as algebraic varieties (i. e. they are the projective
line P1), but that they have a different pseudo-group structure. That is, we have a
commutative diagram

(M,OM) (M, T)

KOM
M KT

M

τT

x x

τT

where τT is the induced isomorphism (again, involution) between the corresponding
Kummer lines. For example, we obtain the map τ(0,0) : (X : Z) 7→ (Z : X). Since
#(M,OM)[2] = 4, there are at most two other points of order 2. This gives rise to
only a single non-trivial action on the Kummer line KOM

M , since the other is simply
the composition with τ(0,0).

(Twisted) Edwards form. Given c ∈ k̄ such that c5 6= c, the elliptic curve defined
by the equation E : x2 + y2 = c2(1 + x2y2) with base point OE = (0, c) is said to be
in Edwards form. The projection map y : E → P1 onto the y-coordinate gives rise
to the Kummer line denoted KOEE . Any point R ∈ (E ,OE)[2] induces a commutative
diagram

(E ,OE) (E , R)

KOEE KR
E

τR

y y

τR

. (1)

In particular, for R = (0 : 0 : −c : 1) the induced map τR is simply given by
τR : (Y : Z) 7→ (−Y : Z). The two other non-trivial 2-torsion points induce one
other non-trivial translation (similar to the Montgomery model).

3. Maps between Kummer Lines 125

Completely analogously, for α, δ ∈ k such that αδ(α − δ) 6= 0, we denote by
E : αx2 + y2 = 1 + δx2y2 an elliptic curve in twisted Edwards form with base point
OE = (0, 1). For any S ∈ (E,OE)[2] we obtain a commutative diagram as in (1). In
particular, the point S = (0 : 0 : −1 : 1) induces the action τS : KOE

E → KS
E that maps

(Y : Z) 7→ (−Y : Z).

Rationality and quadratic twists. Suppose that q is a prime power and k = Fq is
a finite field. Then any elliptic curve C defined over Fq will have a quadratic twist,
i. e. an elliptic curve C t which is Fq2 -isomorphic but not Fq-isomorphic to C. This is
unique up to Fq-isomorphism (hence why we talk about the quadratic twist).

In all the curve models (c. f. the above) that we consider there is an immediate
connection between Fq-rational points on the Kummer line KC of C, and Fq-rational
points of C and C t. As such, when thinking about Kummer lines it is natural not to
distinguish these (i. e. to consider everything up to Fq2 -isomorphism). As a result,
although some maps may only be defined over Fq2 , this will at most induce a twist.
Since we are only concerned with the Fq-rational points of the Kummer line, this is
not an issue. In all that follows we could easily make everything defined over Fq, but
as we shall see in §4 this may limit us when finding instantiations.

3 Maps between Kummer Lines

In this section we present the theoretical basis. We observe first that many Kummer
lines have appeared in the literature; the work of Gaudry and Lubicz [GL09] present
the so-called canonical Kummer line, while Karati and Sarkar use2 the squared Kum-
mer line [KS17]. Moreover, there is the x-line of Montgomery curve (e. g. Curve25519
[Ber06a] by Bernstein) and the y-line of a (twisted) Edwards curve [CGF08; FH17].
It is not immediately clear how these are all connected, in particular the relation be-
tween the (canonical and squared) Kummer lines and Montgomery and (twisted)
Edwards curves is not clear. Though a recent paper by Karati and Sarkar [KS19] pro-
vides some connections, this is not completely satisfying. For instance, it relies on
having rational points or using 2-isogeny, and does not give a unique connection.

In this section we settle this and, in essence, show that they are all the same up to
isomorphism. These isomorphisms are natural and simple (including computation-
ally) and lead to natural connections between all the above Kummer lines. The core
of the section is summarized in Theorem 5.

2 The formulas for this model had already appeared in the Explicit-Formulas Database [BLb] referring
to a discussion between Bernstein, Kohel and Lange and contributing the main idea to Gaudry [Gau06].

126 Chapter VI. On Kummer Lines with Full Rational 2-torsion

3.1 Models with Rational 2-torsion

It is immediate (through their description via theta functions) that the canonical and
squared Kummer lines are projections of curves that have full rational 2-torsion. As
such, we shall always assume to have this. We begin by showing that this allows a
nice parametrization of Montgomery curves.

Proposition 1. Let k be a field such that char(k) 6= 2 and let (MA,B,OM) be a Montgomery
curve such that MA,B[2] ⊂ MA,B(k). Then there exist a, b ∈ k̄∗ such that ab(a4 − b4) 6= 0
and a2/b2 ∈ k such that

A = − a4 + b4

a2b2 , ∆M = 16B6 · (a4 − b4)2

a4b4 .

Moreover, its points of order 2 are (0 : 0 : 1), (a2 : 0 : b2) and (b2 : 0 : a2).

Proof. As MA,B[2] ⊂ MA,B(k), the polynomial x2 + Ax + 1 splits over k and thus√
A2 − 4 ∈ k. Now fix any b ∈ k̄∗ and take a ∈ k̄∗ such that a2/b2 = (

√
A2 − 4−

A)/2. Note that
√

A2 − 4− A 6= 0,±2 because char(k) 6= 2. Moreover a4 − b4 =

0 ⇐⇒ a4/b4 − 1 = 0 ⇐⇒ a2/b2 = ±1. Again, this is not possible since
char(k) 6= 2. The statements for A, ∆M and the 2-torsion points are simple calcu-
lations, recalling that M has discriminant ∆M = 16B6(A2 − 4).

For simplicity we would like to have B = 1. Note that the curve MA,B is iso-
morphic to the curve MA,1 : y2 = x3 + Ax2 + x over k̄, but not necessarily over
k. Therefore, by making the assumption that B = 1 we are working up to twist. In
what follows this shall not give rise to any issues, and as remarked earlier it does
not impact the k-rational points of the Kummer line (even though it does change the
k-rational point of the curve itself). So from this point on we consider

M/k : y2 = x3 − a4 + b4

a2b2 x2 + x ,

where a, b ∈ k̄∗ such that ab(a4 − b4) 6= 0 and a2/b2 ∈ k.
Given this model we can define a dual curve. For this purpose, we define â, b̂ ∈ k̄∗

such that
2â2 = a2 + b2 , 2b̂2 = a2 − b2 .

It is easily checked that â2/b̂2 ∈ k∗ and that âb̂(â4 − b̂4) 6= 0. Therefore

M̂ : y2 = x3 − â4 + b̂4

â2b̂2
x2 + x , ∆M̂ = 16 · (â4 − b̂4)2

â4b̂4

3. Maps between Kummer Lines 127

is a Montgomery curve whose elements of order 2 are (0 : 0 : 1), (â2 : 0 : b̂2) and
(b̂2 : 0 : â2). We call M̂ the dual of M. More generally, for any curve model we
call the action of swapping a resp. b by â resp. b̂ (and vice versa) dualizing (c. f.
§V.4.1). The curves M and M̂ are 2-isogenous via a 2-isogeny φ : M → M̂, and the
kernel of both φ and φ̂ is generated by the point (0 : 0 : 1) on the respective curves
(see Remark VIII.11). This leads to a decomposition of the doubling map [2], which
we use to construct the following sequence of maps.

Proposition 2. Let a, b ∈ k̄∗ with ab(a4 − b4) 6= 0 and a2/b2 ∈ k∗ and

M/k : y2 = x3 − a4 + b4

a2b2 x2 + x .

Then there exists a commutative diagram3 of isogenies (over k̄)

(Ê ,OÊ) (M,OM)

(Ê,OÊ) (E,OE)

(M̂,OM̂) (E ,OE)

φ5

φ0

φ

φ4

φ1φ3

φ̂

φ2

(2)

where

E/k : −x2 + y2 = 1− (a2 − b2)2

(a2 + b2)2 x2y2 , E/k : x2 + y2 =
a2 − b2

a2 + b2

(
1 + x2y2

)
and Ê and Ê are their respective duals. The maps φ2 and φ5 are 2-isogenies with

ker(φ2) = 〈(0 : 0 : −b̂ : â)〉 , ker(φ5) = 〈(0 : 0 : −b : a)〉 ,

while the maps φ0, φ1, φ3 and φ4 are isomorphisms.

Proof. We define

φ0 : (x, y) 7→
(

2â2x
aby

,
x + 1
x− 1

)
, φ−1

0 : (x, y) 7→
(

y + 1
y− 1

,
2â2(y + 1)
abx(y− 1)

)
.

Note that this is a priori only a birational map, but naturally becomes an isomor-
phism when (canonically) extended to the smooth P3 model, see e. g. [Sil09, Propo-

3 The diagram is drawn in the shape of a hexagon because its induced diagram on the Kummer lines
after translations by points of order 2 is the genus-1 analogue of the hexagon in genus 2 in Figure V.1.

128 Chapter VI. On Kummer Lines with Full Rational 2-torsion

sition II.2.1]. In particular, φ0 : OM 7→ OE , (0 : 0 : 1) 7→ (0 : 0 : −1 : 1) . It is
similar to the maps used by Bernstein et al. [Ber+08, Theorem 3.2(i)] and by Castryck
et al [CGF08], but composed with the map by Hisil et al. [His+08, §3.1] to ensure a
twisted Edwards curve Eα,δ with α = −1 that is well-defined everywhere. Moreover,
we tweak it such that it acts as an involution (i. e. a Hadamard transformation) on
the Kummer line. We define the isomorphism φ1 as

φ1 : (x, y) 7→
(
− ib̂

â
x,

b̂
â

y
)

, φ−1
1 : (x, y) 7→

(iâ
b̂

x,
â
b̂

y
)

,

where i ∈ k̄ is such that i2 = −1. Then we set φ2 = φ ◦ φ−1
0 ◦ φ−1

1 . It follows that

ker(φ2) = 〈φ1φ0(0, 0)〉 = 〈(0 : 0 : −b̂ : â)〉 .

A completely analogous construction can be made for φ3, φ4 and φ5.

Remark 3. Note that one can argue that the above construction can be done for any
sequence of isomorphisms starting at M. Indeed this is the case, but the above choice
is a natural one and gives rise to nice arithmetic on the Kummer lines. Moreover, it
is a choice that allows to explain the connection between Montgomery curves and
the genus-1 Kummer lines arising from theta functions (i. e. [GL09, §6.2] and [KS17,
§2.4]).

Corollary 4. There is an induced commutative diagram of Kummer lines

KOÊ
Ê

KOM
M

KOÊ
Ê

KOE
E

KOM̂
M̂

KOEE

φ̄5

φ̄0φ̄4

φ̄1φ̄3

φ̄2

(3)

such that

φ̄0 : (X : Z) 7→ (X + Z : X− Z) , φ̄1 : (X : Z) 7→ (b̂X : âZ) ,

φ̄2 : (X : Z) 7→ (b̂2X2 − â2Z2 : â2X2 − b̂2Z2) ,

while φ3 = φ0 and φ4 resp. φ5 are obtained from φ1 resp. φ2 by dualizing.

Proof. Apply the respective x and y projection maps to the curves in (2).

3. Maps between Kummer Lines 129

This provides clear connections between the x- and y- lines of Montgomery and
(twisted) Edwards curves with full rational 2-torsion. We now show that we can use
these 2-torsion points to obtain simple isomorphisms to the canonical and squared
Kummer lines.

3.2 Actions of Points of Order 2

First recall from §I.2.1 that we have points

T = (a2 : 0 : b2) ∈ M , Ω1 = (â2 : b̂2 : 0 : 0) ∈ E , Θ1 = (â : b̂ : 0 : 0) ∈ E ,

T̂ = (â2 : 0 : b̂2) ∈ M̂ , Ω̂1 = (a2 : b2 : 0 : 0) ∈ Ê , Θ̂1 = (a : b : 0 : 0) ∈ Ê .

of order 2 (with the base point O on the respective curves). One can check that these
are all respective images of one another under the φi and φ̂i. They correspond to
translations4 τ by the respective points which commute with the projection maps
to P1. As a result, we obtain induced involutions τ on the Kummer lines. More
concretely, we can show that for any point P = (X : Z) ∈ P1 we have

τT : P 7→ (a2X− b2Z : b2X− a2Z) , τΩ1 : P 7→ (â2Z : b̂2X) , τΘ1 : P 7→ (Z : X) ,

τT̂ : P 7→ (â2X− b̂2Z : b̂2X− â2Z) , τΩ̂1
: P 7→ (a2Z : b2X) , τΘ̂1

: P 7→ (Z : X) .

Note that we could apply the maps τ to the diagram (2), but that requires keeping
track of multiple coordinates and is somewhat tedious. Instead, for simplicity, we
will focus on the Kummer lines. Applying the maps τ to (3), we obtain the following
result.

Theorem 5. For any P = (X : Z) ∈ P1, we denote by

ψ0 : P 7→ (X + Z : X− Z) , ψ1 : P 7→ (b̂X : âZ) , ψ2 : P 7→ (X2 : Z2) ,

ψ3 : P 7→ (X + Z : X− Z) , ψ4 : P 7→ (bX : aZ) , ψ5 : P 7→ (X2 : Z2) ,

maps P1 → P1. The diagram in (4) is commutative and every↔ is an isomorphism.

Proof. This is the diagram from (2) translated by corresponding points of order 2
through the different τ, projected to their respective Kummer lines. We construct

ψ0 = τΩ1 ◦ φ0 ◦ τT

4 Translations are morphisms [Sil09, Theorem 3.6] and are therefore isogenies if and only if they send
the base point of the domain curve to the base point of the co-domain curve. For example, τT : (M,OM)→
(M, T) is an isogeny. As such, it is a group homomorphism.

130 Chapter VI. On Kummer Lines with Full Rational 2-torsion

KΘ̂1
Ê

KT
M

KΩ̂1
Ê

KOÊ
Ê

KOM
M KΩ1

E

KOÊ
Ê

KT̂
M̂

KΘ1
E KOE

E

KOM̂
M̂

KOEE

ψ5

ψ0τT

ψ3

ψ4

φ5

τΘ̂1

τΩ1

ψ1

φ4

τΩ̂1

ψ2

φ1

φ0

φ3

τT̂

φ2

τΘ1

(4)

and proceed similarly for the other ψi.

Recall that (the duals of) KOM
M , KOE

E resp. KOEE are the Kummer lines of (the
duals of) a Montgomery, twisted Edwards resp. Edwards curve. Hence it remains
to identify KT

M, KΩ1
E and KΘ1

E (and their duals). Since they are all simply P1 as an
algebraic variety, we analyze their (pseudo-)addition formulae.

First note that Proposition 1 says that moving through the sequence φ0, . . . , φ5

corresponds to the [2] map (starting at any of the φi). Since the τ are isomorphisms,
the same is true for ψ0, . . . , ψ5. In other words, for example

[2] = ψ5 ◦ · · · ◦ ψ0 on KT
M , [2] = ψ4 ◦ · · · ◦ ψ0 ◦ ψ5 on KΘ̂1

Ê
.

Comparing these with the algorithm from Gaudry and Lubicz [GL09, §6.2] (and the
formulas also appear in [BLb]) reveals that these are the doubling formulae for the
squared and canonical Kummer lines. One readily5 verifies that the same is true for
the differential addition formulae. The third Kummer line KΩ1

E has not appeared to
our knowledge, and has similar arithmetic to the squared Kummer line. We refer to
it as the intermediate Kummer (c. f. §V.4.3). Interestingly, it appears as the y-line of a
twisted Edwards curve where the coefficient of x2 is −1, in which case the optimal
formulas by Hisil et al. [His+08] are available. For completeness, we summarize
the associated curve constants for the instances provided by Karati and Sarkar in

5 This can be done by using the known addition formulae on the elliptic curves whose identities are
at infinity, and composing with the translation and projection maps. This is somewhat tedious, but is
relatively straightforward by using a computer algebra package [BCP97; Sag18].

3. Maps between Kummer Lines 131

Table 1. Kummer lines over a finite field Fq and their associated (i) squared Kummer (a2 : b2)

(ii) Montgomery A (iii) twisted Edwards δ and (iv) Edwards c2 constants.

q (a2 : b2) (A : 1) (δ : 1) (c2 : 1)

2251 − 9 (81 : 20) (−6961 : 1620) (−3721 : 10201) (61 : 101)

2251 − 9 (186 : 175) (−65221 : 130200) (−121 : 130221) (11 : 361)

2255 − 19 (82 : 77) (−12653 : 6314) (−25 : 25281) (5 : 159)

2266 − 3 (260 : 139) (−86921 : 36140) (−14641 : 159201) (121 : 399)

Table 1, connecting the squared Kummer line to the Kummer lines of Montgomery
and twisted Edwards models via isomorphisms (as opposed to birational maps or
isogenies).

Remark 6. We reiterate that only the intermediate Kummer line is new, while all the
others have already appeared in the literature and are well-known. However, there
had been little work in providing explicit maps between them, and this is exactly
what we provide.

3.3 Hybrid Kummer Lines

Since the arithmetic on these Kummer lines is generally well-studied, the (crypto-
graphic) value of this study does not come from improved operation counts. Be-
side its theoretical contribution, we ease the problem of selecting which curves to
use for best performance (e. g. for standardization). That is, the simplicity of the
isomorphisms gives quasi-cost-free transformations that allow interchangeable us-
age of any of the models. This is similar to the usage of a birational map to move
between the Montgomery and twisted Edwards model, but we extend it with the
squared Kummer line. We summarize this in Figure 1. In particular, Karati and
Sarkar [KS17] show the benefits of the squared Kummer line on platforms where
SIMD instructions are available.

E

KT
M KOM

M KOE
E

y

(a2X−b2Z : b2X−a2Z) (X+Z : X−Z)

Figure 1. The squared Kummer line, the x-line of a Montgomery curve and the y-line of a
twisted Edwards curve E, connected by involutions.

132 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Remark 7. Recall that all the above works under the assumption of having full ratio-
nal 2-torsion. Although Montgomery and (twisted) Edwards curves always have a
group order divisible by 4, it does not necessarily mean that they have full 2-torsion
(i. e. they could have a point of order 4). Note that standardized curves such as
Curve25519 and Curve448 do not have full 2-torsion, so this theory does not directly
apply.

Moreover, results from the well-studied Montgomery model immediately carry
over to the squared Kummer line. For example, we can straightforwardly fit a
(squared) Kummer line into the qDSA signature scheme. For signature verification,
given x(P), x(Q), x(R) ∈ KT

M we must be able to check whether x(R) = x(P± Q).
Although this can certainly be directly defined on KT

M, we note that it is equivalent
to checking whether

τT(x(R)) = τT(x(P±Q)) .

This is simply the function Check(τT(x(P)), τT(x(Q)), τT(x(R))), where Check is de-
fined in Algorithm V.2.

To demonstrate feasibility of this approach, we extend the (publicly available)
Curve25519-based instantiation of qDSA from Chapter V on the ARM Cortex M0
architecture. For this purpose we choose a squared Kummer line over 2255−19, al-
lowing field arithmetic to remain essentially unchanged. A notable exception to this
is an efficient assembly implementation of 16× 256-bit field multiplication, which is
used for the multiplications by the line constants. This replaces the highly optimized
multiplication by 121666 from Düll et al. [Dül+15]. We select (a2, b2) = (159, 5), so
that the squared Kummer line KT

M corresponds to the dual6 of KL25519(82,77) pre-
sented and implemented by Karati and Sarkar [KS17]. This implies the Montgomery
constant of the curve above the lineKOM

M to be (A + 2 : 4) = (−5929 : 795). We sum-
marize the implementation results in Table 2. We emphasize that the point of this
work is not to provide the most efficient implementation for this given platform, but
rather to show the close connection between the different Kummer lines. Although
on this platform results differ only by a minimal margin, the difference can be much
larger on other devices (in particular, when SIMD instructions are available). Our
isomorphisms allow an implementer to select the model that is most appropriate for
a given architecture.

Remark 8. The implementations that we present are constant-time, and all standard
countermeasures (e. g. projective blinding, scalar blinding [Cor99, §5]) against more

6 The constants (a2, b2) = (88, 77) lead to (A + 2 : 4) = (−25 : 25256) which has slightly larger
constants on KOM

M than its dual. However, results should be very similar.

4. Isomorphism Classes over Finite Fields 133

Table 2. Comparison of an implementation of the qDSA signature scheme based on
Curve25519 and the Montgomery model of the squared Kummer line defined by (a2, b2) =
(159, 5), where the memory is measured in bytes (B).

Ref. Object Constant Clock cycles Stack Code

Chap. V Curve25519
(A + 2 : 4) = 3 889 116 (sign) 660 B

18 443 B
(121666 : 1) 6 793 695 (verify) 788 B

This KOM
M

(A + 2 : 4) = 3 916 879 (sign) 660 B
18 391 B

(−5929 : 795) 6 857 007 (verify) 788 B

This KT
M

(a2 : b2) = 3 824 857 (sign) 660 B
18 557 B

(159 : 5) 6 673 039 (verify) 788 B

advanced side-channel and fault attacks can be applied if required. In particular,
as mentioned by the authors, the recent fault attack by Takahashi, Tibouchi and
Abe [TTA18] can (cheaply) be thwarted by requiring nonces to be multiples of the
cofactor (i. e. by “clamping”). However, such countermeasures are only necessary
when an implementation is used in a context where fault attacks are considered part
of the attacker model. We emphasize that our implementation is intended as a refer-
ence and not for production use.

4 Isomorphism Classes over Finite Fields

For cryptographic purposes, we are mostly concerned with the case that k = Fq, for
some prime (power) q. As using extension fields is generally expensive, we would
like to set things up such that all computation is performed in Fq. Whether or not
we can do this in a way such that constants remain small, depends on the number
of Kummer lines that exist. Following earlier studies on the number of isomorphism
classes for certain curve models [Ber+08; FS09; FMW12], we provide counts for the
canonical, squared and intermediate Kummer lines.

4.1 Identifying Kummer Lines

For this purpose it is interesting to ask when two Kummer lines should be consid-
ered to be the same. Given two Kummer lines K1 = E1/{±1} and K2 = E2/{±1}
of elliptic curves E1, E2 defined over Fq, it could be natural to identify K1 with K2

whenever E1 is Fq-isomorphic to E2. However, as noted in §I.2.1, the arithmetic
on the Fq-rational points of the Kummer lines will be identical whenever E1 is Fq2 -

134 Chapter VI. On Kummer Lines with Full Rational 2-torsion

isomorphic to E2 (i. e. E2 is the quadratic twist of E1). Since the curves are defined
over Fq, this will happen if and only if j(E1) = j(E2). As such, we equate the num-
ber of Kummer lines with the number of elliptic curves defined over Fq up to Fq-
isomorphism.

Recall that we parametrize Kummer lines by a, b ∈ Fq such that ab(a4 − b4) 6= 0
and a2/b2 ∈ Fq. Since b 6= 0, a Kummer line is defined by the fraction a/b or,
equivalently, by the point (a : b) ∈ P1. Again, since b 6= 0 we can therefore simply
assume b = 1. As such, we can consider a ∈ Fq such that a2 ∈ Fq and a5 − a 6= 0.

4.2 Canonical Kummer Lines

We begin by considering the canonical Kummer line from Gaudry and Lubicz [GL09]
defined by some a as above. Recall that it corresponds to the y-line of the curve
Ê/Fq : x2 + y2 = 1

a2

(
1 + x2y2), with identity Ω̂1 = (a : 1 : 0 : 0) whose image in P1

is (a : 1). Therefore, we certainly require that a ∈ Fq. It is easily seen that â2, b̂2 ∈ Fq

and that this is enough to perform all arithmetic with Fq-operations.

Now note that (Ê , Ω̂1) is Fq-isomorphic to (Ê ,OÊ) via τΩ̂1
, which is an Edwards

curve if and only if a ∈ Fq and 1/a5 6= 1/a. The first is true by assumption, while the
latter follows from a5 6= a. Therefore we simply count the number of Edwards curves
defined over Fq up to Fq-isomorphism. A result by Farashahi and Shparlinski [FS09,
Theorem 5] shows that there are exactly

⌊
q + 23

24

⌋
if q ≡ 1, 9, 13, 17 (mod 24) ,⌊

q− 5
24

⌋
if q ≡ 5 (mod 24) ,⌊

q + 1
8

⌋
if q ≡ 3 (mod 4) .

Thus, in general there will be no problem to find Kummer lines with the desired
security properties. However, it may not be easy to find them such that its constants
are small. For that reason, we look towards the squared and intermediate Kummer
lines.

4.3 Squared and Intermediate Kummer Lines

If we use canonical Kummer lines, we restrict ourselves to a ∈ Fq for all of the
arithmetic to be in Fq. This (seemingly) limits the number of Kummer lines that we
can use. This is no longer the case on squared and intermediate Kummer lines; it

4. Isomorphism Classes over Finite Fields 135

suffices to only have a2 ∈ Fq. Note that this implies that a ∈ Fq2 .

Since the j-invariants of M, E and E and their duals are all equal, we can count the
number of curves up to isomorphism of the form Ê : x2 + y2 = 1

a2

(
1 + x2y2) such

that a5 6= a (but note that Ê is not necessarily an Edwards curve over Fq). There are
exactly q− 3 such curves, so it remains to determine how many are in the same Fq-
isomorphism class. This question has already been considered by Edwards [Edw07,
Proposition 6.1], whose statement implies that two Edwards curves determined by
a2, a2 ∈ Fq have the same j-invariant whenever a2 is one of the following:

± a2 ,± 1
a2 ,±

(
a− 1
a + 1

)2
,±
(

a + 1
a− 1

)2
,±
(

a− i
a + i

)2
,±
(

a + i
a− i

)2
. (5)

If q ≡ 1 (mod 4), then iq = i and a straightforward computation show that

±
(

a− 1
a + 1

)2
,±
(

a + 1
a− 1

)2
,±
(

a− i
a + i

)2
,±
(

a + i
a− i

)2
∈ Fq ⇐⇒ a ∈ Fq .

If q ≡ 3 (mod 4), then iq = −i and a similar computation shows that

±
(

a− 1
a + 1

)2
,±
(

a + 1
a− 1

)2
∈ Fq ⇐⇒ a ∈ Fq ,

±
(

a− i
a + i

)2
,±
(

a + i
a− i

)2
∈ Fq ⇐⇒ i · a ∈ Fq .

Given that either a ∈ Fq or i · a ∈ Fq, while half the elements of Fq have square roots
in Fq, we closely approximate7 that the number of isomorphism classes is

≈

⌊(

1
4
+

1
12

)
q
2

⌋
=
⌊ q

6

⌋
if q ≡ 1 (mod 4) ,⌊(

1
8
+

1
8

)
q
2

⌋
=
⌊ q

8

⌋
if q ≡ 3 (mod 4) .

A more careful analysis c. f. [FS09] could be done, but such a close estimate suf-
fices for our purposes. Interestingly, for q ≡ 3 (mod 4) the number of canonical
and squared Kummer lines is about the same. Thus although a2 ∈ Fq is a weaker
restriction than a ∈ Fq, it does not actually lead to more Kummer lines (up to isomor-
phism). This is explained by the fact that −1 is a non-square since q ≡ 3 (mod 4),
hence exactly one of a2 or −a2 must be a square in Fq, while their corresponding

7 This statement is exact up to the observation that some of the elements in (5) can be the same, which
happens only exceptionally.

136 Chapter VI. On Kummer Lines with Full Rational 2-torsion

Edwards curves are isomorphic. For q ≡ 1 (mod 4) there is a clear difference in
the number of Kummer lines, so in that case there is a significant advantage in find-
ing small parameters for a squared or intermediate Kummer line over a canonical
Kummer line.

Part 3

Post-Quantum Cryptography

Chapter VII
Efficient Compression of SIDH
Public Keys

Supersingular isogeny Diffie-Hellman (SIDH) is an attractive candidate for post-
quantum key exchange, in large part due to its relatively small public key sizes.
A paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [Aza+16] showed that
the public keys defined in Jao and De Feo’s original SIDH scheme can be further
compressed by around a factor of two, but reported that the performance penalty in
utilizing this compression blew the overall SIDH runtime out by more than an order
of magnitude. Given that the runtime of SIDH key exchange is currently its main
drawback in relation to its lattice- and code-based post-quantum alternatives, an
order of magnitude performance penalty for a factor of two improvement in band-
width presents a trade-off that is unlikely to favor public-key compression in many
scenarios.

In this chapter, we propose a range of new algorithms and techniques that accel-
erate SIDH public-key compression by more than an order of magnitude, making it
roughly as fast as a round of standalone SIDH key exchange, while further reducing
the size of the compressed public keys by approximately 12.5%. These improve-
ments enable the practical use of compression, achieving public keys of only 330
bytes for the concrete parameters used to target 128 bits of quantum security and
further strengthens SIDH as a promising post-quantum primitive.

140 Chapter VII. Efficient Compression of SIDH Public Keys

1 Introduction

In their February 2016 report on post-quantum cryptography [Che+16], the United
States National Institute of Standards and Technology (NIST) stated that “It seems
improbable that any of the currently known [public-key] algorithms can serve as a drop-in
replacement for what is in use today”, citing that one major challenge is that quantum re-
sistant algorithms have larger key sizes than the algorithms they will replace. While
this statement is certainly applicable to many of the lattice- and code-based schemes
(e. g. LWE encryption [Reg05] and the McEliece cryptosystem [McE78]), Jao and
De Feo’s 2011 supersingular isogeny Diffie-Hellman (SIDH) proposal [JDF11] is one
post-quantum candidate that could serve as a drop-in replacement to existing inter-
net protocols. Not only are high-security SIDH public keys smaller than their lattice-
and code-based counterparts, they are even smaller than some of the traditional (i. e.
finite field) Diffie-Hellman public keys.

SIDH public-key compression. The public keys defined in the original SIDH pa-
pers [JDF11; DFJP14] take the form PK = (E, P, Q), where E/Fp2 : y2 = x3 + ax + b
is a supersingular elliptic curve, p = nAnB ± 1 is a large prime, the cardinality of
E is #E(Fp2) = (p∓ 1) = (nAnB)

2, and depending on whether the public key cor-
responds to Alice or Bob, the points P and Q either both lie in E(Fp2)[nA], or both
lie in E(Fp2)[nB]. Since P and Q can both be transmitted via their x-coordinates (to-
gether with a sign bit that determines the correct y-coordinate), and the curve can be
transmitted by sending the two Fp2 elements a and b, the original SIDH public keys
essentially consist of four Fp2 elements, and so are around 8 log p bits in size.

A recent paper by Azarderakhsh, Jao, Kalach, Koziel and Leonardi [Aza+16]
showed that it is possible to compress the size of SIDH public keys to around 4 log p
bits as follows. Firstly, to send the supersingular curve E, they pointed out that one
can send the j-invariant j(E) ∈ Fp2 rather than (a, b) ∈ F2

p2 , and showed how to
recover a and b (uniquely, up to isomorphism) from j(E) on the other side. Sec-
ondly, for n ∈ {nA, nB}, they showed that since E(Fp2)[n] ∼= Z/nZ ×Z/nZ, an
element in E(Fp2)[n] can instead be transmitted by sending two scalars (α, β) ∈
Z/nZ×Z/nZ that determine its representation with respect to a basis of the torsion
subgroup. This requires that Alice and Bob have a way of arriving at the same basis
for E(Fp2)[n]. Following [Aza+16], we note that it is possible to decompose points
into their Z/nZ × Z/nZ representation since for well-chosen SIDH parameters,
n = `e is always smooth, which means that discrete logarithms in order n groups
can be solved in polynomial time using the Pohlig-Hellman algorithm [PH78]. Given

1. Introduction 141

that such SIDH parameters have nA ≈ nB (see [JDF11]), it follows that n ≈ √p and
that sending elements of E(Fp2)[n] as two elements of Z/nZ (instead of an element
in Fp2) cuts the bandwidth required to send torsion points in half.

Although passing back and forth between (a, b) and j(E) to (de)compress the
curve is relatively inexpensive, the compression of the points P and Q requires three
computationally intensive steps:

– Step 1 – Constructing the n-torsion basis. During both compression and decom-
pression, Alice and Bob must, on input of the curve E, use a deterministic
method to generate the same two-dimensional basis {R1, R2} ∈ E(Fp2)[n]. The
method used in [Aza+16] involves systematically sampling candidate points
R ∈ E(Fp2), performing cofactor multiplication by h to move into E(Fp2)[n],
and then testing whether or not [h]R has “full” order n (and, if not, restarting).

– Step 2 – Pairing computations. After computing a basis {R1, R2} of the group
E(Fp2)[n], the task is to decompose the point P (and identically, Q) as P =

[αP]R1 + [βP]R2 and determine (αP, βP). While this could be done by solv-
ing a two-dimensional discrete logarithm problem (DLP) directly on the curve,
Azarderakhsh et al. [Aza+16] use a number of Weil pairing computations to
transform these instances into one-dimensional finite field DLPs in µn ⊂ F∗p2 .

– Step 3 – Solving discrete logarithms in µn. The last step is to repeatedly use the
Pohlig-Hellman algorithm [PH78] to solve DLPs in µn, and to output the four
scalars αP, βP, αQ and βQ in Z/nZ.

Each of these steps presents a significant performance drawback for SIDH public-
key compression. Subsequently, Azarderakhsh et al. report that, at interesting levels
of security, each party’s individual compression latency is more than a factor of ten
times the latency of a full round of uncompressed key exchange [Aza+16, §5].

Our contributions. We present a range of new algorithmic improvements that de-
crease the total runtime of SIDH compression and decompression by an order of
magnitude, bringing its performance close to that of a single round of SIDH key ex-
change. We believe that this makes it possible to consider public-key compression
a default choice for SIDH, and it can further widen the gap between the key sizes
resulting from practical SIDH key exchange implementations and their code- and
lattice-based counterparts.

We provide a brief overview of our main improvements with respect to the three
compression steps described above. All known implementations of SIDH (see e. g.

142 Chapter VII. Efficient Compression of SIDH Public Keys

[DFJP14; AFJ14; CLN16a]) currently choose nA = `eA
A = 2eA and nB = `eB

B = 3eB for
simplicity and efficiency reasons, so we focus on ` ∈ {2, 3} below; however, unless
specified otherwise, we note that all of our improvements will readily apply to other
values of `.

– Step 1 – Constructing the n-torsion basis. We make use of some results arising
from explicit 2- and 3-descent of elliptic curves to avoid the need for the expen-
sive cofactor multiplication that tests the order of points. These results charac-
terize the images of the multiplication-by-2 and multiplication-by-3 maps on E,
and allow us to quickly generate points that are elements of E(Fp2) \ [2]E(Fp2)

and E(Fp2) \ [3]E(Fp2). Therefore, we no longer need to check the order of
(possibly multiple!) points using a full-length scalar multiplication by nAnB,
but instead are guaranteed that one half-length cofactor multiplication produces
a point of the correct order. For our purposes, producing points in E \ [2]E
is as easy as generating elliptic curve points whose x-coordinates are non-
square (this is classical, e. g. [Hus04, Ch. 1(§4), Thm 4.1]). On the other
hand, to efficiently produce points in E \ [3]E, we make use of the analogous
characteristic described in more recent work on explicit 3-descent by Schaefer
and Stoll [SS04]. Combined with a tailored version of the Elligator 2 encod-
ing [Ber+13] for efficiently generating points on E, this approach gives rise to
highly efficient n-torsion basis generation. This is described in detail in §2.

– Step 2 – Pairing computations. We apply a number of optimizations from the
literature on elliptic curve pairings in order to significantly speed up the run-
time of all pairing computations. Rather than using the Weil pairing (as was
done in [Aza+16]), we use the more efficient Tate pairing [GHS02; Bar+02]. We
organize the five pairing computations that are required during compression
in such a way that only two Miller functions are necessary. Unlike all of the
prior work done on optimized pairing computation, the pairings used in SIDH
compression cannot take advantage of torsion subgroups that lie in subfields,
which means that fast explicit formulas for point operations and Miller line
computations are crucial to achieving a fast implementation. Subsequently, we
derive new and fast inversion-free explicit formulas for computing pairings on
supersingular curves, specific to the scenario of SIDH compression. Following
the Miller loops, we compute all five final exponentiations by exploiting a fast
combination of Frobenius operations together with either fast repeated cyclo-
tomic squarings (from [SL03]) or our new formulas for enhanced cyclotomic
cubing operations. The pairing optimizations are described in §3.

1. Introduction 143

– Step 3 – Solving discrete logarithms in µn. All computations during the Pohlig-
Hellman phase take place in the subgroup µn of the multiplicative group Gp+1

of order p + 1 in F∗p2 , where we take advantage of the fast cyclotomic squar-
ings and cubings mentioned above, as well as the fact that Fp2 inversions are
simply conjugations, so come almost for free (see §4.1). On top of this fast arith-
metic, we build an improved version of the Pohlig-Hellman algorithm that ex-
ploits windowing methods to solve the discrete logarithm instances with lower
asymptotic complexity than the original algorithm. For the concrete parame-
ters, the new algorithm is approximately 14× (resp. 10×) faster in µ2372 (resp.
µ3239), while having very low memory requirements (see Table 1 and 2). This is
all described in more detail in §4.

– Improved compression. Through normalizing the representation of P and Q in
(Z/nZ)4, we are able to further compress this part of the public key repre-
sentation into (Z/nZ)3. Subsequently, our public keys are around 7

2 log p bits,
rather than the 4 log p bits achieved in [Aza+16]. To the best of our knowl-
edge, this is as far as SIDH public keys can be compressed in practice. This is
explained in §5.1.

– Decompression. The decompression algorithm – which involves only the first of
the three steps above and a double-scalar multiplication – is also accelerated
in this chapter. In particular, on top of the faster torsion basis generation, we
show that the double-scalar multiplications can be absorbed into the shared
secret computation. This makes them essentially free of cost. This is described
in §5.2.

The combination of the three main improvements mentioned above, along with a
number of further optimizations described in the rest of this chapter, yields enhanced
compression software that is an order of magnitude faster than the initial software
benchmarked in [Aza+16].

The compression software. We wrote the new suite of algorithms in plain C and
incorporated the compression software into the SIDH library recently made available
by Costello, Longa and Naehrig [CLN16a]; their software uses a curve with log p =

751 that currently offers around 192 bits of classical security and 128 bits of quantum
security. The public keys in their uncompressed software were 6 log p = 564 bytes,
while the compressed public keys resulting from our software are 7

2 log p = 330
bytes. The software described in this chapter can be found in the version 2.0 release
of the SIDH library at

144 Chapter VII. Efficient Compression of SIDH Public Keys

https://www.microsoft.com/en-us/research/project/sidh-library/.

Although our software is significantly faster than the previously given compres-
sion benchmarks by Azarderakhsh et al. [Aza+16], we believe that the most mean-
ingful benchmarks we can present are those that compare the latency of our opti-
mized SIDH compression to the latency of the state-of-the-art key generation and
shared secret computations in [CLN16a]. This gives the reader (and the PQ audi-
ence at large) an idea of the cost of public-key compression when both the raw SIDH
key exchange and the optional compression are optimized to a similar level. We
emphasize that although the SIDH key exchange software from [CLN16a] targeted
one isogeny class at one particular security level, and therefore so does our compres-
sion software, all of our improvements apply identically to curves used for SIDH at
other security levels, especially if the chosen isogeny degrees remain (powers of) 2
and 3. Moreover, we expect that the relative cost of compressed SIDH to uncom-
pressed SIDH will stay roughly consistent across different security levels, and that
our targeted benchmarks therefore give a good gauge on the current state-of-the-art.

It is important to note that, unlike the SIDH software from [CLN16a] that uses
private keys and computes shared secrets, by definition our public-key compression
software only operates on public data.1 Thus, while we call several of their constant-
time functions when appropriate, none of our functions need to run in constant-time.

Remark 1 (Ephemeral SIDH). A paper by Galbraith, Petit, Shani and Ti [Gal+16]
gives, among other results, a realistic and serious attack on instantiations of SIDH
that reuse static private/public key pairs. Although direct public-key validation in
the context of isogeny-based cryptography is currently non-trivial, there are meth-
ods of indirect public-key validation (see e. g. [Kir+15; Gal+16]) that mirror the same
technique proposed by Peikert [Pei14, §5-6] in the context of lattice-based cryptogra-
phy, which is itself a slight modification of the well-known Fujisaki-Okamoto trans-
form [FO99]. At present, the software from [CLN16a] only supports secure ephemeral
SIDH key exchange, and does not yet include sufficient (direct or indirect) valida-
tion that allows the secure use of static keys. Thus, since our software was written
around that of [CLN16a], we note that it too is only written for the target application
of ephemeral SIDH key exchange. In this case attackers are not incentivized to tam-
per with public keys, so we can safely assume throughout this chapter that all public
keys are well-formed. Nevertheless, we note that the updated key exchange proto-
cols in [FO99; Pei14; Kir+15; Gal+16] still send values that can be compressed using

1 There is a minor caveat here in that we absorb part of the decompression into the shared secret
computation, which uses the constant-time software from [CLN16a] – see §5.

https://www.microsoft.com/en-us/research/project/sidh-library/

1. Introduction 145

our algorithms. On a related note, we also point out that our algorithms readily ap-
ply to the other isogeny-based cryptosystems described in [DFJP14] for which the
compression techniques were detailed in [Aza+16]. In all of these other scenarios,
however, the overall performance ratios and relative bandwidth savings offered by
our compression algorithms are likely to differ from those we report for ephemeral
SIDH.

Remark 2 (Trading speed for simplicity and space). Since the compression code in
our software library only runs on public data, and therefore need not run in constant-
time, we use a variable-time algorithm for field inversions (a variant of the extended
binary GCD algorithm [Kal95]) that runs faster than usual exponentiation methods
(via Fermat’s little theorem). Although inversions are used sparingly in our code and
are not the bottleneck of the overall compression runtime, we opted to add a single
variable-time algorithm in this case. However, during the design of our software li-
brary, we made several decisions in the name of simplicity that inevitably hampered
the performance of the compression algorithms.

One such performance sacrifice is made during the computation of the torsion
basis points in §2, where tests of quadratic and cubic residuosity are performed us-
ing field exponentiations. Here we could use significantly faster, but more compli-
cated algorithms that take advantage of the classic quadratic and cubic reciprocity
identities. Such algorithms require intermediate reductions modulo many variable
integers, and a reasonably optimized generic reduction routine would increase the
code complexity significantly. These tests are also used sparingly and are not the bot-
tleneck of public-key compression, and in this case, we deemed the benefits of opti-
mizing them to be outweighed by their complexity. A second and perhaps the most
significant performance sacrifice made in our software is during the Pohlig-Hellman
computations, where our windowed version of the algorithm currently fixes small
window sizes in the name of choosing moderate space requirements. If larger stor-
age is permitted, then Sutherland’s analysis of an optimized version of the Pohlig-
Hellman algorithm [Sut11] shows that this phase could be sped up significantly (see
§4). But again, the motivation to push the limits of the Pohlig-Hellman phase is
stunted by the prior (pairing computation) phase being the bottleneck of the overall
compression routine. Finally, we note that the probabilistic components of the tor-
sion basis generation phase (see §2) lend themselves to an amended definition of the
compressed public keys, where the compressor can send a few extra bits or bytes in
their public key to make for a faster and deterministic decompression. For simplicity
(and again due to this phase not being the bottleneck of compression), we leave this
more complicated adaptation to future consideration.

146 Chapter VII. Efficient Compression of SIDH Public Keys

Organization. In §2 we present alternative algorithms that deterministically gener-
ate a basis, while in §3 we exploit the fact that the Weil pairings can be replaced by re-
duced Tate pairings and give an optimized algorithm that computes them all simul-
taneously. In §4 we present an efficient version of the Pohlig-Hellman algorithm that
exploits windowing methods to solve the discrete logarithm instances with lower
complexity than the original algorithm. In §5 we show that one of the four scalar in
Z/nZ need not be transmitted by normalizing the tuple (αP, βP, αQ, βQ).

2 Constructing Torsion Bases

For a given A ∈ Fp2 corresponding to a supersingular curve

E/Fp2 : y2 = x3 + Ax2 + x

with #E(Fp2) = (nAnB)
2, the goal of this section is to produce a basis for E(Fp2)[n]

(with n ∈ {nA, nB}) as efficiently as possible. This amounts to computing two order
n points R1 and R2 whose Weil pairing wn(R1, R2) has exact order n. Checking the
order of the Weil pairing either comes for free during subsequent computations, or
requires the amendments discussed in Remark 3 at the end of this section. Thus, for
now our goal is simplified to efficiently computing points of order n ∈ {nA, nB} in
E(Fp2).

Let {n, ñ} = {nA, nB}, write n = `e and let O be the identity in E(Fp2). The
typical process of computing a point of exact order n is to start by computing R ∈
E(Fp2) and multiplying by the cofactor ñ to compute the candidate output R̃ = [ñ]R.
Note that the order of R̃ divides n, but might not be n. Thus, we multiply R̃ by `e−1,
and if [`e−1]R̃ 6= O, we output R̃, otherwise we must pick a new R and restart.

In this section we use explicit results arising from 2- and 3-descent to show that
the cofactor multiplications by ñ and by `e−1 can be omitted by making use of el-
ementary functions involving points of order 2 and 3 to check whether points are
(respectively) in E \ [2]E or E \ [3]E. In both cases this guarantees that the subse-
quent multiplication by ñ produces a point of exact order n, avoiding the need to
perform full cofactor multiplications to check order prior to the pairing computa-
tion, and avoiding the need to restart the process if the full cofactor multiplication
process above fails to output a point of the correct order (which happens regularly
in practice). This yields much faster algorithms for basis generation than those that
are used in [Aza+16].

We discuss the 2e-torsion basis generation in §2.2 and the 3e-torsion basis gener-

2. Constructing Torsion Bases 147

ation in §2.3. We start in §2.1 by describing some arithmetic ingredients.

2.1 Square Roots, Cube Roots, and Elligator 2

In this section we briefly describe the computation of square roots and that of testing
cubic residuosity in Fp2 , as well as our tailoring of the Elligator 2 method [Ber+13]
for efficiently producing points in E(Fp2).

Computing square roots in Fp2 . Square roots in Fp2 are most efficiently computed
via two square roots in the base field Fp. Since p ≡ 3 (mod 4), write Fp2 = Fp(i)
with i2 + 1 = 0. Following [Sco07, §3.3], we use the simple identity

√
a + b · i = ± (α + β · i) , where α =

√
(a±

√
a2 + b2)/2 , β = b/(2α) , (1)

for a, b, α, β ∈ Fp. Both of (a +
√

a2 + b2)/2 and (a−
√

a2 + b2)/2 will not necessar-
ily be square, so we make the correct choice by assuming that z = (a +

√
a2 + b2)/2

is square and setting α = z(p+1)/4; if α2 = z, we output a square root as ±(α + βi),
otherwise we can output a square root as ±(β− αi).

Checking cubic residuosity in Fp2 . In §2.3 we will need to efficiently test whether
elements v ∈ Fp2 are cubic residues or not. This amounts to checking whether

v(p2−1)/3 = 1 or not, which we do by first computing v′ = vp−1 = vp/v via one
application of Frobenius (i. e. Fp2 conjugation) and one Fp2 inversion. We then com-
pute v′(p+1)/3 as a sequence of eA = 372 repeated squarings followed by eB− 1 = 238
repeated cubings. Both of these squaring and cubing operations are in the order p+ 1
cyclotomic subgroup of F∗p2 , so can take advantage of the fast operations described
in §4.1.

Elligator 2. The naïve approach to obtaining points in E(Fp2) is to sequentially test
candidate x-coordinates in Fp2 until f (x) = x3 + Ax2 + x is square. Each of these
tests requires at least one exponentiation in Fp, and a further one (to obtain the cor-
responding y) if f (x) is a square. The Elligator 2 construction deterministically pro-
duces points in E(Fp2) using essentially the same operations, so given that the naïve
method can fail (and waste exponentiations), Elligator 2 performs significantly faster
on average. The idea behind Elligator 2 is to let u be any non-square in Fp2 , and for

148 Chapter VII. Efficient Compression of SIDH Public Keys

any r ∈ Fp2 , write

v = − A
1 + ur2 and v′ =

A
1 + ur2 − A . (2)

Then either v is an x-coordinate of a point in E(Fp2), or else v′ is [Ber+13]; this is
because f (v) and f (v′) differ by the non-square factor ur2.

In our implementation we fix u = i + 4 as a system parameter and precompute a
public table consisting of the values −1/(1 + ur2) ∈ Fp2 where r2 ranges from 1 to
10. This table is fixed once-and-for-all and can be used (by any party) to efficiently
generate torsion bases as A varies over the isogeny class. Note that the size of the
table here is overkill, we very rarely need to use more than 3 or 4 table values to
produce basis points of the correct exact order.

The key to optimizing the Elligator 2 construction (see [Ber+13, §5.5]) is to be able
to efficiently modify the square root computation in the case that f (v) is non-square,
to produce

√
f (v′). This update is less obvious for our field than in the case of prime

fields, but nevertheless achieves the same result. Referring back to (1), we note that
whether or not a + b · i is a square in Fp2 is determined solely by whether or not
a2 + b2 is a square in Fp [Sco07, §3.3]. Thus, if this check deems that a + bi is non-
square, we multiply it by ur2 = (i + 4)r2 to yield a square, and this is equivalent to
updating (a, b) = (r(4a− b), r(a + 4b)), which is trivial in the implementation.

2.2 Generating a Torsion Basis for E(Fp2)[2eA]

The above discussion showed how to efficiently generate candidate points R inside
E(Fp2). In this subsection we show how to efficiently check that R is in E \ [2]E,
which guarantees that [3eB]R is a point of exact order 2eA , and can subsequently be
used as a basis element.

Since the supersingular curves E/Fp2 : y2 = x(x2 + Ax + 1) in our isogeny class
have a full rational 2-torsion, we can always write them as E/Fp2 : y2 = x(x −
γ)(x − δ). A classic result (c. f. [Hus04, Ch. 1(§4), Thm 4.1]) says that, in our case,
any point R = (xR, yR) in E(Fp2) is in [2]E(Fp2), i. e. is the result of doubling another
point, if and only if xR, xR − γ and xR − δ are all squares in Fp2 . This means that we
do not need to find the roots δ and γ of x2 + Ax + 1 to test for squareness, since we
want the xR such that at least one of xR, xR − γ and xR − δ are a non-square. We
found it most efficient to simply ignore the latter two terms and reject any xR that
is square, since the first non-square xR we find corresponds to a point R such that
[3eB]R has exact order 2eA , and further testing square values of xR is both expensive

2. Constructing Torsion Bases 149

and often results in the rejection of R anyway.
In light of the above, we note that for the 2-torsion basis generation, the Elligator

approach is not as useful as it is in the next subsection. The reason here is that we
want to only try points with a non-square x-coordinate, and there is no exploitable
relationship between the squareness of v and v′ in (2) (such a relation only exists
between f (v) and f (v′)). Thus, the best approach here is to simply proceed by trying
candidate v’s as consecutive elements of a list L = [u, 2u, 3u, . . .] of non-squares in
Fp2 until (v3 + Av2 + v) is square; recall from above that this check is performed
efficiently using one exponentiation in Fp.

To summarize the computation of a basis {R1, R2} for E(Fp2)[2eA], we compute
R1 by letting v be the first element in L where (v3 + Av2 + v) is square. We do not
compute the square root of (v3 + Av2 + v), but rather use eB repeated x-only tripling
operations starting from v to compute xR1 . We then compute yR1 as the square root
of x3

R1
+ Ax2

R1
+ xR1 . Note that either choice of square root is fine, so long as Alice

and Bob take the same one. The point R2 is found identically, i. e. using the second
element in L that corresponds to an x-coordinate of a point on E(Fp2), followed
by eB x-only tripling operations to arrive at xR2 , and the square root computation to
recover yR2 . Note that the points R1 and R2 need not be normalized before their input
into the pairing computation; as we will see in §3, the doubling-only and tripling-
only pairings do not ever perform additions with the original input points, so the
input points are essentially forgotten after the first iteration.

2.3 Generating a Torsion Basis for E(Fp2)[3eB]

The theorem used in the previous subsection was a special case of more general the-
ory that characterizes the action of multiplication-by-m on E. We refer to Silverman’s
chapter [Sil09, Ch. X] and to [SS04] for the deeper discussion in the general case, but
in this chapter we make use of the explicit results derived in the case of m = 3 by
Schaefer and Stoll [SS04], stating only what is needed for our purposes.

Let P3 = (xP3 , yP3) be any point of order 3 in E(Fp2) (recall that the entire 3-torsion
is rational here), and let gP3(x, y) = y− (λx+ µ) be the usual tangent function to E at
P3. For any other point R ∈ E(Fp2), the result we use from [SS04] states that R ∈ [3]E
if and only if gP3(R) is in (Fp2)3 (i. e. is a cube) for all of the 3-torsion points2 P3.
Again, since we do not want points in [3]E, but rather points in E \ [3]E, we do not
need to test that R gives a cube for all of the gP3(R), we simply want to compute
an R where any one of the gP3(R) is not a cube. In this case the test involves both

2 The astute reader can return to §2.2 and see that this is indeed a natural analogue of [Hus04, Ch. 1
(§4), Thm 4.1].

150 Chapter VII. Efficient Compression of SIDH Public Keys

coordinates of R, so we make use of Elligator 2 as it is described in §2.1 to produce
candidate points R ∈ E(Fp2).

Unlike the previous case, where the 2-torsion point (0, 0) is common to all curves
in the isogeny class, in this case it is computing a 3-torsion point P3 that is the most
difficult computation. We attempted to derive an efficient algorithm that finds xP3 as
any root of the (quartic) 3-division polynomial ψ3(A, x), but this solution involved
several exponentiations in both Fp2 and Fp, and was also hampered by the lack
of an efficient enough analogue of (1) in the case of cube roots.3 We found that a
much faster solution was to compute the initial 3-torsion point via an x-only cofactor
multiplication: we use the first step of Elligator 2 to produce an x-coordinate xR,
compute xR̃ = x[2eA]R via eA repeated doublings, and then apply k repeated triplings
until the result of a tripling is (X : Z) ∈ P1 with Z = 0, which corresponds to the
pointO, at which point we can set out xP3 , the x-coordinate of a 3-torsion point P3, as
the last input to the tripling function. Moreover, if the number of triplings required
to produce Z = 0 was k = eB, then it must be that R̃ is a point of exact order 3eB . If
this is the case, we can use a square root to recover yR̃ from xR̃, and we already have
one of our two basis points.

At this stage we either need to find one more point of order 3eB , or two. In ei-
ther case we use the full Elligator routine to obtain candidate points R exactly as
described in §2.1, use our point P3 (together with our efficient test of cubic residu-
osity above) to test whether gP3(R) = yR − (λxR + µ) is a cube, and if it is not, we
output ±[2eA]R as a basis point; this is computed via a sequence of x-only doublings
and one square root to recover y[2eA]R at the end. On the other hand, if gP3(R) is
a cube, then R ∈ [3]E, so we discard it and proceed to generate the next R via the
tailored version of Elligator 2 above.

We highlight the significant speed advantage that is obtained by the use of the
result of Schaefer and Stoll [SS04]. Testing that points are in E \ [3]E by cofactor mul-
tiplication requires eA point doubling operations and eB point tripling operations,
while the same test using the explicit results from 3-descent require one field expo-
nentiation that tests cubic residuosity. Moreover, this exponentiation only involves
almost-for-free Frobenius operations and fast cyclotomic squaring and cubing oper-
ations (again, see §4.1).

Remark 3. As mentioned at the beginning of this section, until now we have sim-
plified the discussion to focus on generating two points R1 and R2 of exact order n.
However, this does not mean that {R1, R2} is a basis for E(Fp2)[n]; this is the case if
and only if the Weil pairing wn(R1, R2) has full order n. Although the Weil pairing

3 A common subroutine when finding roots of quartics involve solving the so-called depressed cubic.

3. The Tate Pairing Computation 151

will have order n with high probability for random R1 and R2, the probability is not
so high that we do not encounter it in practice. Thus, baked into our software is a
check that this is indeed the case, and if not, an appropriate backtracking mecha-
nism that generates a new R2. We note that, following [CLN16a, §9] and [Gal+16,
Section 2.5], checking whether or not the Weil pairing wn(R1, R2) has full order is
much easier than computing it, and can be done by comparing the values [n/`]R1

and [n/`]R2.

3 The Tate Pairing Computation

Given the basis points R1 and R2 resulting from the previous section, and the two
points P and Q in the (otherwise uncompressed) public key, we now have four points
of exact order n. As outlined in §II.2.1, the next step is to compute the following five
pairings to transfer the discrete logarithms to the multiplicative group µn ⊂ F∗p2 :

e0 := en(R1, R2) = fn,R1(R2)
(p2−1)/n , e1 := en(R1, P) = fn,R1(P)(p2−1)/n ,

e2 := en(R1, Q) = fn,R1(Q)(p2−1)/n , e3 := en(R2, P) = fn,R2(P)(p2−1)/n ,

e4 := en(R2, Q) = fn,R2(Q)(p2−1)/n .

As promised in §1, the above pairings are already defined by the order n reduced
Tate pairing en : E(Fp2)[n]×E(Fp2)/nE(Fp2) 7→ µn, rather than the Weil pairing that
was used in [Aza+16]. The rationale behind this choice is clear: the lack of special
(subfield) groups inside the n-torsion means that many of the tricks used in the pair-
ing literature cannot be exploited in the traditional sense. For example, there does
not seem to be a straight-forward way to shorten the Miller loop by using efficiently
computable maps arising from Frobenius (see e. g. [Bar+07], [HSV06], [Hes08]), our
denominators lie in Fp2 so cannot be eliminated [Bar+02], and, while distortion maps
exist on all supersingular curves [Ver04], finding efficiently computable and there-
fore useful maps seems hard for random curves in the isogeny class. The upshot is
that the Miller loop is far more expensive than the final exponentiation in our case,
and organizing the Tate pairings in the above manner allows us to get away with the
computation of only two Miller functions, rather than the four that were needed in
the case of the Weil pairing [Aza+16].

In the case of ordinary pairings over curves with a larger embedding degree,4

the elliptic curve operations during the Miller loop take place in a much smaller

4 This has long been the preferred choice of curve in the pairing-based cryptography literature.

152 Chapter VII. Efficient Compression of SIDH Public Keys

field than the extension field; in the Tate pairing the point operations take place in
the base field, while in the loop-shortened ate pairing [HSV06] (and its variants)
they take place in a small-degree subfield. Thus, in those cases the elliptic curve
arithmetic has only a minor influence on the overall runtime of the pairing.

In our scenario, however, we are stuck with elliptic curve points that have both
coordinates in the full extension field. This means that the Miller line function com-
putations are the bottleneck of the pairing computations (and, as it turns out, this is
the main bottleneck of the whole compression routine). The main point of this sec-
tion is to present optimized explicit formulas in this case; this is done in §3.1. In §3.2
we discuss how to compute the five pairings in parallel and detail how to compute
the final exponentiations efficiently.

3.1 Optimized Miller Functions

We now present explicit formulas for the point operations and line computations in
Miller’s algorithm [Mil04]. In the case of the order-2eA Tate pairings in E(Fp2)[2eA],
we only need the doubling-and-line computations, since no additions are needed.
In the case of the order-3eB Tate pairings inside E(Fp2)[3eB], we investigated two op-
tions: the first option computes the pairing in the usual “double-and-add” fashion,
reusing the doubling-and-line formulas with addition-and-line formulas, while the
second uses a simple sequence of eB tripling-and-parabola operations. The latter op-
tion proved to offer much better performance and is arguably more simple than the
double-and-add approach.

We tried several coordinate systems in order to lower the overall number of field
operations in both pairings, and after a close inspection of the explicit formulas in
both the doubling-and-line and tripling-and-parabola operations, we opted to use
the coordinate tuple (X2 : XZ : Z2 : YZ) to represent intermediate projective points
P = (X : Y : Z) ∈ P2 in E(Fp2). Note that all points in our routines for which we use
this representation satisfy XYZ 6= 0, as their orders are strictly larger than 2. This
ensures that the formulas presented below do not contain exceptional cases.5

Doubling-and-line operations. The doubling step in Miller’s algorithm takes as
input the tuple (U1 : U2 : U3 : U4) = (X2 : XZ : Z2 : YZ) corresponding to the point
P = (X : Y : Z) ∈ P2 in E(Fp2), and outputs the tuple (V1 : V2 : V3 : V4) = (X2

2 :
X2Z2 : Z2

2 : Y2Z2) corresponding to the point [2]P = (X2 : Y2 : Z2) ∈ P2, as well

5 The input into the final iteration in the doubling-only pairing is a point of order 2, but (as is well-
known in the pairing literature) this last iterate is handled differently than all of the prior ones.

3. The Tate Pairing Computation 153

as the 5 coefficients in the Miller line function l/v = (lx · x + ly · y + l0)/(vxx + v0)

with divisor 2(P)− (2P)− (O). The explicit formulas are given as

lx = 4U3
4 + 2U2U4 (U1 −U3) , ly = 4U2U2

4 , l0 = 2U1U4 (U1 −U3) ,

vx = 4U2U2
4 , v0 = U2 (U1 −U3)

2 ,

together with

V1 = (U1 −U3)
4 , V2 = 4U2

4 (U1 −U3)
2 , V3 = 16U4

4 ,

V4 = 2U4 (U1 −U3) ((U1 −U3)
2 + 2U2 (4U2 + A (U1 + U3))) .

The above point doubling-and-line function computation can be computed in 9M +

5S + 7a + 1s. The subsequent evaluation of the line function at the second argu-
ment of a pairing, the squaring that follows, and the absorption of the squared line
function into the running paired value costs 5M + 2S + 1a + 2s.

Tripling-and-parabola operations. The tripling-and-parabola operation has as in-
put the tuple (U1 : U2 : U3 : U4) = (X2 : XZ : Z2 : YZ) corresponding to the point
P = (X : Y : Z) ∈ P2 in E(Fp2), and outputs the tuple (V1 : V2 : V3 : V4) = (X2

3 :
X3Z3 : Z2

3 : Y3Z3) corresponding to the point [3]P = (X3 : Y3 : Z3) ∈ P2, as well
as the 6 coefficients in the Miller parabola function l/v = (ly · y + lx,2 · x2 + lx,1x +

lx,0)/(vxx + v0) with divisor 3(P)− (3P)− 2(O). The explicit formulas are given as

ly = 8U3
4 ,

lx,2 = U3(3U2
1 + 4U1 AU2 + 6U1U3 −U2

3) ,

lx,1 = 2U2(3U2
1 + 2U1U3 + 3U2

3 + 6U1 AU2 + 4A2U2
2 + 6AU2U3) ,

lx,0 = U1(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3) ,

vx = 8U3U3
4(3U2

1 + 4U1 AU2 + 6U1U3 −U2
3)

4 ,

v0 = −8U2U3
4(3U2

1 + 4U1 AU2 + 6U1U3 −U2
3)

2(U2
1 − 6U1U3 − 3U2

3 − 4AU2U3)
2 ,

together with

V1 = 8U3
4U1(−U2

1 + 6U1U3 + 3U2
3 + 4AU2U3)

4 ,

V2 = 8U2U3
4(3U2

1 + 4U1 AU2 + 6U1U3 −U2
3)

2(U2
1 − 6U1U3 − 3U2

3 − 4AU2U3)
2 ,

V3 = 8U3U3
4(3U2

1 + 4U1 AU2 + 6U1U3 −U2
3)

4 ,

V4 = −8U1U3(3U2
1 + 4U1 AU2 + 6U1U3 −U2

3)(−U2
1 + 6U1U3 + 3U2

3 + 4AU2U3)

154 Chapter VII. Efficient Compression of SIDH Public Keys

·
(
16U1U3 A2U2

2 + 28U2
1 AU2U3 + 28U1U2

3 AU2 + 4U3
3 AU2 + 4U3

1 AU2

+ 6U2
1U2

3 + 28U3
1U3 + U4

3 + 28U1U3
3 + U4

1
)
(U3 + U1 + AU2)

2 .

The above point tripling-and-parabola function computation can be computed in
19M + 6S + 15a + 6s. The subsequent evaluation of the line function at the second
argument of a pairing, the cubing that follows, and the absorption of the cubed line
function into the running paired value costs 10M + 2S + 4a.

Remark 4 (No irrelevant factors). It is common in the pairing literature to abuse no-
tation and define the order-n Tate pairing as en(P, Q) = fP(Q)(pk−1)/n, where k is
the embedding degree (in our case k = 2), and fP has divisor div(fP) = n(P) −
n(O). This is due to an early result of Barreto, Kim, Lynn and Scott [Bar+02, The-
orem 1], who showed that the actual definition of the Tate pairing, i. e. en(P, Q) =

fP(DQ)
(pk−1)/n where DQ is a divisor equivalent to (Q)− (O), could be relaxed in

practical cases of interest by replacing the divisor DQ with the point Q. This is due
to the fact that the evaluation of fP at O in such scenarios typically lies in a proper
subfield of F∗pk , so becomes an irrelevant factor under exponentiation by (pk − 1)/n.
In our case, however, this is generally not the case because the coefficients in our
Miller functions lie in the full extension field F∗p2 . Subsequently, our derivation of
explicit formulas replaces Q with the divisor DQ = (Q)− (O), and if the evaluation
of the Miller functions at O is ill-defined, we instead evaluate them at the divisor
(Q + T) − (T) that is linearly equivalent to DQ, where we fixed T = (0, 0) as the
(universal) point of order 2. If Q = (xQ, yQ), then Q + T = (1/xQ,−yQ/x2

Q), so
evaluating the Miller functions at the translated point amounts to a permutation of
the coefficients, and evaluating the Miller functions at T = (0, 0) simply leaves a
quotient of the constant terms. These modifications are already reflected in the op-
eration counts quoted above.

Remark 5. In the same vein as Remark 2, there is another possible speed improve-
ment within the pairing computation that is not currently exploited in our library.
Recall that during the generation of the torsion bases described in §2, the candidate
basis point R is multiplied by the cofactor n ∈ {nA, nB} to check whether it has the
correct (full) order, and if so, R is kept and stored as one of the two basis points.
Following the idea of Scott [Sco07, §9], the intermediate multiples of R (and partial
information about the corresponding Miller line functions) that are computed in this
cofactor multiplication could be stored in anticipation for the subsequent pairing
computation, should R indeed be one of the two basis points. Another alternative
here would be to immediately compute the pairings using the first two candidate ba-

3. The Tate Pairing Computation 155

sis points and to absorb the point order checks inside the pairing computations, but
given the overhead incurred if either or both of these order checks fails, this could
end up being too wasteful (on average).

3.2 Parallel Pairing Computation and the Final Exponentiation

In order to solve the discrete logarithms in the subgroup µn of n-th roots of unity
in F∗p2 , we compute the five pairings e0 := e(R1, R2), e1 := e(R1, P), e2 := e(R1, Q),
e3 := e(R2, P), and e4 := e(R2, Q). The first argument of all these pairings is either
R1 or R2, i. e. all are of the form fn,Ri (S)

(p2−1)/n for i ∈ {1, 2} and S ∈ {R2, P, Q}.
This means that the only Miller functions we need are fn,R1 and fn,R2 , and we get
away with computing only those two functions for the five pairing values. The two
functions are evaluated at the points R2, P, Q during the Miller loop to obtain the
desired combinations. It therefore makes sense to accumulate all five Miller values
simultaneously.

Computing the pairings simultaneously also becomes advantageous when it is
time to perform inversions. Since we cannot eliminate denominators due to the lack
of a subfield group, we employ the classic way of storing numerators and denomi-
nators separately to delay all inversions until the very end of the Miller loop. At this
point, we have ten values (five numerators and five denominators), all of which we
invert using Montgomery’s inversion sharing trick [Mon87] at the total cost of one
inversion and 30 Fp2 multiplications. The five inverted denominators are then mul-
tiplied by the corresponding numerators to give the five unreduced paired values.
The reason we not only invert the denominators, but also the numerators, is because
these inverses are needed in the easy part of the final exponentiation.

The final exponentiation is an exponentiation to the power (p2 − 1)/n = (p −
1) p+1

n . The so-called easy part, i. e. raising to the power p− 1, is done by one appli-
cation of the Frobenius automorphism and one inversion. The Frobenius is simply
a conjugation in Fp2 , and the inversion is actually a multiplication since we had al-
ready computed all required inverses as above. The so-called hard part of the final
exponentiation has exponent (p + 1)/n and needs to be done with regular exponen-
tiation techniques. A nice advantage that makes the hard part quite a little easier is
the fact that after a field element a = a0 + a1 · i ∈ Fp2 has been raised to the power
p− 1, it has order p + 1, which means it satisfies 1 = ap · a = a2

0 + a2
1. This equation

can be used to deduce more efficient squaring and cubing formulas that speed up
this final part of the pairing computation (see §4.1 for further details).

Finally, in the specific setting of SIDH, where p = nAnB − 1, we have that (p +

156 Chapter VII. Efficient Compression of SIDH Public Keys

1)/nA = nB and (p + 1)/nB = nA. When nA and nB are powers of 2 and 3, re-
spectively, the hard part of the final exponentiation consists of only squarings or
only cubings, respectively. These are done with the particularly efficient formulas
described in §4.1 below.

4 Efficient Pohlig-Hellman in µ`e

In this section, we describe how we optimize the Pohlig-Hellman [PH78] algorithm
to compute discrete logarithms in the context of public-key compression for super-
singular isogeny-based cryptosystems, and we show that we are able to improve on
the quadratic complexity described in [PH78]. A similar result has already been pre-
sented in the more general context of finite abelian p-groups by Sutherland [Sut11].
However, our software employs a different optimization of the Pohlig-Hellman al-
gorithm, by choosing small memory consumption over more efficient computation,
which affects parameter choices. We emphasize that there are different time-memory
trade-offs that could be chosen, possibly speeding up the Pohlig-Hellman computa-
tion by another factor of two (see Remark 2).

Following the previous sections, the two-dimensional discrete logarithm prob-
lems have been reduced to four discrete logarithm problems in the multiplicative
group µ`e ⊂ F∗p2 of `e-th roots of unity, where `, e ∈ Z are positive integers and ` is
a (small) prime. Before elaborating on the details of the windowed Pohlig-Hellman
algorithm, we note that the condition `e | p+ 1 makes various operations in µ`e more
efficient than their generic counterpart in F∗p2 .

4.1 Arithmetic in the Cyclotomic Subgroup

Efficient arithmetic in µ`e can make use of the fact that µ`e is a subgroup of the mul-
tiplicative group Gp+1 ⊂ F∗p2 of order p + 1. Various subgroup cryptosystems based
on the hardness of the discrete logarithm problem have been proposed in the lit-
erature [SS95; LV00], which can be interpreted in the general framework of torus-
based cryptography [RS03]. The following observations for speeding up divisions
and squarings in Gp+1 have been described by Stam and Lenstra [SL03, §3.23 and
Lemma 3.24].

Division in µ`e . Let p ≡ 3 (mod 4) and Fp2 = Fp(i), i2 = −1. For any a =

a0 + a1 · i ∈ Gp+1, where a0, a1 ∈ Fp, we have that a · ap = ap+1 = 1, and there-
fore, the inverse a−1 = ap = a0 − a1 · i. This means that inversion in µ`e can be

4. Efficient Pohlig-Hellman in µ`e 157

computed almost for free by conjugation, i. e. a single negation in Fp, and thus divi-
sions become as efficient as multiplications in µ`e .

Squaring in µ`e . The square of a = a0 + a1 · i can be computed as a2 = (2a2
0 −

1) + ((a0 + a1)
2 − 1) · i by essentially two base field squarings. In the case where

such squarings are faster than multiplications, this yields a speed-up over generic
squaring in Fp2 .

Cubing in µ`e . As far as we know, a cubing formula in Gp+1 has not been considered
in the literature before. We make the simple observation that a3 can be computed as
a3 = (a0 + a1 · i)3 = a0(4a2

0− 3) + a1(4a2
0− 1) · i, which needs only one squaring and

two multiplications in Fp, and is significantly faster than a naïve computation via a
squaring and a multiplication in µ`e .

4.2 Pohlig-Hellman

We now discuss the Pohlig-Hellman algorithm as presented in [PH78] for the group
µ`e . Let r, g ∈ µ`e be (non-trivial elements) such that r = gα for some α ∈ Z. Given r
and g, the goal is to determine the unknown scalar α. Denote α as

α =
e−1

∑
i=0

αi`
i (αi ∈ {0, . . . , `− 1}) .

Now define s = g`
e−1

, which is an element of order `, and let r0 = r. Finally, define

gi = g`
i

(0 ≤ i ≤ e− 1)

and
ri =

ri−1

gαi−1
i−1

(1 ≤ i ≤ e− 1) .

A straightforward computation then shows that for all 0 ≤ i ≤ e− 1,

r`
e−(i+1)

i = sαi . (3)

As proven in [PH78], this allows to inductively recover all αi, by solving the dis-
crete logarithms of Equation (3) in the group 〈s〉 of order `. This can be done by
precomputing a table containing all elements of 〈s〉. Alternatively, if ` is not small
enough, one can improve the efficiency by applying the Baby-Step Giant-Step algo-
rithm [Sha71], at the cost of some more precomputation. For small ` the computation

158 Chapter VII. Efficient Compression of SIDH Public Keys

has complexity O(e2), while precomputing and storing the gi requires O(e) memory.

4.3 Windowed Pohlig-Hellman

The original version of the Pohlig-Hellman algorithm reduces a single discrete log-
arithm in the large group µ`e to e discrete logarithms in the small group µ`. In this
section we consider an intermediate version, by reducing the discrete logarithm in
µ`e to e

w discrete logarithms in µ`w . Let r, g, α as in the previous section, and let w ∈ Z

be such that w | e. Note that it is not necessary for e to be divisible by w. If it is not,
we replace e by e− (e (mod w)), and compute the discrete logarithm for the final e
(mod w) bits at the end. However the assumption w | e improves the readability of
the arguments with little impact on the results, so we focus on this case here. Write

α =

e
w−1

∑
i=0

αi`
wi (αi ∈ {0, . . . , `w − 1}) ,

define s = g`
e−w

, which is an element of order `w, and let r0 = r. Let

gi = g`
wi

(0 ≤ i ≤ e
w
− 1)

and
ri =

ri−1

gαi−1
i−1

(1 ≤ i ≤ e
w
− 1) . (4)

A analogous computation to the one in [PH78] proves that

r`
e−w(i+1)

i = sαi (0 ≤ i ≤ e
w
− 1) . (5)

Hence we inductively obtain αi for all 0 ≤ i ≤ e
w − 1, and thereby α. To solve

the discrete logarithm in the smaller subgroup µ`w , we consider two strategies as
follows.

Baby-step Giant-step in 〈s〉. As before, for small ` and w we can compute a table
containing all `w elements of 〈s〉, making the discrete logarithms in (5) trivial to solve.
As explained in [Sha71], the Baby-Step Giant-Step algorithm allows us to make a
trade-off between the size of the precomputed table and the computational cost. That
is, given some v ≤ w, we can compute discrete logarithms in 〈s〉with computational
complexity O(`v) and O(`w−v) memory. Note that the computational complexity
grows exponentially with v, whereas the memory requirement grows exponentially
with w− v. This means that if we want to make w larger, we need to grow v as well,

4. Efficient Pohlig-Hellman in µ`e 159

as otherwise the table-size will increase. Therefore in order to obtain an efficient and
compact algorithm, we must seemingly limit ourselves to small w. We overcome this
limitation in the next section.

Pohlig-Hellman in 〈s〉. We observe that 〈s〉 has order `w, which is again smooth.
This allows us to solve the discrete logarithms in 〈s〉 by using the original Pohlig-
Hellman algorithm of §4.2. However, we can also choose to solve the discrete loga-
rithm in 〈s〉with a second windowed Pohlig-Hellman algorithm. Note the recursion
that occurs, and we can ask what the optimal depth of this recursion is. We further
investigate this question in §4.4.

4.4 The Complexity of Nested Pohlig-Hellman

We estimate the cost of an execution of the nested Pohlig-Hellman algorithm by
looking at the cost of doing the computations in (4) and (5). Let Fn (n ≥ 0) de-
note the cost of an n-times nested Pohlig-Hellman algorithm, and set F−1 = 0. Let
w0, w1, . . . , wn, wn+1 be the window sizes, and set w0 = e, wn+1 = 1 (note that
n = 0 corresponds to the original Pohlig-Hellman algorithm). Again, assume that
wn | wn−1 | · · · | w1 | e, which is merely for ease of exposition. The first iteration has
window size w1, which means that the cost of the exponentiations in (5) is e

w1
−1

∑
i=0

w1i

L =
1
2

w1

(
e

w1
− 1
)

e
w1

L =
1
2

e
(

e
w1
− 1
)

L ,

where L denotes the cost of an exponentiation by `. The exponentiations in (4) are
performed with a scalar of size log αi ≈ w1 log `, which costs 1

2 w1 log `M+w1 log ` S
on average. To do all e

w1
of them then costs on average 1

2 e log `M + e log ` S. We em-
phasize that for small wi and ` this is a somewhat crude estimation, yet it is enough
to get a good feeling for how to choose our parameters (i. e. window sizes). We
choose to ignore the divisions, since there are only a few (see Remark 6) and, as we
showed in §4.1, they can essentially be done at the small cost of a multiplication. We
also ignore the cost of the precomputation for the g`

wi
, which is small as well (see Re-

mark 7). To complete the algorithm, we have to finish the remaining e
w1

(n− 1)-times
nested Pohlig-Hellman routines. In other words, we have shown that

Fn ≈
1
2

e
(

e
w1
− 1
)

L +
1
2

e log `M + e log ` S +
e

w1
Fn−1 .

160 Chapter VII. Efficient Compression of SIDH Public Keys

Now, by using analogous arguments on Fn−1, and induction on n, we can show that

Fn ≈
1
2

e
(

e
w1

+ . . . +
wn−1

wn
+ wn − n

)
L

+
n + 1

2
e log `M + (n + 1)e log ` S . (6)

To compute the optimal choice of (w1, . . . , wn), we compute the derivatives,

∂Fn

∂wi
=

1
2

e

(
1

wi+1
− wi−1

w2
i

)
L (1 ≤ i ≤ n)

and simultaneously equate them to zero to obtain the equations

wi =
√

wi−1wi+1 (1 ≤ i ≤ n) .

From this we can straightforwardly compute that the optimal choice is

(w1, . . . , wn) =
(

e
n

n+1 , e
n−1
n+1 , . . . , e

2
n+1 , e

1
n+1

)
. (7)

Plugging this back into the Equation (6), we conclude that

Fn ≈
1
2

e (n + 1)
(

e
1

n+1 − 1
)

L +
n + 1

2
e log `M + (n + 1)e log ` S .

Observe that F0 ≈ 1
2 e2, agreeing with the complexity described in [PH78]. How-

ever, as n grows, the complexity of the nested Pohlig-Hellman algorithm goes from
quadratic to linear in e, giving a significant improvement.

Remark 6. We observe that for every two consecutive windows wi and wi+1, we need
less than wi

wi+1
divisions for (4). Breaking the full computation down, it is easy to

show that the total number of divisions is less than

e
w1

+
e

w1

(
w1

w2
+

w1

w2

(
· · ·+ wn−2

wn−1

(
wn−1

wn
+

wn−1

wn
wn

)))
,

which can be rewritten as e
(1

w1
+ 1

w2
+ . . . + 1

wn
+ wn

wn−1

)
. Now we note that wi+1 | wi,

while wi+1 6= wi, for all 0 ≤ i ≤ n. As wn+1 = 1, it follows that wn+1−i ≥ 2i for all
0 ≤ i ≤ n. Therefore

e
(

1
w1

+
1

w2
+ . . . +

1
wn

+
wn

wn−1

)
≤ e

(
1
2n +

1
2n−1 + . . . +

1
2
+ 1
)
< 2e .

5. Final Compression and Decompression 161

Table 1. Estimations of Fn in µ2372 via a Magma implementation. Here m and s are the cost of
multiplications and squarings in Fp, while M = 3 ·m and S = 2 · s are the cost of multiplica-
tions and squarings in Fp2 . The costs are averaged over 100 executions of the algorithm. The
Fp operation counts are generated from the Fp2 operation count estimations (c. f. §4.1), while
the Fp2 are rounded down after averaging.

Windows Fp2 Fp Table

n w1 w2 w3 w4 M S m s Fp2

0 – – – – 372 69 378 1 116 138 756 375
1 19 – – – 375 7 445 1 125 14 890 43
2 51 7 – – 643 4 437 1 929 8 874 25
3 84 21 5 – 716 3 826 2 148 7 652 25
4 114 35 11 3 1 065 3 917 3 195 7 834 27

Remark 7. As every table element is of the form g`
i
, where i is an integer such that

0 ≤ i ≤ e− 1, we conclude that we need at most (e− 1)L to pre-compute all tables.

4.5 Discrete Logarithms in µ2372

For this section we fix ` = 2 and e = 372. In this case L is the cost of a squaring,
i. e. L = S. To validate the approach, we present estimates for the costs of the
discrete logarithm computations in µ2372 through a Magma implementation. In this
implementation we count every multiplication, squaring and division operation; on
the other hand, some of these were ignored for the estimation of Fn above. The
results are shown in Table 1 for 0 ≤ n ≤ 4 choosing the window sizes as computed
in (7). The improved efficiency as well as the significantly smaller table sizes are
clear, and we observe that in the group µ2372 it is optimal to choose n = 3.

4.6 Discrete Logarithms in µ3239

We now fix ` = 3 and e = 239 and present estimates for the costs of the discrete
logarithm computations in µ3239 . Here L is now the cost of a cubing in µ3239 . As
explained in §4.1, this is done at the cost of two multiplications and one squaring in
Fp. As shown in Table 2, the optimal case in µ3239 is also n = 3.

5 Final Compression and Decompression

In this section we explain how to further compress a public key PK from Fp2 ×
(Z/nZ)4 to Fp2 × {0, 1} × (Z/nZ)3. Moreover, we also show how to merge the

162 Chapter VII. Efficient Compression of SIDH Public Keys

Table 2. Estimations of Fn in µ3239 via a Magma implementation. Here m and s are the cost of
multiplications and squarings in Fp, while M = 3 ·m, S = 2 · s and C = 2 ·m + s are the cost
of multiplications, squarings and cubings in Fp2 respectively. The costs are averaged over 100
executions of the algorithm. The Fp operation counts are generated from the Fp2 operation
count estimations (c. f. §4.1), while the Fp2 are rounded down after averaging.

Windows Fp2 Fp Table

n w1 w2 w3 w4 M S C m s Fp2

0 – – – – 239 78 28 680 58 077 28 836 242
1 19 – – – 349 341 3 646 8 339 4 328 35
2 51 7 – – 612 660 2 192 6 220 3 512 22
3 84 21 5 – 656 836 1 676 5 320 3 348 17
4 114 35 11 3 942 1 252 1 427 5 716 3 931 16

key decompression with one of the operations of the SIDH scheme, making much of
the decompression essentially free of cost. For ease of notation we follow the scheme
described in [CLN16a], but everything that follows in this section generalizes natu-
rally to the theory as originally described in [DFJP14].

5.1 Compression

Using the techniques explained in all previous sections, we can compress a triple
(EA, P, Q) ∈ F3

p2 to a tuple
(

A, αP, βP, αQ, βQ
)
∈ Fp2 × (Z/nZ)4 such that

(P, Q) =
(
αPR1 + βPR2, αQR1 + βQR2

)
,

where {R1, R2} is a basis of EA[n]. As described in [CLN16a], the goal is to compute
〈P + `mQ〉 for ` ∈ {2, 3} and a secret key m. Again, we note that the original pro-
posal expects to compute 〈n1P + n2Q〉 for secret key (n1, n2), but we emphasize that
all that follows can be generalized to this case.

Since P is an element of order n, one of αP or βP lies in (Z/nZ)∗, and

〈P + `mQ〉 =

〈α−1
P P + `mα−1

P Q〉 if αP ∈ (Z/nZ)∗

〈β−1
P P + `mβ−1

P Q〉 if βP ∈ (Z/nZ)∗
.

Hence, to compute 〈P + `mQ〉, we do not necessarily have to recompute (P, Q).
Instead, we can compute(

α−1
P P, α−1

P Q
)
=
(

R1 + α−1
P βPR2, α−1

P αQR1 + α−1
P βQR2

)

5. Final Compression and Decompression 163

or (
β−1

P P, β−1
P Q

)
=
(

β−1
P αPR1 + R2, β−1

P αQR1 + β−1
P βQR2

)
.

Note that in both cases we have normalized one of the scalars. We conclude that we
can compress the public key to PK ∈ Fp2 × {0, 1} × (Z/nZ)3, where

PK =

(

A, 0, α−1
P βP, α−1

P αQ, α−1
P βQ

)
if αP ∈ (Z/nZ)∗(

A, 1, β−1
P αP, β−1

P αQ, β−1
P βQ

)
if βP ∈ (Z/nZ)∗

.

5.2 Decompression

Let
(

A, b, α̃P, α̃Q, β̃Q

)
∈ Fp2 × {0, 1} × (Z/nZ)3 be a compressed public key. Note

that, by the construction of the compression, there exists a γ ∈ (Z/nZ)∗ such that

(
γ−1P, γ−1Q

)
=

(

R1 + α̃PR2, α̃QR1 + β̃QR2

)
if b = 0(

α̃PR1 + R2, α̃QR1 + β̃QR2

)
if b = 1

. (8)

The naïve strategy, analogous to the one originally explained in [Aza+16], would be
to generate the basis {R1, R2} of EA[n], use the public key to compute

(
γ−1P, γ−1Q

)
via (8), and finally compute

〈P + `mQ〉 = 〈γ−1P + `mγ−1Q〉 ,

where m ∈ Z/nZ is the secret key. The cost is approximately a 1-dimensional and
a 2-dimensional scalar multiplication on EA, while the final 1-dimensional scalar
multiplication is part of the SIDH scheme.

Instead, we use (8) to observe that

〈P + `mQ〉 = 〈γ−1P + `mγ−1Q〉

=

〈
(
1 + `mα̃Q

)
R1 +

(
α̃P + `mβ̃Q

)
R2〉 if b = 0

〈
(
α̃P + `mα̃Q

)
R1 +

(
1 + `mβ̃Q

)
R2〉 if b = 1

.

Thus, since 1 + `mα̃Q, 1 + `mβ̃Q ∈ (Z/nZ)∗ (recall that n = `e), we conclude that

〈P + `mQ〉 =

〈R1 +
(
1 + `mα̃Q

)−1
(

α̃P + `mβ̃Q

)
R2〉 if b = 0

〈
(

1 + `mβ̃Q

)−1 (
α̃P + `mα̃Q

)
R1 + R2〉 if b = 1

.

164 Chapter VII. Efficient Compression of SIDH Public Keys

Table 3. Comparison of SIDH key exchange and public key compression implementations
targeting the 128-bit post-quantum and 192-bit classical security level. Benchmarks for our
implementation were done on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost disabled. Results for [Aza+16], obtained on a 4.0GHz Intel Core
i7-4790K Haswell processor, were scaled from seconds to cycles using the CPU frequency; the
use of TurboBoost is not specified in [Aza+16]. The performance results, expressed in millions
of clock cycles, were rounded to the nearest 106 cycles.

Function Party This [Aza+16]

Public key (bytes) — Alice 328 385Bob 330

Cycles (cc×106)

Keygen + Shared key Alice 80 —Bob 92

Compression Alice 109 6 081
Bob 112 7 747

Decompression Alice 42 539
Bob 34 493

Total (no compression) — 192 535
Total (compression) — 469 15 395

Decompressing in this way costs only a handful of field operations in Fp2 in addition
to a 1-dimensional scalar multiplication on EA. Since the scalar multiplication is
already part of the SIDH scheme, this makes the cost of decompression essentially
the cost of generating {R1, R2}. This is done exactly as explained in §2.

6 Implementation Details

To evaluate the performance of the new compression and decompression, we im-
plemented the proposed algorithms in plain C and wrapped them around the SIDH
software from [CLN16a]. This library supports a supersingular isogeny class de-
fined over p = 2372 · 3239 − 1, which contains curves of order (2372 · 3239)2. These
parameters target 128 bits of post-quantum security.

Table 3 summarizes the results after benchmarking the software with the clang
compiler v3.8.0 on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu
14.04 LTS with TurboBoost turned off. The details in the table include the size of
compressed and uncompressed public keys, the performance of Alice’s and Bob’s
key exchange computations using compression, the performance of the proposed
compression and decompression routines, and the total costs of SIDH key exchange
with and without the use of compression. These results are compared with those
from the prior work by Azarderakhsh et al. [Aza+16], which uses a supersingular

6. Implementation Details 165

isogeny class defined over p = 2387 · 3242 − 1.
As can be seen in Table 3, the new algorithms for compression and decompres-

sion are significantly faster than those from [Aza+16]: compression is up to 66 times
faster, while decompression is up to 15 times faster. Similarly, the full key exchange
with compressed public keys can be performed about 30 times faster. Even though
part of these speedups can indeed be attributed to the efficiency of the original SIDH
library, this only represents a very small fraction of the performance difference (note
that the original key exchange from the SIDH library is only 2.8 times faster than the
corresponding result from [Aza+16]).

Our experimental results show that the use of compressed public keys introduces
a factor-2.4 slowdown to SIDH. However, the use of compact keys (in this case, of
330 bytes) can now be considered practical; e. g. one round of SIDH key exchange is
computed in only 150 milliseconds on the targeted platform.

166 Chapter VII. Efficient Compression of SIDH Public Keys

Chapter VIII
Computing Isogenies between
Montgomery Curves Using the
Action of (0, 0)

A recent paper by Costello and Hisil [CH17] presents efficient formulas for comput-
ing isogenies with odd-degree cyclic kernels on Montgomery curves. We provide
a constructive proof of a generalization of this theorem which shows the connec-
tion between the shape of the isogeny and the simple action of the point (0, 0). This
generalization removes the restriction of a cyclic kernel and allows for any separa-
ble isogeny whose kernel does not contain (0, 0). As a particular case, we provide
efficient formulas for 2-isogenies between Montgomery curves and show that these
formulas can be used in isogeny-based cryptosystems without expensive square root
computations and without knowledge of a special point of order 8. We also consider
elliptic curves in triangular form containing an explicit point of order 3.

1 Introduction

Ever since the introduction of elliptic curves to public-key cryptography by Miller
[Mil86] and Koblitz [Kob87], they have been of interest to the cryptographic commu-
nity. By using the group of points on an appropriately chosen elliptic curve where
the discrete logarithm problem is assumed to be hard, many standard protocols can
be instantiated. Notably, the Diffie–Hellman key exchange [DH76] and the Schnorr

168 Chapter VIII. Computing Isogenies between Montgomery Curves

signature scheme [Sch90] and its variants [Acc99a; Ber+12] allow for efficient imple-
mentations with high security and small keys. The efficiency of these curve-based
algorithms is largely determined by the scalar multiplication routine, and as a result
a lot of research has gone into optimizing this operation.

However, the threat of large-scale quantum computers has initiated the search
for alternative algorithms that also resist quantum adversaries (which the classical
curve-based systems do not [Sho94]). Building on the work of Couveignes [Cou06]
and Rostovsev and Stolbunov [RS06], in 2011 Jao and De Feo [JDF11] proposed su-
persingular isogeny Diffie–Hellman (SIDH) as a key exchange protocol offering post-
quantum security. Being based on the theory of elliptic curves, SIDH inherits several
operations from traditional curve-based cryptography. As such, it has immediately
benefited from decades of prior research into optimizing their operations. In par-
ticular, the Montgomery form of an elliptic curve has resulted in great performance.
Initially proposed by Montgomery to speed up factoring using ECM [Mon87; Len87]
and having been used for very efficient Diffie–Hellman key exchange (e. g. Bern-
stein’s Curve25519 [Ber06a]), the current fastest instantiations of SIDH also employ
Montgomery curves [CLN16b; KAMK16]. But, although the optimizations for scalar
multiplication immediately carry over, the work on computing explicit isogenies on
Montgomery curves is more limited.

For isogeny computations one commonly uses Vélu’s formulas [Vél71]. How-
ever, if the elliptic curve has a form which is less general than (or different from)
Weierstrass form, the formulas from Vélu are not guaranteed to preserve this. As
isogenies are only well-defined up to isomorphism, one can post-compose with an
appropriate isomorphism to return to the required form, but it may not be obvi-
ous with which isomorphism, or the isomorphism may be expensive to compute. A
more elegant approach is to observe some extra structure on the curve model and
require the isogenies to preserve this. For example, Moody and Shumow [MS16] ap-
ply this idea to Edwards and Huff curves by fixing certain points. Moreover, since
the isogeny is invariant under addition by kernel points, there is a close connection
between the isogeny and the action (by translation) of some chosen point. We make
this more explicit in Theorem 1 for curves in Weierstrass form.

So far the approaches for obtaining formulas for isogenies on curves in Mont-
gomery form have been rather ad hoc. In [DFJP14], De Feo, Jao and Plût apply Vélu’s
formulas and compose with the appropriate isomorphisms to return to Montgomery
form. As noted in [DFJP14, §4.3.2], this approach fails to produce efficient results for
2-isogenies. That is, either one has to compute expensive square roots in a finite field
(see e. g. §VII.2.1), or one relies on having an appropriate point of order 8. However,

2. Isogenies on Weierstrass Curves 169

this point of order 8 is not readily available for the final two 2-isogenies. As one sug-
gested workaround in [DFJP14] they derive formulas for 4-isogenies between two
curves in Montgomery form and propose to compute 2e-isogenies as a chain of 4-
isogenies. As a result, optimized SIDH implementations [CLN16a; KAMK16] have
employed curves where e is even so that 2e-isogenies can be comprised entirely of
4-isogenies. In [CH17], Costello and Hisil present elegant formulas for isogenies
between Montgomery curves, but their theorem covers only the case of odd cyclic
kernels and subsequently also does not address the case of 2-isogenies. Moreover,
there is no justification for the derivation of these isogenies (except for showing that
they work).

We bridge this gap by providing a more thorough analysis on isogenies between
Montgomery curves. We show that the isogenies arising in [CH17] are exactly those
fixing (0, 0). Since we enforce the isogeny to fix (0, 0), this point cannot be in the
kernel. We show in Proposition 5 that this is the only restriction, and as a result
present a generalization of [CH17, Theorem 1]. As a special case, we obtain formulas
for 2-isogenies for 2-torsion points other than (0, 0). We then show that this point can
be naturally avoided in well-designed isogeny-based cryptosystems (see §3.3), and
discuss the application of the 2-isogeny formulas to isogeny-based cryptosystems.

Finally, although currently it does not give rise to faster isogeny formulas, we
consider it worthwhile to point out that the same techniques immediately apply to
other models. In particular, models derived from the Tate Normal Form [Hus04, §4.4],
where one could expect to get simple `-isogenies for ` ≥ 3. We work out the case
` = 3, also known as the triangular form [Ber+15b], and derive isogenies by again
fixing the action of the special point (0, 0).

Organization. We state a theorem in §2 that allows to describe an isogeny in terms
of the abscissas of its kernel points and their translations by a chosen point Q. We
apply this to Montgomery curves in §3 and to curves in triangular form in §4, in both
cases using Q = (0, 0).

2 Isogenies on Weierstrass Curves

We begin by stating a straightforward, but rather useful theorem. By assuming to
have knowledge on the action of an isogeny on a single point Q, we can translate this
point by elements of the kernel to obtain a simple description of the isogeny. Many
curve models have a natural choice for this point (e. g. Q = (0, 0) in Montgomery
form, see §3).

170 Chapter VIII. Computing Isogenies between Montgomery Curves

Theorem 1. Let k be a field and E/k an elliptic curve in Weierstrass form. Let G ⊂ E(k̄)
be a finite subgroup defined over k and

ϕ : (x, y) 7→
(

f (x), c0y f ′(x) + g(x)
)

, c0 ∈ k̄∗ , (1)

a separable isogeny with ker(ϕ) = G. Let Q ∈ E(k̄) such that Q /∈ G. Then

f (x) = c1(x− xQ) ∏
T∈G\{O}

(
x− xQ+T

)
(x− xT)

+ f (xQ) , for c1 ∈ k̄∗ .

Proof. First note that the existence of ϕ follows from Vélu’s formulas [Vél71], while a
standard result [Gal12, Theorem 9.7.5] shows that it can be written in the form of (1)
(where f ′(x) is the formal derivative d f /dx of f (x)). More explicitly, following the
notation of [Gal12, Theorem 25.1.6], there exist functions u, t : G \ {O} → k̄ such
that

f (x) = x + ∑
T∈G1∪G2

(
t(T)

x− xT
+

u(T)

(x− xT)
2

)
,

where G2 ⊂ G is the set of points of order 2 and G1 ⊂ E(k̄) is such that G = {O} ∪
G2 ∪G1 ∪ {−T : T ∈ G1}. Moreover, u(T) = 0 if and only if T has order 2. Collecting
denominators, it is then immediate that there exists a function w ∈ k̄[x] such that
deg(w) = |G| and

f (x) =
w(x)
v(x)

, where v(x) = ∏
T∈G\{O}

(x− xT) .

Now define
h(x) = w(x)v(xQ)− w(xQ)v(x) .

Note that clearly h(xQ) = 0. Since the value of f is invariant under the action of
points in G, we in fact have that h(xQ+T) = 0 for all T ∈ G. Therefore it follows that
(x− xQ+T) | h(x) for all T ∈ G. If for all T1, T2 ∈ G such that T1 6= T2 we have that
xQ+T1 6= xQ+T2 , then it immediately follows that

∏
T∈G

(x− xQ+T) | h(x) .

Otherwise1, assume we have T1, T2 ∈ G such that T1 6= T2 and xQ+T1 = xQ+T2 .

1 This proof is quite elementary. An alternative method (which is perhaps more illuminating) is to
consider the divisor of x− f (xQ) on E/G and to pull it back via ϕ. We can then use the fact that div(f (x)−
f (xQ)) = ϕ∗ div(x− f (xQ)).

2. Isogenies on Weierstrass Curves 171

Since any x-coordinate corresponds to at most 2 points on E, it follows that Q + T2 =

± (Q + T1). However, Q + T2 = Q + T1 implies that T1 = T2, which contradicts our
assumption. Therefore Q + T2 = − (Q + T1) and

[2]ϕ(Q + T1) = ϕ(Q + T1) + ϕ(Q + T1)

= ϕ(Q + T1) + ϕ(Q + T2)

= ϕ(Q + T1)− ϕ(Q + T1) = O .

Moreover,

[2](Q + T1) = O ⇐⇒ Q + T1 + Q + T1 = O

⇐⇒ Q + T1 − (Q + T2) = O

⇐⇒ T1 = T2 ,

which contradicts the assumption that T1 6= T2. Thus ψ2(Q + T1) 6= 0 and by
Lemma 2 we can conclude that f ′(xQ+T1) = 0. Since away from the zeros of v we
have

h(x) =
(

f (x)− f (xQ)
)
v(x)v(xQ) ,

it follows from the fact that f ′(xQ+T1) = f (xQ+T1)− f (xQ) = 0 that h′(xQ+T1) = 0.
Thus h has (at least) a double root at xQ+T1 . That is, (x− xQ+T1)(x− xQ+T2) | h(x) .
It is then clear that indeed

∏
T∈G

(x− xQ+T) | h(x) .

As deg(h) ≤ max(deg(w), deg(v)) = |G|, there exists a constant c ∈ k̄∗ such that

h(x) = c ∏
T∈G

(x− xQ+T) .

Thus,

f (x) =
w(x)
v(x)

=
h(x)

v(x)v(xQ)
+ f (xQ) .

The result follows by setting c1 = c/v(xQ).

Lemma 2. Let the setup be as in Theorem 1 and let R ∈ E(k̄) \ G. Then

[2]ϕ(R) = O ⇐⇒ ψ2(R) f ′(xR) = 0 ,

where ψ2 is the 2-division polynomial.

172 Chapter VIII. Computing Isogenies between Montgomery Curves

Proof. Firstly note that R /∈ G and thus ϕ(R) 6= O. Therefore, by definition of the
2-division polynomial on Ẽ = E/G it follows that

[2]ϕ(R) = O ⇐⇒ 2yϕ(R) + ã1xϕ(R) + ã3 = 0 ,

where ã1 and ã3 are Weierstrass constants of Ẽ c. f. (1). Using the definition of ϕ and
by recalling that (see e. g. [Gal12, Theorem 9.7.5])

2g(xR) = c0(a1xR + a3) f ′(xR)− ã1 f (xR)− ã3 ,

a straightforward computation shows that

2yϕ(R) + ã1xϕ(R) + ã3 = 0 ⇐⇒ c0 (2yR + a1xR + a3) f ′(xR) = 0 .

Finally observe that ψ2(R) = 2yR + a1xR + a3 and c0 6= 0.

Remark 3. Theorem 1 shows the connection between ϕ and the action of the point
Q on abscissas of kernel elements, as ϕ is given by a product of functions (x −
xQ+T)/(x− xT) . If this action is simple (e. g. in Montgomery form where x(0,0)+T =

1/xT) then we can expect simple formulas for isogenies.

Remark 4. By relying on Theorem 1 we simplify the proof compared to earlier works
[CH17; MS16]. Whereas those works present rational maps and prove them to be
isogenies, we turn this argument around. We use the existence of the isogeny (by
Vélu’s formulas) and apply appropriate isomorphisms to enforce some structure to
be maintained (e. g. (0, 0) 7→ (0, 0) in Montgomery form). We can then apply The-
orem 1 to get formulas for the isogeny up to some constants. Finally we also use
the formal group law. However, as opposed to proving that the rational functions
defining the isogeny satisfy the curve relation of the co-domain curve, we can as-
sume them to vanish and therefore extract the constants and the coefficients of the
co-domain curve. This significantly simplifies the proof compared to earlier works
(e. g. [MS16, Theorem 2] and [CH17, Theorem 1]).

3 Montgomery Form and 2-isogenies

In [CH17, Theorem 1] Costello and Hisil present rational maps which they prove to
be isogenies between Montgomery curves. These isogenies are not unique, and are
for example different from the formulas directly derived using Vélu’s formulas. It
is immediate that the isogenies in [CH17] have the property of fixing (0, 0). In §3.1

3. Montgomery Form and 2-isogenies 173

we show that this fact, together with the co-domain curve being in Montgomery
form, characterizes their formulas (up to some sign choices). This generalizes the
theorem by Costello and Hisil, by removing the restriction of kernels being cyclic
and having odd order. In particular, in §3.2 we present formulas for 2-isogenies
determined by points of order 2 other than (0, 0). Until now these had not appeared,
and were considered to require the computation of a square root. In §3.3 we show
how one could apply these formulas in an implementation. Although it requires
only a modest change to the parameters, this does require care and can simplify the
implementation. Finally in §3.4 we comment on a comparison to the state-of-the-art.

3.1 The General Formula

We begin by stating Proposition 5, which is the analogue of [CH17, Theorem 1].

Proposition 5. Let k be a field with char(k) 6= 2. Let a ∈ k such that a2 6= 4 and
E/k : y2 = x3 + ax2 + x is a Montgomery curve. Let G ⊂ E(k̄) be a finite subgroup
defined over k such that (0, 0) /∈ G and let ϕ be a separable isogeny such that ker(ϕ) = G.
Then there exists a curve Ẽ/k : y2 = x3 + Ax2 + x such that, up to post-composition by an
isomorphism,

ϕ : E→ Ẽ

(x, y) 7→ (f (x), c0y f ′(x))

where
f (x) = x ∏

T∈G\{O}

xxT − 1
x− xT

.

Moreover, writing

π = ∏
T∈G\{O}

xT , σ = ∑
T∈G\{O}

(
xT −

1
xT

)
,

we have that A = π(a− 3σ) and c2
0 = π.

Proof. Over k̄ we can always move E/G to Montgomery form. Let P ∈ E(k̄) such
that xP = 1. Then [2]P = (0, 0), hence [2]ϕ(P) = ϕ([2]P) 6= O while [4]ϕ(P) =

[2] (0, 0) = O. Thus ϕ(P) is a point of exact order 4, and we apply an isomorphism
such that xϕ(P) = (−1)|G|−1 (see e. g. [DFJP14, §4.3.2]). In particular this assures that
ϕ : (0, 0) 7→ (0, 0). We then twist the y-coordinate via another isomorphism to set

174 Chapter VIII. Computing Isogenies between Montgomery Curves

the coefficient of y2 to 1 and have

Ẽ = E/G : y2 = x3 + Ax2 + x .

Now apply Theorem 1 with Q = (0, 0). We obtain that

f (x) = c1(x− x(0,0)) ∏
T∈G\{O}

(x− x(0,0)+T)

(x− xT)
+ f (x(0,0))

= c1x ∏
T∈G\{O}

(
x− 1

xT

)
(x− xT)

.

As we set up Ẽ such that f (1) = (−1)|G|−1, we find that

c1 = ∏
T∈G\{O}

xT .

Feeding c1 back into the equation for f puts it in the right form. At this point it only
remains to find A and c0 (observe that g = 0 in Montgomery form [Gal12, Theorem
9.7.5]). To this end we utilize the formal group law, similar to [CH17; MS16].

Let t = x/y be a uniformizer at O and write s = 1/y. By observing that s = t3 +

at2s+ ts2 we can recursively substitute s into itself to get an expression s(t) ∈ Z[a]JtK
as a power series2

s(t) = t3 + at5 + (a2 + 1)t7 + O(t9)

This is well-defined, see for example [Sil09, §IV.1]. As a result we can write

1/s(t) = y(t) = t−3 − at−1 + O(t) ,

ty(t) = x(t) = t−2 − a + O(t2) .

Let X(t) = f (x(t)). Then

X(t) = πt−2 + π(σ− a) + O(t2) , dX/dt = −2πt−3 + O(t) ,

dx/dt = −2t−3 + O(t) , (dx/dt)−1 = −t3/2 + O(t7) .

Now define

Y(t) = c0y(t) · (d f /dx) = c0y(t) · (dX/dt) · (dx/dt)−1 ,

2 We denote by O(tn) a series whose coefficients of tm are zero for all m < n.

3. Montgomery Form and 2-isogenies 175

so that
Y(t) = c0πt−3 − c0aπt−1 + O(t) .

Writing
F(t) = Y(t)2 −

(
X(t)3 + AX(t)2 + X(t)

)
it follows that

F(t) = F−6 · t−6 + F−4 · t−4 + O(t−2) ,

with
F−6 = π2(c2

0 − π) , F−4 = π2
(

3π(a− σ)− 2ac2
0 − A

)
.

Now since by assumption ϕ is an isogeny with co-domain curve Ẽ, and since F is
precisely the equation defining Ẽ, we must have F = 0. Solving F−6 = 0 and F−4 =

0 simultaneously leads to the desired equations for c2
0 and A. Note that this way

we have only defined c0 up to sign. However, the sign choice merely induces a
composition with [−1] and therefore does not affect ϕ up to isomorphism.

Remark 6. It is perhaps not immediately obvious that Proposition 5 is a generaliza-
tion of the result by Costello and Hisil [CH17, Theorem 1]. Our result assumes the
domain curve E to be of the form y2 = x3 + ax2 + x, while their theorem also ac-
counts for curves E0 : by2 = x3 + ax2 + x. Moreover, the map itself looks slightly
different. However, it is straightforward to check that if one pre-composes with the
isomorphism

ψ0 : E0 → E , (x, y) 7→ (x, y
√

b)

and post-composes with the isomorphism

ψ1 : Ẽ→ E1 : By2 + x3 + Ax2 + x ,

(x, y) 7→
(

x,
y√
πb

)
then one recovers the theorem from Costello and Hisil in the case of odd-degree
cyclic kernels. Ignoring these twists in Proposition 5 simplifies the proof. For exam-
ple, see Proposition 9.

Remark 7. If k = Fq is a (large-characteristic) finite field, then possibly π is a non-
square in Fq. As a result ϕ is not defined over Fq. However, in that case the map

(x, y) 7→ (f (x), y f ′(x))

is defined over Fq with co-domain curve Ẽ(t) : πy2 = x3 + Ax2 + x. This is the

176 Chapter VIII. Computing Isogenies between Montgomery Curves

quadratic twist of Ẽ. Since Ẽ and its twist have the same Kummer line, we eliminate
this issue by projecting to P1 (i. e. by using x-only arithmetic).

Remark 8. If we set up an SIDH instance with `A = 2 and eA ≥ 2 then the x-
coordinates of points of order 2 are in fact squares. This follows from [Hus04, Ch. 1,
Thm 4.1] combined with the doubling formulas for Montgomery curves, as noted in
§VII.2.2. Since all x-coordinates of points with orders other than 2 appear twice in
the equation for π, it follows that π is actually a square. Therefore ϕ is defined over
Fp2 , and in particular we always have #E(Fp2) = #Ẽ(Fp2). This is (implicitly) used
in formulas for public-key compression (see Chapter VII and [Zan+18]).

3.2 2-isogenies

As an immediate consequence of Proposition 5 we obtain formulas for 2-isogenies
for 2-torsion points other than (0, 0).

Proposition 9. Let k be a field with char(k) 6= 2. Let a, b ∈ k such that b 6= 0 and a2 6= 4,
and E/k : by2 = x3 + ax2 + x is a Montgomery curve. Let P ∈ E(k) such that P 6= (0, 0)
and [2]P = O. Then

ϕ : E→ Ẽ/k : By2 = x3 + Ax2 + x

(x, y) 7→ (f (x), y f ′(x)) ,

with B = xPb and A = 2(1− 2x2
P) is a 2-isogeny with ker(ϕ) = 〈P〉, where

f (x) = x · xxP − 1
x− xP

.

Proof. This is exactly the statement in Proposition 5 composed with the isomor-
phisms ψ0 and ψ1 from Remark 6. The result follows by using the identity axP =

−(x2
P + 1) to derive A.

We also compute the kernel of the dual of ϕ, which will be helpful in §3.3 for
larger degree isogenies.

Corollary 10. Let the setup be as in Proposition 9. Then ker(ϕ̂) = 〈(0, 0)〉.

Proof. Let ψ be a separable isogeny with domain Ẽ and kernel 〈(0, 0)〉. Then certainly
E[2] ⊂ ker(ψ ◦ ϕ), and since deg(ψ ◦ ϕ) = 4 we in fact have E[2] = ker(ψ ◦ ϕ). Thus
ψ = ϕ̂ up to isomorphism by uniqueness of the dual isogeny, and hence ker(ϕ̂) =

ker(ψ).

3. Montgomery Form and 2-isogenies 177

The statement and proof of Proposition 9 does not explain why we are able
to compute 2-isogenies without explicit square roots, while earlier works [CH17;
DFJP14] could not. We provide a more direct computation in Remark 11 to show
why this is the case.

Remark 11. In [DFJP14, §4.3.2] the authors describe a 2-isogeny with kernel (0,0) as

φ : E→ F : by2 = x3 + (a + 6)x2 + 4(2 + a)x

(x, y) 7→
(
(x− 1)2

x
, y
(

1− 1
x2

))
.

The coefficient of x can be removed by computing 2
√

a + 2 and composing with the
isomorphism

(x, y) 7→
(

x
2
√

a + 2
,

y
2
√

a + 2

)
,

putting F in the desired form. This requires computing a square root, which could be
avoided by having knowledge of a point P8 =

(
2
√

a + 2, —
)

of order 8 above (0, 0).
Instead, we observe that we can compose with the isomorphism

ψ : F → G :
b√

a2 − 4
y2 = x3 − 2a√

a2 − 4
· x2 + x

(x, y) 7→
(

x + a + 2√
a2 − 4

,
y√

a2 − 4

)
,

which moves the kernel of φ̃ to (0, 0). This requires computing
√

a2 − 4 and therefore
also relies on a square root. However, if P2 = (x2, 0) is a point of order 2 on E
with x2 6= 0, then x2

2 + ax2 + 1 = 0. Therefore it is immediate that
√

a2 − 4 =

2x2 + a , allowing us to compute the isomorphism efficiently. We have such a point
by assumption in Proposition 9. We can now compute ϕ as ψ ◦ φ ◦ χ, where χ is an
isomorphism mapping P2 to (0, 0) (e. g. [DFJP14, Equation (15)]).

To provide explicit operation counts we move to projective space and project to
P1. Let P = (XP : 0 : ZP) be a point of order 2 on E : bY2Z = X3 + aX2Z + XZ2 such
that XP 6= 0. Then by Proposition 9

ϕ : E→ Ẽ : BY2Z = X3 + AX2Z + XZ2

(X : — : Z) 7→ (X(XXP − ZZP) : — : Z(XZP − ZXP))

is a 2-isogeny with kernel 〈P〉. We have A = 2 (Z2
P − 2X2

P)/Z2
P , and to avoid inver-

sions we represent it projectively as (A : 1) = (2 (Z2
P − 2X2

P) : Z2
P) . However, the

178 Chapter VIII. Computing Isogenies between Montgomery Curves

doubling formulas on Montgomery curves use (A + 2)/4 instead of A, and we see
that (A + 2 : 4) = (Z2

P − X2
P : Z2

P) . This can be computed in 2S + 1a. Moreover, we
observe that

X(XXP − ZZP) = X
[
(X− Z)(XP + ZP)− (X + Z)(ZP − XP)

]
,

Z(XZP − ZXP) = Z
[
(X− Z)(XP + ZP) + (X + Z)(ZP − XP)

]
.

This can be computed in 4M + 6a via the sequence of operations

T0 = XP + ZP , T1 = XP − ZP , T2 = X + Z , T3 = X− Z , T4 = T3 · T0 ,

T5 = T2 · T1 , T6 = T4 − T5 , T7 = T4 + T5 , T8 = X · T6 , T9 = Z · T7 .

If we assume XP + ZP and ZP−XP to be pre-computed, the cost reduces to 4M+ 4a.
This would for example apply if we require multiple evaluations of the isogeny (e. g.
in SIDH). Also note that Z2

P−X2
P = (XP +ZP)(ZP−XP) which allows us to compute

the curve coefficient in M + S. This may or may not be worth it, depending on the
underlying architecture.

3.3 Application to Isogeny-based Cryptography

In the general setting it is not true that the kernels appearing in the computations
cannot contain the point (0, 0), so it is not clear that the 2-isogenies can immediately
be used. In a similar fashion, it is not true in general that kernels of 4-isogenies can-
not contain (1,±

√
(a + 2)/b) or (−1,±

√
(a− 2)/b). In [CLN16a, §3] and [CH17]

this assumption is used without justification (implicitly by replacing ψ4 with ψ̂4).
This is dealt with by using a separate function first_4_isog for the first 4-isogeny,
which is the only kernel that can contain such a point (a proof of which does not
appear). However, Lemma 12 and Corollary 13 show that we can avoid these points
with only a minor restriction on the keyspace. Applying this restriction to [CLN16a]
makes the function first_4_isog redundant, simplifying the implementation.

Lemma 12. Let e, f ∈ Z≥0 and let p = 2e3 f − 1 be prime. Let E/Fp2 be a supersingular
elliptic curve in Montgomery form such that #E(Fp2) = (p + 1)2. Let P, Q ∈ E(Fp2) such
that E[2e] = 〈P, Q〉 and [2e−1]Q = (0, 0). Let α ∈ Z/2eZ. Then (0, 0) /∈ 〈P + [α]Q〉.

Proof. It is clear that 〈P + [α]Q〉 can only contain a single point of order 2, namely
[2e−1](P + [α]Q). But by assumption on Q we know that [2e−1](P + [α]Q) 6= (0, 0),
hence the result follows.

3. Montgomery Form and 2-isogenies 179

By Lemma 12 we know that we can compute the 2e-isogenies as defined in Propo-
sition 5. However, as the degrees grow this will quickly be impractical. Instead, we
do the computations as a sequence of 2-isogenies (i. e. as in Proposition 9) [DFJP14,
§4]. Therefore we must show that none of these intermediate isogenies has a kernel
generated by (0, 0).

Corollary 13. Let the setup be as in Lemma 12 and write R = P + [α]Q. Let ϕ be an
isogeny such that ker(ϕ) = 〈R〉 and suppose that we compute

ϕ = ϕe−1 ◦ · · · ◦ ϕ0 ,

ker(ϕ0) = 〈[2e−1]R〉 ,

ker(ϕi) = 〈
[
2e−i−1

]
ϕi−1 · · · ϕ0 (R)〉 , (for 1 ≤ i ≤ e− 1)

as a sequence of 2-isogenies, each one computed as in Proposition 9. Then (0, 0) /∈ ker(ϕi)

for all 0 ≤ i ≤ e− 1.

Proof. We apply induction on i. The statement for i = 0 follows from Lemma 12. Let
i > 0. Then ker(ϕ̂i−1) = 〈(0, 0)〉 by the inductive hypothesis and by Corollary 10.
But since the walk determined by ϕ is non-backtracking, it follows that ker(ϕi) 6=
〈(0, 0)〉. As # ker(ϕi) = 2, we conclude that (0, 0) /∈ ker(ϕi).

The keyspace is determined by tuples (γ, δ) which define kernels of the form
〈[γ]P + [δ]Q〉, where not simultaneously γ ≡ 0 (mod 2) and δ ≡ 0 (mod 2). We
can divide the space into the three disjoint sets (of equal size)

K(i,j) = {(γ, δ) : γ ≡ i (mod 2) , δ ≡ j (mod 2)} ,

for (i, j) ∈ {(0, 1), (1, 0), (1, 1)}. The restriction on the keyspace then corresponds
exactly to disallowing K(0,1), removing 1/3 of the keyspace. It is easy to see that
these keys define the isogeny walks for which the first 2-isogeny has kernel 〈(0, 0)〉.
Note that this depends on the choice of 2e-torsion basis {P, Q}, where we choose Q
to lie above (0, 0). A similar argument applies to the use of 4-isogenies in [CLN16a].

Remark 14. The initial proposal to use curves in Montgomery form [CLN16a, §4]
suggested taking P as an Fp-rational point on the curve E0/Fp : y2 = x3 + x with
j(E0) = 1728 and Q as the image of P under the distortion map (x, y) 7→ (−x, iy).
This allows a compressed representation of {P, Q}. Although this does not work
for the basis as chosen in Lemma 12, it only results in a small increase in the size of
public parameters (which never need to be transferred).

180 Chapter VIII. Computing Isogenies between Montgomery Curves

Table 1. Comparison of the costs of evaluating 2-isogenies and 4-isogenies.

Operation 2-isogeny 2×2-isogeny 4-isogeny [CH17]

Compute (A + 2 : 4) 2S + 1a 4S + 2a 4S + 5a3

First evaluation 4M + 6a 8M + 12a 6M + 2S + 6a

Subsequent evaluations 4M + 4a 8M + 8a 6M + 2S + 6a

3.4 Relating 2-isogenies and 4-isogenies

It is easy to see that the 4-isogenies from [CH17, Appendix A], which are currently
the fastest formulas, can be derived by applying the 2-isogenies from §3.2 twice.
That is, since they have equal kernel they are equal up to composition with an iso-
morphism. Both isogenies have a Montgomery curve as co-domain, of which there
are at most six per isomorphism class (by looking at the formula for the j-invariant).
Also, the dual is generated by a point P ∈ {(1,±

√
(a + 2)/b), (−1,±

√
(a− 2)/b)}

in both cases. Therefore we can transform one into the other by possibly composing
with the simple isomorphisms (x, y) 7→ (x,−y) and (x, y) 7→ (−x, iy), where i ∈ k̄
such that i2 = −1. As a result, applying the 2-isogenies twice will not have more
efficient formulas than the 4-isogenies. Indeed, if this were the case we could use the
above transformation to obtain equally fast 4-isogenies. We summarize the costs in
Table 1.

Beside their theoretic value, there are some small upsides to using 2-isogenies in
an implementation. Firstly, the computation leaks only a single bit as opposed to
two [DFJP14, §4.3.2]. Instead of leaking the dual of the final 4-isogeny, it would only
leak the dual of the last 2-isogeny. Also, in some cases one may be able to select
smaller parameters for a certain given security level. Primes of the form 2e3 f − 1
where e ≈ log2 (3

f) are somewhat sparse, and depending on one’s requirements
restricting e to be even could result in a (much) larger prime than hoped for. Alter-
natively, one could of course achieve this by doing a single 2-isogeny followed by
a chain of 4-isogenies. However, this does come at the cost of having to implement
more algorithms, increasing the size and complexity of an (already complex) imple-
mentation. Finally, having worked out formulas for isogenies of even degree and by
showing how to avoid (0, 0), we are able to straightforwardly write down formulas
for 2e-isogenies with e ≥ 3. It remains to be seen if these can be made more efficient

3 Many of these additions are not needed to compute (A + 2 : 4), but are used as pre-computation
for the isogeny evaluation. We provide the counts as is to align with [CH17] since it does not affect our
comparison of the costs of large degree isogeny evaluations.

4. Triangular Form and 3-isogenies 181

than repeated applications of 4-isogenies.

4 Triangular Form and 3-isogenies

Given the generality of Theorem 1, an obvious question is whether there are other
classes of curves which could possibly give rise to simple formulas for isogenies. In
this section we analyze curves in triangular form E/k : y2 + axy + y = x3 containing
a point (0, 0) of order 3. Most of the ideas from earlier sections apply and in par-
ticular we get analogous statements for computing 3-isogenies (see §4.2). Although
these allow to compute the co-domain curve very efficiently, the evaluation of the
isogeny is not as efficient as its Montgomery counterpart. Moreover, since tripling
formulas are currently slower, at this point Montgomery form still performs better
with respect to 3-isogenies.

4.1 The General Formula

We start by presenting formulas for triangular curves that work for any separable
isogeny whose kernel is an odd order subgroup. It is possible to include groups of
even order, but this creates a case distinction which makes the proof more tedious.
Since having (enough) rational points of even order would enable us to go to Mont-
gomery form and reduce to §3, we discard that case here.

There are a couple of (minor) complications compared to the proof of Proposi-
tion 5. Firstly, we cannot assume that g = 0. If we work on P1 this will not affect the
efficiency, but we will have to take it into account in the proof. Secondly, the action of
(0, 0) does not involve only x-coordinates. To eliminate the y-coordinates that arise,
we group the kernel points into sets {T,−T} (similar to [CH17, Theorem 1]).

Proposition 15. Let k be a field with char(k) 6= 2. Let a ∈ k such that a3 6= 27 and
E/k : y2 + axy+ y = x3 in triangular form. Let G ⊂ E(k̄) be a finite subgroup of odd order
defined over k such that (0, 0) /∈ G and let ϕ be a separable isogeny such that ker(ϕ) = G.
Let

X =

{
xP

∣∣∣∣ P ∈ G \ {O}
}

.

Then there exists a curve Ẽ/k : y2 + Axy + y = x3 such that, up to post-composition by an
isomorphism,

ϕ : E→ Ẽ

(x, y) 7→ (f (x), c0y f ′(x) + g(x))

182 Chapter VIII. Computing Isogenies between Montgomery Curves

where

f (x) = x ∏
z∈X

x2z2 − x(az + 1)− z
(x− z)2 .

Moreover, writing

π = ∏
z∈X

z , σ = ∑
z∈X

(
1
z2 +

a
z
− 2z

)
,

we have that A2 = π2(a2 + 12σ) and c0 = (−1)|X|π.

Proof. Let P = (0, 0). As ϕ(P) 6= O, while [3]ϕ(P) = ϕ([3]P) = O, it follows that
ϕ(P) must have exact order 3 on E/G. Therefore by moving ϕ(P) to the origin we
can put E/G in triangular form and therefore assume that Ẽ = E/G : y2 + Axy+ y =

x3 . Now apply Theorem 1 with Q = P. We find that

f (x) = c1(x− x(0,0)) ∏
T∈G\{O}

(x− x(0,0)+T)

(x− xT)
+ f (x(0,0))

= c1 ∏
T∈G\{O}

(
x + yT

x2
T

)
(x− xT)

= c1 ∏
xT∈X

(
x + yT

x2
T

)(
x + y−T

x2
T

)
(x− xT)

2

= c1 ∏
xT∈X

x2 − x(axT+1)
x2

T
− 1

xT

(x− xT)
2 .

Observe that we use the fact that there are no points of order 2, and that

yTy−T = −x3
T , yT + y−T = −axT − 1 .

By [Gal12, Theorem 9.7.5] we can write

g(x) =
1
2
(
−A f (x)− 1 + c0ax f ′(x) + c0 f ′(x)

)
,

so that g(0) = (−1 + c0 f ′(0)) /2. Now we use the fact that ϕ([2]P) = [2]ϕ(P), i. e.
ϕ : (0,−1) 7→ (0,−1). Therefore

−1 = −c0 f ′(0) + g(0) ⇐⇒ − 1 =
(
−1− c0 f ′(0)

)
/2

⇐⇒ c0 = 1/ f ′(0)

⇐⇒ c0 = (−1)|X|π3/c1 . (2)

4. Triangular Form and 3-isogenies 183

It remains to find A and c1 and for this we use the same strategy as earlier. Let
t = x/y be the uniformizer at O and write s = 1/y. Then as a power series

s(t) = t3 − at4 + a2t5 + O(t6) .

As y = 1/s and x = ty we find that

x(t) = t−2 + at−1 + O(t) , y(t) = t−3 + at−2 + O(1) .

Letting X(t) = f (x(t)) we get

X(t) = c1t−2 + ac1t−1 − c1σ + O(t) ,

dX/dt = −2c1t−3 − ac1t−2 + O(1) ,

dx/dt = −2t−3 − at−2 + O(t) ,

(dx/dt)−1 = −t3/2 + at4/4− a2t5/8 + O(t6) .

It follows that

g(x(t)) =
1
2

(
−AX(t)− 1 + c0 · (dX/dt) · (dx/dt)−1 · (ax(t) + 1)

)
=

1
2
(ac0c1 − Ac1) t−2 +

1
2

a (ac0c1 − Ac1) t−1 + O(1) .

Now define Y(t) = c0y(t) (dX/dt) · (dx/dt)−1 + g(x(t)) and

F(t) = Y(t)2 + AX(t)Y(t) + Y(t)− X(t)3 .

We get that F(t) = F−6 · t−6 + F−5 · t−5 + F−4 · t−4 + O(t−2), where

F−6 = c2
1
(
c2

0 − c1
)

, F−5 = 3ac2
1
(
c2

0 − c1
)

,

F−4 = c2
1
(
13a2c2

0/4− A2/4 + 3c1σ− 3a2c1
)

.

Again, as F is precisely the equation defining Ẽ, we have F−6 = F−5 = F−4 = 0. The
first two identities lead to c1 = c2

0, which together with (2) gives c3
1 = π6. Therefore

c1 = ζ3π2 where ζ3 ∈ k̄ is such that ζ3
3 = 1. Inserting this into F−4 and equating to

zero we find that
A2 = π2

(
a2 + 12σ

)
/ζ2

3 .

Therefore, by composing with the isomorphism (x, y) 7→ (ζ2
3x, y) we can assume

that ζ3 = 1. From (2) we get that c0 = (−1)|X|π. The result is now clear.

184 Chapter VIII. Computing Isogenies between Montgomery Curves

4.2 3-isogenies

We work out explicit formulas for 3-isogenies.

Proposition 16. Let k be a field with char(k) 6= 2. Let a ∈ k such that a3 6= 27 and
E/k : y2 + axy + y = x3 in triangular form. Let P ∈ E(k̄) a point such that [3]P = O and
xP 6= 0. Then

ϕ : E→ Ẽ/k : y2 + Axy + y = x3

(x, y) 7→
(

f (x),−xPy f ′(x) + g(x)
)

with A = −3 (2 + axP) is a 3-isogeny such that ker(ϕ) = 〈P〉, where

f (x) = x ·
x2x2

P − x(axP + 1)− xP

(x− xP)
2 .

Proof. This is Proposition 15 with X = {xP}. Using the division polynomial

ψ3(x) = x
(

3x3 + a2x2 + 3ax + 3
)

it follows that 9 (2 + axP)
2 = π2 (a2 + 12σ

)
. Hence A = ±3 (2 + axP) and the only

remaining uncertainty is the choice of sign. However, setting A = −3 (2 + axP), a
direct computation shows that

f ′(x) = x2
P ·
(
(x− xP)

3 − (6x2
P + a2xP + a)x + x3

P + 1
)

(x− xP)
3 ,

while

g(x) = x3 ·
(
(3 + axP)x2

Px + x3
P + 1

)
(x− xP)

3 .

For X = f (x) and Y = −xPy f ′(x) + g(x), a straightforward calculation shows that
Y2 + AXY + Y = X3. It is then clear that ϕ is an isogeny and that ker(ϕ) = 〈P〉.

Again, as a consequence of fixing (0, 0) the dual will be generated by it.

Corollary 17. Let the setup be as in Proposition 16. Then ker(ϕ̂) = 〈(0, 0)〉.

Proof. Since (0, 0) ∈ E has order 3 and is not in ker(ϕ), it follows from ϕ̂ ◦ ϕ = [3]
that ϕ ((0, 0)) 6= O, while (ϕ̂ ◦ ϕ) ((0, 0)) = O. Hence ϕ ((0, 0)) ∈ ker(ϕ̂), and since
deg(ϕ̂) = 3 we have that ker(ϕ̂) = 〈ϕ ((0, 0))〉. The result is now immediate by
observing that ϕ ((0, 0)) = (0, 0).

4. Triangular Form and 3-isogenies 185

4.3 Application to Isogeny-based Cryptography

By doing an analogous analysis as in §3.3 it is straightforward to see that it is the-
oretically possible to use the triangular form as above in isogeny-based systems.
More specifically, by choosing a basis E(Fp2)[3e] = 〈P, Q〉 such that [3e−1]Q = (0, 0)
and by only allowing secret kernels of the form 〈P + [α]Q〉, we can always apply
the isogeny from Proposition 16. However, to be seriously considered for imple-
mentations the efficiency must be at least on par with those coming from the Mont-
gomery form. Although the computation of A can be done with only two multi-
plications, we have not been able to reduce the cost of the 3-isogeny evaluation far
enough to be considered as efficient as its Montgomery counterpart. Moreover, the
x-only tripling formulas (which can for example be obtained by using the 3-isogenies
from [Ber+15b, Theorem 5.4]) are significantly slower.

186 Chapter VIII. Computing Isogenies between Montgomery Curves

Chapter IX
CSIDH: An Efficient
Post-Quantum Commutative
Group Action

We propose an efficient commutative group action suitable for non-interactive key
exchange in a post-quantum setting. Our construction follows the layout of the
Couveignes–Rostovtsev–Stolbunov [Cou06; RS06] cryptosystem, but we apply it to
supersingular elliptic curves defined over a large prime field Fp rather than to or-
dinary elliptic curves. The Diffie–Hellman scheme resulting from the group action
allows for public-key validation at very little cost, runs reasonably fast in practice,
and has public keys of only 64 bytes at a conjectured AES-128 security level conform
post-quantum security category I of NIST [Nat16].

1 Introduction

During the past five to ten years, elliptic-curve cryptography (ECC) has taken over
public-key cryptography on the internet and in security applications. Many proto-
cols such as Signal [Sig] or TLS 1.3 [Res18] rely on the small key sizes and efficient
computations to achieve forward secrecy, often meaning that keys are used only
once. However, it is also important to notice that security does not break down
if keys are reused. Indeed, some implementations of TLS such as Microsoft’s Se-
cure Channel (SChannel) reuse keys for some fixed amount of time rather than for

188 Chapter IX. CSIDH

one connection [Ber+15a]. The QUIC protocol (see https://chromium.org/quic)
by Google relies on servers maintaining their keys fixed for a while to achieve quick
session resumption. Several more examples are given by Freire, Hofheinz, Kiltz,
and Paterson [Fre+13], formalizing non-interactive key exchange. Some applications
specifically require this functionality and for many it provides significant savings in
terms of roundtrips or implementation complexity. Finding a post-quantum system
that permits non-interactive key exchange while still offering decent performance is
considered an open problem. This chapter presents a solution to this problem.

Recall from §II.2.2 that Couveignes’ central observation was that the commuta-
tivity of cl(O) naturally allows for a key-exchange protocol in the style of Diffie and
Hellman [DH76]. In 2010, Childs, Jao and Soukharev [CJS14] showed that break-
ing the Couveignes–Rostovtsev–Stolbunov scheme amounts to solving an instance
of the abelian hidden-shift problem, for which quantum algorithms with a time com-
plexity of Lq[1/2] are known to exist; see [Kup05; Reg04]. While this may be tolerable
(e. g. classical subexponential factorization methods have not ended the widespread
use of RSA), a much bigger concern is that the scheme is unacceptably slow: despite
recent clever speedups due to De Feo, Kieffer, and Smith [DFKS18; Kie17], several
minutes are needed for a single key exchange at a presumed classical security level
of 128 bits. Nevertheless, in view of its conceptual simplicity, compactness, and flex-
ibility, it seems a shame to discard the Couveignes–Rostovtsev–Stolbunov scheme.

The attack due to Childs–Jao–Soukharev strongly relies on the fact that cl(O)
is commutative, hence indirectly on the fact that O is commutative. This led Jao
and De Feo [JDF11] to consider (see §II.2.1) the use of supersingular elliptic curves,
whose full ring of endomorphisms is an order in a quaternion algebra; in particu-
lar, it is non-commutative. Their resulting (interactive) key-agreement scheme “Su-
persingular Isogeny Diffie–Hellman” (SIDH) has attracted almost the entire focus
of isogeny-based cryptography over the past six years. The current state-of-the-art
implementation is SIKE [Jao+16], which was recently submitted to the NIST com-
petition on post-quantum cryptography [Nat16]. It should be stressed that SIDH
is not the Couveignes–Rostovtsev–Stolbunov scheme in which one substitutes su-
persingular elliptic curves for ordinary elliptic curves; in fact, SIDH is much more
reminiscent of a cryptographic hash function from 2006 due to Charles, Goren, and
Lauter [CLG09]. The public keys of SIDH consist of the codomain of a secret isogeny
and the image points of certain public points under that isogeny. Galbraith, Petit,
Shani, and Ti [Gal+16] showed that SIDH keys succumb to active attacks and thus
should not be reused, unless combined with a CCA transform such as the Fujisaki–
Okamoto transform [FO99].

https://chromium.org/quic

1. Introduction 189

In this chapter we show that adapting the scheme by Couveignes–Rostovtsev–
Stolbunov to supersingular elliptic curves is possible, provided that one restricts to
supersingular elliptic curves defined over a prime field Fp. Instead of the full ring of
endomorphisms, which is non-commutative, one should consider the subring of Fp-
rational endomorphisms. This is again an order O in an imaginary quadratic field.
As before, cl(O) acts via isogenies on the set of Fp-isomorphism classes of elliptic
curves whose Fp-rational endomorphism ring is isomorphic to O and whose trace
of Frobenius has a prescribed value; in fact if p ≥ 5 then there is only one option for
this value, namely 0, in contrast with the ordinary case. See for example [Wat69, The-
orem 4.5], with further details to be found in [Brö08; DG16] and in §3. Starting from
these observations, the desired adaptation of the Couveignes–Rostovtsev–Stolbunov
scheme almost unrolls itself; the details can be found in §4. We call the resulting
scheme CSIDH, where the C stands for “commutative”.1

While this fails to address the initial motivation of Jao and De Feo for using su-
persingular elliptic curves, which was to avoid the Lq[1/2] quantum attack due to
Childs–Jao–Soukharev, we show that CSIDH eliminates the main problem of the
scheme of Couveignes–Rostovtsev–Stolbunov, namely its inefficiency. Indeed, in
§8 we will report on a proof-of-concept implementation which carries out a non-
interactive key exchange at a presumed classical security level of 128 bits and a con-
jectured post-quantum security level of 64 bits in about 80 milliseconds, while using
key sizes of only 64 bytes. This is over 2000 times faster2 than the current state-of-the-
art instantiation of the Couveignes–Rostovtsev–Stolbunov scheme by De Feo, Kieffer
and Smith [DFKS18; Kie17], which itself presents many new ideas and speedups to
even achieve that speed.

For comparison we remark that SIKE, which is the NIST submission with the
smallest combined key and ciphertext length, uses public keys and ciphertexts of
over 300 bytes each. More precisely, SIKE version p503 uses uncompressed keys
of 378 bytes long [Jao+16] for achieving CCA security. The optimized SIKE imple-
mentation is about ten times faster than our proof-of-concept C implementation, but
even at 80 ms, CSIDH is practical. Another major advantage of CSIDH is that we can
efficiently validate public keys, making it possible to reuse a key without the need
for transformations to confirm that the other party’s key was honestly generated. Fi-
nally we note that just like the original Couveignes–Rostovtsev–Stolbunov scheme,
CSIDH relies purely on the isogeny-finding problem; no extra points are sent that

1 Since this work was started while being very close to a well-known large body of salt water, we
pronounce CSIDH as ["si:saId] rather than spelling out all the letters.

2 This speedup is explained in part by comparing our own C implementation to the sage implemen-
tation of De Feo–Kieffer–Smith.

190 Chapter IX. CSIDH

could potentially harm security, as argued in [Pet17].

To summarize, CSIDH is a new cryptographic primitive that can serve as a drop-
in replacement for the (EC)DH key-exchange protocol while maintaining security
against quantum computers. It provides a non-interactive (static–static) key exchange
with full public-key validation. The speed is practical while the public-key size is the
smallest for key exchange or KEM in the portfolio of post-quantum cryptography.
This makes CSIDH particularly attractive in the common scenario of prioritizing
bandwidth over computational effort. In addition, CSIDH is compatible with 0-RTT
protocols such as QUIC.

Why supersingular? To understand where the main speedup comes from, it suffices
to record that De Feo–Kieffer–Smith had the idea of choosing a field of characteristic
p, where p is congruent to −1 modulo all small odd primes ` up to a given bound.
They then look for an ordinary elliptic curve E/Fp such that #E(Fp) is congruent to
0 modulo as many of these `’s as possible, i. e. such that points of order ` exist over
Fp. These properties ensure that `O decomposes as a product of two prime ideals
l = (`, π − 1) and l = (`, π + 1), where π denotes the Frobenius endomorphism.
For such primes the action of the corresponding ideal classes [l] and [l] = [l]−1 can
be computed efficiently over Fp through an application of Vélu-type formulae to E
(resp. its quadratic twist Et), the reason being that only Fp-rational points are in-
volved. If this works for enough primes `, we can expect that a generic element of
cl(O) can be written as a product of small integral powers of such [l], so that the
class-group action can be computed efficiently. However, finding an ordinary ellip-
tic curve E/Fp such that #E(Fp) is congruent to 0 modulo many small primes ` is
hard, and the main focus of De Feo–Kieffer–Smith is on speeding up this search. In
the end it is only practical to enforce this for 7 primes, thus they cannot take full
advantage of the idea.

However, in the supersingular case the property #E(Fp) = p + 1 implies that
#E(Fp) is congruent to 0 modulo all primes ` | p + 1 that we started from in build-
ing p. Concretely, our proof-of-concept implementation uses 74 small odd primes,
corresponding to prime ideals l1, l2, . . . , l74. We heuristically expect that almost all
elements of our 256-bit size class group can be written as [l1]e1 [l2]

e2 · · · [l74]
e74 , where

the exponents ei are taken from the range {−5, . . . , 5}; indeed, one verifies that
log (2 · 5 + 1)74 ≈ 255.9979. The action of such an element can be computed as the
composition of at most 5 · 74 = 370 easy isogeny evaluations. This should be com-
pared to using 7 small primes, where the same approach would require exponents
in a range of length about 2256/7 ≈ 236, in view of which De Feo–Kieffer–Smith also

1. Introduction 191

resort to other primes with less beneficial properties, requiring to work in extensions
of Fp.

The use of supersingular elliptic curves over Fp has various other advantages.
For instance, their trace of Frobenius t is 0, so that the absolute value of the dis-
criminant |t2 − 4p| = 4p is as large as possible. As a consequence, generically the
size of the class group cl(O) is close to its maximal possible value for a fixed choice
of p. Conversely, this implies that for a fixed security level we can make a close-to-
minimal choice for p, which directly affects the key size. Note that this contrasts with
the CM construction from [BS07], which could in principle be used to construct or-
dinary elliptic curves having many points of small order, but whose endomorphism
rings have very small class groups, ruling them out for the Couveignes–Rostovtsev–
Stolbunov key exchange.

To explain why key validation works, note that we work over Fp with p ≡ 3
(mod 8) and start from the curve E0 : y2 = x3 + x with Fp-rational endomorphism
ring O = Z[π]. As it turns out, all Montgomery curves EA : y2 = x3 + Ax2 + x
over Fp that are supersingular appear in the cl(O)-orbit of E0. Moreover their Fp-
isomorphism class is uniquely determined by A. So all one needs to do upon receiv-
ing a candidate public key y2 = x3 + Ax2 + x is check for supersingularity, which is
an easy task; see §5. The combination of large size of cl(O) and representation by a
single Fp-element A explains the small key size of 64 bytes (for NIST category I).

One-way group actions. Although non-interactive key exchange is the main appli-
cation of our primitive, it is actually more general. It is (conjecturally) an instance
of Couveignes’ hard homogeneous spaces [Cou06], ultimately nothing but a finite com-
mutative group action for which some operations are easy to compute while others
are hard. Such group actions were first formalized and studied by Brassard and
Yung [BY91]. We summarize Couveignes’ definition.

Definition 1. A hard homogeneous space consists of a finite commutative group G acting
freely and transitively on some set X. The following tasks are required to be easy
(e. g. polynomial-time):

– Compute group operations in G.

– Sample randomly from G with (close to) uniform distribution.

– Decide validity and equality of a representation of elements of X.

– Compute the action of a group element g ∈ G on some x ∈ X.

The following problems are required to be hard (e. g. not polynomial-time):

192 Chapter IX. CSIDH

– (Vectorization.) Given x, y ∈ X, find g ∈ G such that g ∗ x = y.

– (Parallelization.) Given x, y, z ∈ X such that y = g ∗ x, find w such that w = g ∗ z.

Any such primitive immediately implies a natural Diffie–Hellman protocol; Alice
and Bob’s private keys are random elements a, b of G, their public keys are a ∗ x0

resp. b ∗ x0, where x0 ∈ X is a public fixed element, and the shared secret is b ∗ (a ∗
x0) = a ∗ (b ∗ x0). The private keys are protected by the difficulty of the first hard
problem above, while the shared secret is protected by the second problem. Note
that traditional Diffie–Hellman on a cyclic group C is an instance of this, where X
is the set of generators of C and G is the multiplicative group (Z/#CZ)∗ acting by
exponentiation.

Notation and terminology. We stress that throughout this chapter, we consider two
elliptic curves defined over the same field identical whenever they are isomorphic
over that field. Note that we do not identify curves that are only isomorphic over
some extension field, as opposed to what is done in SIDH, for instance. In the same
vein, for an elliptic curve E defined over a finite field Fp we let Endp(E) be the
subring of the endomorphism ring End(E) consisting of endomorphisms defined
over Fp.3 This subring is always isomorphic to an order in an imaginary quadratic
number field. Conversely, for a given order O in an imaginary quadratic field and
an element π ∈ O, we let È `p(O, π) denote the set of elliptic curves E defined over
Fp with Endp(E) ∼= O such that π corresponds to the Fp-Frobenius endomorphism
of E. In particular, this implies that ϕ ◦ β = β ◦ ϕ for all Fp-isogenies ϕ between
two curves in È `p(O, π) and all β ∈ O interpreted as endomorphisms. Finally, we
always assume ideals to be non-zero.

Organization. In §2 and §3 we recall the main properties of isogeny graphs of el-
liptic curves with endomorphism ring of Z-rank 2. We treat the construction of our
class group action in §4, while §5 discuss public-key validation. We summarize the
key exchange in §6 and elaborate on its security in §7. Finally, we present an imple-
mentation in §8.

2 Isogeny Graphs

Good mixing properties of the underlying isogeny graph are relevant for the secu-
rity of isogeny-based cryptosystems. Just as in the original Couveignes–Rostovtsev–

3 This constraint only makes a difference for supersingular curves: in the ordinary case, all endomor-
phisms are defined over the base field.

2. Isogeny Graphs 193

Figure 1. Union of the supersingular `-isogeny graphs for ` ∈ {3, 5, 7} over F419. CSIDH
makes use of the larger component, corresponding to curves whose ring of F419-rational en-
domorphisms is isomorphic to Z[

√
−419].

Stolbunov cryptosystem, in our case this graph is obtained by taking the union of
several large subgraphs (each being a union of large isomorphic cycle graphs) on the
same vertex set, one for each prime ` under consideration; see Figure 1 for a (small)
example. Such a graph is the Schreier graph associated with our class-group action
and the chosen generators. We refer to the lecture notes of De Feo [DF17, §14.1] for
more background and to [JMV09] for a discussion of its rapid mixing properties.
One point of view on this is that one can quickly move between distant nodes in the
subgraph corresponding to one generator by switching to the subgraph correspond-
ing to another generator. This thereby replaces the square-and-multiply algorithm
in exponentiation-based cryptosystems (such as classical Diffie–Hellman). The goal
of this section is to analyze the structure of the individual cycles.

Definition 2. For a field k and a prime ` - char k, the k-rational `-isogeny graph Gk,` is
defined as having all the elliptic curves defined over k as its vertices, and having a
directed edge (E1, E2) for each k-rational `-isogeny from E1 to E2.4

Remark 3. A priori Gk,` is a directed graph, but given two elliptic curves E1 and E2

whose j-invariants are not in {0, 1728}, there are exactly as many edges (E2, E1) as
(E1, E2) by taking dual isogenies. Annoyingly, the nodes with j-invariants 0 and 1728
are more complicated, since these are exactly the curves with extra automorphisms;
an elliptic curve E in Gk,` has fewer incoming than outgoing edges if and only if
either j(E) = 0 and

√
−3 ∈ k, or if j(E) = 1728 and

√
−1 ∈ k. Throughout this

4 Due to our convention of identifying k-isomorphic curves, we also identify isogenies if they are k-
isomorphic, i. e. equal up to post-composition with a k-isomorphism.

194 Chapter IX. CSIDH

chapter, we will assume for simplicity that
√
−3,
√
−1 /∈ k, so that neither of these

automorphisms are defined over k and we may view Gk,` as an undirected graph. In
the case of a finite prime field k = Fp it suffices to restrict to p ≡ 11 (mod 12), which
will be satisfied in the class of instantiations we suggest.

If k = Fq is a finite field, then Gk,` is a finite graph that is the disjoint union
of ordinary connected components and supersingular connected components. The
ordinary components were studied in Kohel’s PhD thesis [Koh96]. Due to their reg-
ular structure, these components later became known as isogeny volcanoes. In general
(e. g. over non-prime fields), the supersingular components may bear no similarity at
all to the volcanoes of the ordinary case. Traditionally, following Pizer [Piz90], one
instead studies the unique supersingular component of Gk,` where k = Fq, which
turns out to be a finite (`+1)-regular Ramanujan graph and forms the basis for the
SIDH protocol. However, Delfs and Galbraith [DG16] showed that if k = Fp is a
finite prime field, then all connected components are volcanoes, even in the super-
singular case (where the depth is at most 1 at ` = 2 and 0 otherwise). We present
a special case of a unified statement, restricting our attention to the cases in which
GFp ,` is a cycle. Recall that Endp(E) is an order O in the imaginary quadratic field
Endp(E)⊗Z Q ∼= Q(

√
t2 − 4p) = K, where |t| ≤ 2

√
p denotes the (absolute value of

the) trace of the Frobenius endomorphism, and that two curves are isogenous over
Fp if and only if their traces of Frobenius are equal [Tat66, Theorem 1].

Theorem 4 (Kohel, Delfs–Galbraith). Let p ≥ 5 be a prime number and let V be a con-
nected component of GFp ,`. Assume that p ≡ 11 (mod 12) or that V contains no curve
with j-invariant 0 or 1728. Let t be the trace of Frobenius common to all vertices in V, and
let K be as above. Assume that ` - t2 − 4p.

Then all elliptic curves in V have the same Fp-rational endomorphism ring O ⊆ K, and
O is locally maximal at `. Moreover if t2 − 4p is a (non-zero) square modulo `, then V is a
cycle whose length equals the order of [l] in cl(O), where l is a prime ideal dividing `O. If
not, then V consists of a single vertex and no edges.

Proof. In the case of an ordinary component this is just a special case of [Sut12b,
Theorem 7]. In the case of a supersingular component this follows from the proof
of [DG16, Theorem 2.7]. (In both cases, we could alternatively (re)prove this theorem
by proving that an `-isogeny can only change the conductor of the endomorphism
ring of an elliptic curve locally at ` and applying Theorem 7.)

In the ordinary case a curve and its quadratic twist can never appear in the same
component because they have a different trace of Frobenius. This is the main dif-
ference with the supersingular case, where this possibility is not excluded. To avoid

3. The Class-group Action 195

y2 = x3 − x

y2 = x3 − 13x2 − xy2 = x3 + 13x2 − x

y2 = x3 + x

y2 = x3 − 11x2 + x

y2 = x3 − 12x2 + x

y2 = x3 − 6x2 + x

y2 = x3 + 13x2 + xy2 = x3 − 13x2 + x

y2 = x3 + 6x2 + x

y2 = x3 + 12x2 + x

y2 = x3 + 11x2 + x

Figure 2. The two supersingular components of GF83,3. The curves in the top component
have Fp-rational endomorphism ring Z[(1 +

√
−83)/2], while those in the lower component

correspond to Z[
√
−83]. Running clockwise through these components corresponds to the

repeated action of [(3, π − 1)].

confusion, we clarify that by the quadratic twist of a given elliptic curve E : y2 = f (x)
over Fp we mean the curve Et : dy2 = f (x), where d ∈ F∗p is any non-square. If p ≡ 3
(mod 4) and j(E) = 1728 then this may deviate from what some readers are used to,
because in this case Et and E are Fp-isomorphic. Note that such a curve is necessarily
supersingular.

Remark 5. In fact, if p ≡ 3 (mod 4) then there are two non-isomorphic curves over
Fp with j-invariant 1728, namely y2 = x3 − x and y2 = x3 + x, whose endomor-
phism rings are the full ring of integers Z[(1 +

√−p)/2] and the order Z[
√−p] of

conductor 2 respectively. The connected component of each curve is “symmetric”;
if E is n steps along GFp ,` in one direction from a curve of j-invariant 1728 then the
curve that is n steps in the other direction is the quadratic twist of E. In the case of
GF83,3 we can see this in Figure 2, which is taken from [DG16, Figure 8]. It is also
interesting to observe that the symmetry around j = 1728 confirms the known fact
that the class numbers of Z[(1 +

√−p)/2] and Z[
√−p] are odd, at least in the case

that p ≡ 3 (mod 4); see [Mor61].

3 The Class-group Action

It is well-known that the ideal-class group of an imaginary quadratic order O acts
freely via isogenies on the set of elliptic curves with Fp-rational endomorphism ring

196 Chapter IX. CSIDH

O. Using this group action on a set of ordinary elliptic curves for cryptographic pur-
poses was first put forward by Couveignes [Cou06] and independently rediscovered
later by Rostovtsev and Stolbunov [Sto04; RS06]. Our suggestion is to use the equiv-
alent of their construction in the supersingular setting, thus the following discussion
covers both cases at once. For concreteness, we focus on prime fields with p ≥ 5 and
point out that the ordinary (but not the supersingular) case generalizes to all finite
fields. We recall the following standard lemma:

Lemma 6. Let E/Fp be an elliptic curve and G a finite Fp-rational (i. e. stable under the
action of the Fp-Frobenius) subgroup of E. Then there exists an elliptic curve Ẽ/Fp and a
separable isogeny ϕ : E→ Ẽ defined over Fp with kernel G. The codomain Ẽ and isogeny ϕ

are unique up to Fp-isomorphism.5

Proof. [Sil09, Proposition III.4.12, Remark III.4.13.2, and Exercise III.3.13e].

The ideal-class group. We recall the definitions and basic properties of class groups
of quadratic orders that will be needed in the following, based on [Cox13, §7]. Let K
be a quadratic number field and O ⊆ K an order (that is, a subring which is a free
Z-module of rank 2). The norm of an O-ideal a ⊆ O is defined as N(a) = |O/a|; it is
equal to gcd({N(α) | α ∈ a}). Norms are multiplicative, i. e. N(ab) = N(a)N(b).

A fractional ideal ofO is anO-submodule of K of the form αa, where α ∈ K∗ and a

is anO-ideal.6 Fractional ideals can be multiplied and conjugated in the evident way,
and the norm extends multiplicatively to fractional ideals. A fractional O-ideal a is
invertible if there exists a fractional O-ideal b such that ab = O. If such a b exists, we
define a−1 = b. Clearly all principal fractional ideals αO, where α ∈ K∗, are invertible.
By construction, the set of invertible fractional ideals I(O) forms an abelian group
under ideal multiplication. This group contains the principal fractional ideals P(O)
as a (clearly normal) subgroup, hence we may define the ideal-class group of O as the
quotient

cl(O) = I(O)/P(O) .

Every ideal class [a] ∈ cl(O) has an integral representative, and for any non-zero
M ∈ Z there even exists an integral representative of norm coprime to M.

There is a unique maximal order of K with respect to inclusion called the ring of
integers and denoted OK. The conductor of O (in OK) is the index f = [OK : O].

5 This statement remains true in vast generality, but we only need this special case.
6 Note that the use of the word “ideal” is inconsistent in the literature. We make the convention that

“ideal” without qualification refers to an integral O-ideal (i. e. an ideal in the sense of ring theory), while
fractional ideals are clearly named as such.

3. The Class-group Action 197

Away from the conductor, ideals are well-behaved; every O-ideal of norm coprime
to the conductor is invertible and factors uniquely into prime ideals.

The class-group action. Fix a prime p ≥ 5 and an (ordinary or supersingular) ellip-
tic curve E defined over Fp. The Frobenius endomorphism π of E satisfies a charac-
teristic equation

π2 − tπ + p = 0

in Endp(E), where t ∈ Z is the trace of Frobenius. The curve E is supersingular if
and only if t = 0. The Fp-rational endomorphism ring Endp(E) is an order O in the
imaginary quadratic field K = O ⊗Z Q ∼= Q(

√
∆), where ∆ = t2 − 4p. We note that

O always contains the Frobenius endomorphism π, and hence the order Z[π].
Any invertible ideal a of O splits into a product of O-ideals as (πO)ras, where

as * πO. This defines an elliptic curve E/a and an isogeny ϕa : E → E/a of degree
N(a) as follows (see e. g. [Wat69]). The separable part of ϕa has kernel

⋂
α∈as ker α,

and the purely inseparable part consists of r iterations of Frobenius. The isogeny ϕa

and codomain E/a are both defined over Fp and are unique up to Fp-isomorphism
(by Lemma 6), justifying the notation E/a. Multiplication of ideals corresponds to
the composition of isogenies. Since principal ideals correspond to endomorphisms,
two ideals lead to the same codomain if and only if they are equal up to multiplica-
tion by a principal fractional ideal. Moreover, every Fp-isogeny ψ between curves
in È `p(O, π) comes from an invertible O-ideal in this way, and the ideal as can be
recovered from ψ as as = {α ∈ O | ker α ⊇ ker ψ}. In other words:

Theorem 7. Let O be an order in an imaginary quadratic field and π ∈ O such that
È `p(O, π) is non-empty. Then the ideal-class group cl(O) acts freely and transitively on
the set È `p(O, π) via the map

cl(O)× È `p(O, π) −→ È `p(O, π)

([a], E) 7−→ E/a ,

in which a is chosen as an integral representative.

Proof. See [Wat69, Theorem 4.5]. Erratum: [Sch87, Theorem 4.5].

To emphasize the fact that we are dealing with a group action, we will from now
on write [a] ∗ E or simply [a]E for the curve E/a defined above.

The structure of the class group. The class group cl(O) is a finite abelian group
whose cardinality is asymptotically [Sie35] # cl(O) ≈

√
|∆|. More precise heuristics

198 Chapter IX. CSIDH

actually predict that # cl(O) grows a little bit faster than
√
|∆|, but the ratio is log-

arithmically bounded so we content ourselves with the above estimate. The exact
structure of the class group can be computed in subexponential time L|∆|[1/2;

√
2 +

o(1)] using an algorithm of Hafner and McCurley [HM89]. Unfortunately, this re-
quires too much computation for the sizes of ∆ we are working with, but there are
convincing heuristics concerning the properties of the class group we need. See §7.1
for these arguments. If the absolute value |t| of the trace of Frobenius is “not too
big”, the discriminant ∆ is about the size of p, hence by the above approximation we
may assume # cl(O) ≈ √p. This holds in particular when E is supersingular, where
t = 0, hence |∆| = 4p.

We are interested in primes ` that split inO, i. e. such that there exist (necessarily
conjugate) distinct prime ideals l, l of O with `O = ll. Such ` are known as Elkies
primes in the point-counting literature. The ideal l is generated as l = (`, π − λ),
where λ ∈ Z/`Z is an eigenvalue of the Frobenius endomorphism π on the `-
torsion, and its conjugate is l = (`, π − p/λ), where by abuse of notation p/λ de-
notes any integral representative of that quotient modulo `. Note that ` splits in O if
and only if ∆ is a non-zero square modulo `.

Computing the group action. Any element of the class group can be represented
as a product of small prime ideals [BV07, Propositions 9.5.2 and 9.5.3], hence we
describe how to compute [l]E for a prime ideal l = (`, π − λ). There are (at least)
the following ways to proceed, which vary in efficiency depending on the circum-
stances [DFKS18; Kie17]:

– Find Fp-rational roots of the modular polynomial Φ`(j(E), Y) to determine the
two j-invariants of possible codomains (i. e. up to four non-isomorphic curves,
though in the ordinary case wrong twists can easily be ruled out); compute
the kernel polynomials [Koh96] χ ∈ Fp[x] for the corresponding isogenies (if
they exist); if (xp, yp) = [λ](x, y) modulo χ and the curve equation, then the
codomain was correct, else another choice is correct.

– Factor the `th division polynomial ψ`(E) over Fp; collect irreducible factors
with the right Frobenius eigenvalues (as above); use Kohel’s formulas [Koh96,
§2.4] to compute the codomain.

– Find a basis of the `-torsion — possibly over an extension field — and compute
the eigenspaces of Frobenius; apply Vélu’s formulas [Vél71] to a basis point of
the correct eigenspace to compute the codomain.

4. Construction and Design Choices 199

As observed in [DFKS18; Kie17], the last method is the fastest if the necessary exten-
sion fields are small. The optimal case is λ = 1; in that case, the curve has a rational
point defined over the base field Fp. If in addition p/λ = −1, the other eigenspace
of Frobenius modulo ` is defined over Fp2 , so both codomains can easily be com-
puted using Vélu’s formulas over an at most quadratic extension (but in fact, a good
choice of curve model allows for pure prime field computations, see §8; alternatively
one could switch to the quadratic twist). Note that if p ≡ −1 (mod `), then λ = 1
automatically implies p/λ = −1.

Much of De Feo–Kieffer–Smith’s work [DFKS18; Kie17] is devoted to finding an
ordinary elliptic curve E with many small Elkies primes ` such that both E and its
quadratic twist Et have an Fp-rational `-torsion point. Despite considerable effort
leading to various improvements, the results are discouraging. With the best pa-
rameters found within 17 000 hours of CPU time, evaluating one class-group action
still requires several minutes of computation to complete. This suggests that without
new ideas, the original Couveignes–Rostovtsev–Stolbunov scheme will not become
anything close to practical in the foreseeable future.

4 Construction and Design Choices

In this section, we discuss the construction of our proposed group action and justify
our design decisions. For algorithmic details, see §8. Notice that the main obstacle
to performance in the Couveignes–Rostovtsev–Stolbunov scheme — constructing
a curve with highly composite order — becomes trivial when using supersingular
curves instead of ordinary curves, since for p ≥ 5 any supersingular elliptic curve
over Fp has exactly p + 1 rational points.

The cryptographic group action described below is a straightforward implemen-
tation of this construction. Note that we require p ≡ 3 (mod 4) so that we can easily
write down a supersingular elliptic curve over Fp and so that an implementation
may use curves in Montgomery form. It turns out that this choice is also benefi-
cial for other reasons. In principle, this constraint is not necessary for the theory to
work, although the structure of the isogeny graph changes slightly (see [DG16] and
Remark 3 for details).

Parameters. Fix a large prime p of the form 4 · `1 · · · `n − 1, where the `i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp; it is supersingular
since p ≡ 3 (mod 4). The Frobenius endomorphism π satisfies π2 = −p, so its Fp-
rational endomorphism ring is an order in the imaginary quadratic field Q(

√−p).

200 Chapter IX. CSIDH

More precisely, Proposition 8 (below) shows Endp(E0) = Z[π], which has conductor
2.

Rational Elkies primes. By Theorem 4, the choices made above imply that the `i-
isogeny graph is a disjoint union of cycles. Moreover, since π2 − 1 ≡ 0 (mod `i) the
ideals `iO split as `iO = lili, where li = (`i, π − 1) and li = (`i, π + 1). In other
words, all the `i are Elkies primes. In particular, we can use any one of the three
algorithms described at the end of §3 to walk along the cycles.

Furthermore, the kernel of ϕli is the intersection of the kernels of the scalar mul-
tiplication [`i] and the endomorphism π − 1. That is, it is the subgroup generated
by a point P of order `i which lies in the kernel of π − 1 or, in other words, is de-
fined over Fp. Similarly, the kernel of ϕli

is generated by a point Q of order `i that is
defined over Fp2 but not Fp and such that π(Q) = −Q. This greatly simplifies and
accelerates the implementation, since it allows performing all computations over the
base field (see §8 for details).

Sampling from the class group. Ideally, we would like to know the exact structure
of the ideal-class group cl(O) to be able to sample elements uniformly at random.
However, such a computation is currently not feasible for the size of discriminant we
need, hence we resort to heuristic arguments. Assuming that the li do not have very
small order and are “evenly distributed” in the class group, we can expect ideals
of the form l

e1
1 le2

2 · · · l
en
n for small ei to lie in the same class only very occasionally.

For efficiency reasons, it is desirable to sample the exponents ei from a short range
centered around zero, say {−m, . . . , m} for some integer m. We will argue in §7.1
that choosing m such that 2m + 1 ≥ n

√
cl(O) is sufficient. Since the prime ideals

li are fixed global parameters, the ideal ∏i l
ei
i may simply be represented as a vector

(e1, . . . , en).

Evaluating the class-group action. Computing the action of an ideal class repre-
sented by ∏i l

ei
i on an elliptic curve E proceeds as outlined in §3. Since π2 = −p

which is equivalent to 1 modulo all `i, we are now in the favorable situation that the
eigenvalues of Frobenius on all `i-torsion subgroups are 1 and −1. Hence we can
efficiently compute the action of li (resp. li) by finding an Fp-rational point (resp.
Fp2 -rational with Frobenius eigenvalue −1) of order `i and applying Vélu-type for-
mulas. This step could simply be repeated for each ideal l±1

i whose action is to be
evaluated, but see §8 for a more efficient method.

5. Representing & Validating Fp-isomorphism Classes 201

5 Representing & Validating Fp-isomorphism Classes

A major unsolved problem of SIDH is its lack of public-key validation, i. e. the in-
ability to verify that a public key was honestly generated. This shortcoming leads
to polynomial-time active attacks [Gal+16] on static variants for which countermea-
sures are expensive. For example, the actively secure variant SIKE [Jao+16] applies
a transformation proposed by Hofheinz, Hövelmanns, and Kiltz [HHK17] which is
similar to the Fujisaki–Okamoto transform [FO99], essentially doubling the running
time on the recipient’s side compared to an ephemeral key exchange.

The following proposition tackles this problem for our family of CSIDH instan-
tiations. Moreover, it shows that the Montgomery coefficient forms a unique repre-
sentative for the Fp-isomorphism class resulting from the group action, hence may
serve as a shared secret without taking j-invariants.

Proposition 8. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8), and let E/Fp be a
supersingular elliptic curve. Then Endp(E) = Z[π] if and only if there exists an A ∈ Fp

such that E is Fp-isomorphic to the curve EA : y2 = x3 + Ax2 + x. Moreover, if such an A
exists then it is unique.

Proof. First suppose that E is isomorphic over Fp to EA for some A ∈ Fp. If EA has
full Fp-rational 2-torsion, then Table 1 of [CS17] shows that either EA or its quadratic
twist must have order divisible by 8. However, both have cardinality p + 1 ≡ 4
(mod 8). Hence EA can only have one Fp-rational point of order 2. With Theorem 2.7
of [DG16], we can conclude Endp(E) = Endp(EA) = Z[π].

Now assume that Endp(E) = Z[π]. By Theorem 7, the class group cl(Z[π])

acts transitively on È `p(Z[π], π), so in particular there exists [a] ∈ cl(Z[π]) such
that [a]E0 = E, where E0 : y2 = x3 + x. Choosing a representative a that has norm
coprime to 2p yields a separable Fp-isogeny ϕa : E0 → E of odd degree. Thus, by
Proposition VIII.5 there exists an A ∈ Fp and a separable isogeny ψ : E0 → EA : y2 =

x3 + Ax2 + x defined over Fp such that ker ψ = ker ϕa. As isogenies defined over
Fp with given kernel are unique up to post-composition with isomorphisms defined
over Fp (Lemma 6), we conclude that E is Fp-isomorphic to EA.

Finally, let B ∈ Fp such that EA ∼= EB : Y2 = X3 + BX2 + X. Then it follows
from [Sil09, Proposition III.3.1(b)] that there exist u ∈ F∗p and r, s, t ∈ Fp such that

x = u2X + r , y = u3Y + su2X + t .

Substituting this into the curve equation for EA and subtracting the equation of EB

(scaled by u6) equals zero in the function field and thus leads to a linear relation

202 Chapter IX. CSIDH

over Fp between the functions 1, X, X2, Y, and XY. Writing ∞ for the point at
infinity of EB, it follows from Riemann–Roch [Sil09, Theorem 5.4] thatL(5(∞)) is a 5-
dimensional Fp-vector space with basis {1, X, Y, X2, XY}. Hence the obtained linear
relation must be trivial, and a straightforward computation yields the relations

s = t = 0 , 3r2 + 2Ar + 1 = u4 ,

3r + A = Bu2 , r3 + Ar2 + r = 0 .

But since EA only has a single Fp-rational point of order 2, the only r ∈ Fp such that
r3 + Ar2 + r = 0 is simply r = 0. In that case u4 = 1, and hence u = ±1 since p ≡ 3
(mod 8). In particular, u2 = 1 and thus A = B.

Therefore, by choosing public keys to consist of a Montgomery coefficient A ∈
Fp, Proposition 8 guarantees that A represents a curve in the correct isogeny class
È `p(O, π), where π =

√−p and O = Z[π], under the assumption that it is smooth
(i. e. A 6= ±2) and supersingular.

Verifying supersingularity. As p ≥ 5, an elliptic curve E defined over Fp is su-
persingular if and only if #E(Fp) = p + 1 [Sil09, Exercise 5.10]. In general, prov-
ing that an elliptic curve has a given order N is easy if the factorization of N is
known; exhibiting a subgroup (or in particular, a single point) whose order d is a
divisor of N greater than 4

√
p implies the order must be correct. Indeed, the condi-

tion d > 4
√

p implies that there exists only one multiple of d in the Hasse interval
[p + 1− 2

√
p; p + 1 + 2

√
p] [Has36]. This multiple must be the group order by La-

grange’s theorem.

Now note that a random point generally has very large order d. In our case
E(Fp) ∼= Z/4Z×∏n

i=1 Z/`iZ, so that `i | d with probability (`i − 1)/`i. Ignoring
the even part, this shows that the expected order is lower bounded by

n

∏
i=1

(
`i − 1 +

1
`i

)
.

This product is about the same size as p, and it is easily seen that a random point
will with overwhelming probability have order (much) greater than 4

√
p. This ob-

servation leads to a straightforward verification method, see Algorithm 1.7 If the
condition d > 4

√
p does not hold at the end of Algorithm 1, the point P had too

7 The same idea gives rise to a simpler Monte Carlo algorithm which does not require the factorization
of p + 1 but has a chance of false positives [Sut12a, §2.3].

6. Non-interactive Key Exchange 203

small order to prove #E(Fp) = p + 1. In this case one may retry with a new random
point P (although this outcome has negligible probability and could just be ignored).
There is no possibility of wrongly classifying an ordinary curve as supersingular.

Algorithm 1. Verifying supersingularity.

Input: An elliptic curve E/Fp, where p = 4 · `1 · · · `n − 1.
Output: Either ordinary or supersingular

1 Randomly pick a point P ∈ E(Fp) and set d← 1
2 for each `i do
3 Qi ← [(p + 1)/`i]P
4 if [`i]Q 6= ∞ then return ordinary . Since #E(Fp) - p + 1
5 if Qi 6= ∞ then d← `i · d . Since `i | ord P
6 if d > 4

√
p then return supersingular

7 return A

Note moreover that if x-only Montgomery arithmetic is used (as we suggest)
and the point P is obtained by choosing a random x-coordinate in Fp, then any x-
coordinate in Fp works. That is, there is no need to differentiate between points
defined over Fp and Fp2 . Indeed, any point that has an x-coordinate in Fp but is
only defined over Fp2 corresponds to an Fp-rational point on the quadratic twist,
which is supersingular if and only if the original curve is supersingular.

There are more optimized variants of this algorithm; the bulk of the work are
the scalar multiplications required to compute the points Qi = [(p + 1)/`i]P. Since
they are all multiples of P with shared factors, one may more efficiently compute all
Qi at the same time using a divide-and-conquer strategy (at the expense of higher
memory usage). See §8, and in particular Algorithm 3, for details.

6 Non-interactive Key Exchange

Starting from the class-group action on supersingular elliptic curves and the param-
eter choices outlined in Sections 3 and 4, one obtains the following non-interactive
key-exchange protocol.

Setup. Global parameters of the scheme are a large prime p = 4 · `1 · · · `n − 1,
where the `i are small distinct odd primes, and the supersingular elliptic curve
E0 : y2 = x3 + x over Fp with endomorphism ring O = Z[π].

204 Chapter IX. CSIDH

Key generation. The private key is an n-tuple (e1, . . . , en) of integers, each sam-
pled randomly from a range {−m, . . . , m}. These integers represent the ideal
class [a] = [le1

1 · · · l
en
n] ∈ cl(O), where li = (`i, π − 1). The public key is the Mont-

gomery coefficient A ∈ Fp of the elliptic curve [a]E0 : y2 = x3 + Ax2 + x obtained
by applying the action of [a] to the curve E0.

Key exchange. Suppose Alice and Bob have key pairs ([a], A) and ([b], B). Upon
receiving Bob’s public key B ∈ Fp \ {±2}, Alice verifies that the elliptic curve
EB : y2 = x3 + Bx2 + x is indeed in È `p(O, π) using Algorithm 1. She then applies
the action of her secret key [a] to EB to compute the curve [a]EB = [a][b]E0. Bob
proceeds analogously with his own secret [b] and Alice’s public key A to compute
the curve [b]EA = [b][a]E0. The shared secret is the Montgomery coefficient S of
the common secret curve [a][b]E0 = [b][a]E0 written in the form y2 = x3 + Sx2 +

x, which is the same for Alice and Bob due to the commutativity of cl(O) and
Proposition 8.

E0 EA

Ẽ

[a]

[b] [c]

Figure 3. A 1-bit identification protocol.

Remark 9. Besides key exchange, we expect that our cryptographic group action
will have several other applications, given the resemblance with traditional Diffie–
Hellman and the ease of verifying the correctness of public keys. We refer to previous
papers on group actions for a number of suggestions in this direction, in particular
Brassard–Yung [BY91], Couveignes [Cou06, §4] and Stolbunov [Sto10]. We high-
light the following 1-bit identification scheme, which in our case uses a key pair
([a], A) as above. One randomly samples an element [b] ∈ cl(O) and commits to
a curve Ẽ = [b]E0. Depending on a challenge bit b one then releases either [b] or
[c] := [b][a]−1, as depicted in Figure 3. As already pointed out in Stolbunov’s PhD
thesis [Sto11, §2.B], this can be turned into a signature scheme by repeated applica-
tion of the 1-bit protocol and by applying the Fiat–Shamir [FS87] or Unruh [Unr12]
transformation. However, we point out that it is not immediately clear how to rep-
resent [c] in a way that is efficiently computable and leaks no information about the
secret key [a]. We leave a resolution of this issue for future research, but mention

7. Security 205

that a related problem was recently tackled by Galbraith, Petit and Silva [GPS17]
who studied a similar triangular identification protocol in the context of SIDH.8

7 Security

The central problem of our new primitive is the following analogue to the classical
discrete-logarithm problem.

Problem 10 (Key recovery). Given two supersingular elliptic curves E, Ẽ defined over
Fp with the same Fp-rational endomorphism ring O, find an ideal a of O such that
[a]E = Ẽ. This ideal must be represented in such a way that the action of [a] on a
curve can be evaluated efficiently, for instance a could be given as a product of ideals
of small norm.

Note that just like in the classical group-based scenario, security notions of Diffie–
Hellman schemes built from our primitive rely on slightly different hardness as-
sumptions (c. f. Definition 1) that are straightforward translations of the computa-
tional and decisional Diffie–Hellman problems. However, continuing the analogy
with the classical case, and since we are not aware of any ideas to attack the key ex-
change without recovering one of the keys, we will assume in the following analysis
that the best approach to breaking the key-exchange protocol is to solve Problem 10.

We point out that the “inverse Diffie-Hellman problem” is easy in the context
of CSIDH: given [a]E0 we can compute [a]−1E0 by mere quadratic twisting; see Re-
mark 5. This contrasts with the classical group-based setting [Gal12, §21.1]. Note
that just like identifying a point (x, y) with its inverse (x,−y) in an ECDLP setting,
this implies a security loss of one bit under some attacks: An attacker may consider
the curves [a]E and [a]−1E identical, which reduces the search space by half.

No torsion-point images. One of the most worrying properties of SIDH seems to be
that Alice and Bob publish the images of known points under their secret isogenies
along with the codomain curve, i. e. a public key is of the form (Ẽ, ϕ(P), ϕ(Q)) where
ϕ : E→ Ẽ is a secret isogeny and P, Q ∈ E are publicly known points. Although thus
far nobody has succeeded in making use of this extra information to break the origi-
nal scheme, Petit presented an attack using these points when overstretched, highly
asymmetric parameters are used [Pet17]. The Couveignes–Rostovtsev–Stolbunov
scheme, and consequently our new scheme CSIDH, does not transmit such addi-
tional points — a public key consists of only an elliptic curve. Thus we are confident

8 The “square” SIDH counterparts of this protocol, as considered in [DFJP14; GPS17; Yoo+17], are not
meaningful in the case of a commutative group action.

206 Chapter IX. CSIDH

that a potential future attack against SIDH based on these torsion points would not
apply to CSIDH.

Chosen-ciphertext attacks. As explained in §5, the CSIDH group action features
efficient public-key validation. This implies it can be used without applying a CCA
transform such as the Fujisaki–Okamoto transform [FO99], thus enabling efficient
non-interactive key exchange and other applications in a post-quantum world.

7.1 Classical Security

We begin by considering classical attacks.

Exhaustive key search. The most obvious approach to attack any cryptosystem is to
simply search through all possible keys. In the following, we will argue that our con-
struction provides sufficient protection against key search attacks, including dumb
brute force and (less naïvely) a meet-in-the-middle approach.

As explained in §4, a private key of our scheme consists of an exponent vector
(e1, . . . , en) where each ei is in the range {−m, . . . , m}, representing the ideal class
[le1

1 le2
2 · · · l

en
n] ∈ cl(O). There may (and typically will) be multiple such vectors that

represent the same ideal class and thus form equivalent private keys. However, we
argue (heuristically) that the number of short representations per ideal class is small.
Here and in the following, “short” means that all ei are in the range {−m, . . . , m}.
The maximum number of such short representations immediately yields the min-
entropy9 of our sampling method, which measures the amount of work a brute-force
attacker has to do while conducting an exhaustive search for the key.

We assume in the following discussion that cl(O) is “almost cyclic” in the sense
that it has a very large cyclic component, say of order N not much smaller than
cl(O). According to a heuristic of Cohen and Lenstra, this is true with high proba-
bility for a “random” imaginary quadratic field [CL84, §9.I], and this conjecture is in
line with our own experimental evidence. So suppose

ρ : cl(O) � (Z/NZ,+)

is a surjective group homomorphism (which may be thought of as a projection to the
large cyclic subgroup followed by an isomorphism) and define αi = ρ([li]). We may
assume that α1 = 1; this can be done without loss of generality whenever at least

9 The min-entropy of a random variable is the negative logarithm of the probability of the most likely
outcome.

7. Security 207

one of the [li] has order N in the class group. For some fixed [a] ∈ cl(O), any short
representation [le1

1 le2
2 · · · l

en
n] = [a] yields a short solution to the linear congruence

e1 + e2α2 + · · ·+ enαn ≡ ρ([a]) (mod N) ,

so counting solutions to this congruence gives an upper bound on the number of
short representations of [a]. These solutions are exactly the points in some shifted
version (i. e. a coset) of the integer lattice spanned by the rows of the matrix

L =

N 0 0 · · · 0
−α2 1 0 · · · 0
−α3 0 1 · · · 0

...
...

...
. . .

...
−αn 0 0 · · · 1

,

so by applying the Gaussian heuristic [NV10, Chapter 2, Definition 8] one expects

vol [−m; m]n/det L = (2m + 1)n/N

short solutions. Since we assumed cl(O) to be almost cyclic, this ratio is not much
bigger than (2m + 1)n/# cl(O), which is not very large for our choice of m as small
as possible with (2m + 1)n ≥ # cl(O).

As a result, we expect the complexity of a brute-force search to be approximately
2log

√
p−ε for some positive ε that is small relative to log

√
p. To verify our claims,

we performed computer experiments with many choices of p of up to 40 bits (es-
sentially brute-forcing the number of representations for all elements) and found no
counterexamples to the heuristic result that our sampling method loses only a few
bits of brute-force security compared to uniform sampling from the class group. For
our sizes of p, the min-entropy was no more than 4 bits less than that of a perfectly
uniform distribution on the class group (i. e. ε ≤ 4). Of course this loss factor may
grow in some way with bigger choices of p (a plot of the data points for small sizes
suggests an entropy loss proportional to log log p), but we see no indication for it to
explode beyond a few handfuls of bits, as long as we find m and n so that (2m + 1)n

is not much larger than # cl(O).

Meet-in-the-middle key search. Since a private key trivially decomposes into a
product of two smooth ideals drawn from smaller sets (e. g. splitting [le1

1 le2
2 · · · l

en
n] as

[le1
1 · · · l

eν
ν] · [leν+1

ν+1 · · · l
en
n] for some ν ∈ {1, . . . , n}), the usual time-memory trade-offs à

208 Chapter IX. CSIDH

la baby-step giant-step [Sha71] with an optimal time complexity of O
(√

cl(O)
)
≈

O(4
√

p) apply.10 Another interpretation of this algorithm is finding a path between
two nodes in the underlying isogeny graph by constructing a breadth-first tree start-
ing from each of them, each using a certain subset of the edges, and looking for a
collision. Details, including a memoryless variation of this concept, can be found in
Delfs and Galbraith’s paper [DG16], and for the ordinary case in [Gal99].

Remark 11. The algorithms mentioned thus far scale exponentially in the size of the
key space, hence they are asymptotically more expensive than the quantum attacks
outlined below which is subexponential in the class-group size. This implies one
could possibly balance the costs of the different attacks and use a key space smaller
than # cl(O) without any loss of security (unless the key space is chosen particularly
badly, e. g. as a subgroup), which leads to improved performance. We leave a more
thorough analysis of this idea for future work.

Pohlig–Hellman-style attacks. Notice that the set È `p(O, π) we are acting on does
not form a group with efficiently computable operations (that are compatible with
the action of cl(O)). Thus there seems to be no way to apply Pohlig–Hellman-
style algorithms making use of the decomposition of finite abelian groups. In fact,
the Pohlig–Hellman algorithm relies on efficiently computable homomorphisms to
proper subgroups, which in the setting at hand would correspond to an efficient
algorithm that “projects” a given curve to the orbit of E0 under a subgroup action.
Therefore, we believe the structure of the class group to be largely irrelevant (assum-
ing it is big enough). In particular, we do not require it to have a large prime-order
subgroup.

7.2 Quantum Security

We now discuss the state of quantum algorithms to solve Problem 10.

Grover’s algorithm and claw finding. Applying Grover search [Gro96] via claw
finding as described in [JDF11] is fully applicable to CSIDH as well, leading to an
attack on Problem 10 in O(6

√
p) calls to a quantum oracle that computes our group

action. The idea is to split the search space for collisions into a classical O(6
√

p) target
part and a O(3

√
p) search part on which a quantum search is applied. Our choices of

p that lead to classical security are also immediately large enough to imply quantum

10 Strictly speaking, the complexity depends on the size of the subset one samples private keys from,
rather than the size of the class group, but as was argued before, these are approximately equal for our
choice of m and n.

7. Security 209

security against this attack (c. f. [Nat16, §4.A.5 in Call for Proposals]). That is, the
number of queries to our quantum oracle necessary to solve Problem 10 is larger
than the number of quantum queries to an AES oracle needed to retrieve the key of
the corresponding AES instantiation via Grover’s algorithm. For example, an AES-
128 key can be recovered with approximately 264 (quantum) oracle queries, which
requires us to set p > 2384. However, p is much larger than that (see Table 1) due to
the existence of subexponential quantum attacks.

The abelian hidden-shift problem. A crucial result by Kuperberg [Kup05] is an
algorithm to solve the hidden-shift problem with time, query and space complex-
ity 2O(

√
log N) in an abelian group H of order N. He also showed that any abelian

hidden-shift problem reduces to a dihedral hidden-subgroup problem on a differ-
ent but closely related oracle. A subsequent alternative algorithm by Regev [Reg04]
achieves polynomial quantum space complexity with an asymptotically worse time
and query complexity of

2O(
√

log N log log N) .

A follow-up algorithm by Kuperberg [Kup13] uses 2O(
√

log N) time, queries and clas-
sical space, but only O(log N) quantum space. All these algorithms have subexpo-
nential time and space complexity.

Attacking the isogeny problem. The relevance of these quantum algorithms to
Problem 10 has been observed by Childs–Jao–Soukharev [CJS14] in the ordinary case
and by Biasse–Jao–Sankar [BJS14] in the supersingular setting. By defining functions
f0, f1 : cl(O) → È `p(O, π) as f0 : [b] 7→ [b]E and f1 : [b] 7→ [b]Ẽ = [b][a]E, the prob-
lem can be viewed as an abelian hidden-shift problem with respect to f0 and f1. We
note that each query requires evaluating the functions fi on arbitrary ideal classes
(i. e. without being given a representative that is a product of ideals of small prime
norm) which is non-trivial. However, Childs–Jao–Soukharev show this can be done
in subexponential time and space [CJS14, §4].

Subexponential vs. practical. An important remark about all these quantum algo-
rithms is that they do not immediately lead to estimates for runtime and memory
requirements on concrete instantiations with H = cl(O). Although the algorithms
by Kuperberg and Regev are shown to have subexponential complexity in the limit,
this asymptotic behavior is not enough to understand the space and time complexity
on actual (small) instances. For example, Kuperberg’s first paper [Kup05, Theorem

210 Chapter IX. CSIDH

3.1] mentions O(23
√

log N) oracle queries to achieve a non-negligible success proba-
bility when N is a power of a small integer. It also presents a second algorithm that
runs in Õ(3

√
2 log3 N) = O(21.8

√
log N) [Kup05, Theorem 5.1]. His algorithms handle

arbitrary group structures but he does not work out more exact counts for those. Of
course, this does not contradict the time complexity of 2O(

√
log N) as stated above,

but for a concrete security analysis the hidden constants certainly matter a lot and
ignoring the O typically underestimates the security. Childs–Jao–Soukharev [CJS14,
Theorem 5.2] prove a query complexity of

LN
[
1/2,
√

2
]
= exp

[(√
2 + o(1)

)√
ln N ln ln N

]
, (1)

where N = # cl(O), for using Regev’s algorithm for solving the hidden-shift prob-
lem. This estimates only the query complexity, so does not include the cost of queries
to the quantum oracle (i. e. the isogeny oracle). Childs–Jao–Soukharev present two
algorithms to compute the isogeny oracle, the fastest of which is by Bisson [Bis12].
In [CJS14, Remark 4.8] Childs–Jao–Soukharev give an upper bound of

Lp[1/2, 1/
√

2] = exp
[(

1/
√

2 + o(1)
)√

ln p ln ln p
]

(2)

on the running time of Bisson’s algorithm.

Remark 12. Childs–Jao–Soukharev compute the total cost for computing the secret
isogeny in [CJS14, Remark 5.5] to be Lp[1/2, 3/

√
2] (using Regev and Bisson’s al-

gorithms, requiring only polynomial space). They appear to obtain this by setting
N = p when multiplying (1) and (2), but as N ∼ √p this is an overestimation and
should be Lp[1/2, 1 + 1/

√
2]. Either way, this is the largest asymptotic complexity

of the estimates. Also, Galbraith and Vercauteren [GV18] point out this algorithm
actually has superpolynomial space complexity due to the high memory usage of
the isogeny oracle in [CJS14], but see [Jao+18].

Childs–Jao–Soukharev additionally work out the total time to be Lp[1/2, 1/
√

2]
for computing the secret isogeny combining Kuperberg [Kup05] and Bisson. This
requires superpolynomial storage (also before considering the memory usage of the
oracle). Note that in this combination the costs of the oracle computation dominate
asymptotically.

It is important to mention that asymptotically worse algorithms may provide
practical improvements on our “small” instances over either of the algorithms stud-
ied by Childs–Jao–Soukharev. For example, Couveignes [Cou06, §5] provides argu-
ments (albeit heuristic ones) that one can find smooth representatives of ideal classes

7. Security 211

by computing the class-group structure (which can be done in polynomial time on
a quantum computer [Hal05]) and applying a lattice-basis-reduction algorithm such
as LLL [LLL82] to its lattice of relations. This might be more efficient than using
the subexponential oracle of Childs–Jao–Soukharev. However, note that this method
makes evaluating the oracle several times harder for the attacker than for legitimate
users, thus immediately giving a few additional bits of security, since users only eval-
uate the action of very smooth ideals by construction. We believe further research
in this direction is necessary and important, since it will directly impact the cost of
an attack, but we consider a detailed analysis of all these algorithms and possible
trade-offs to be beyond the scope of this chapter.

Remark 13. After we posted a first version of this chapter on the Cryptology ePrint
Archive, there appeared several independent attempts at assessing the security of
CSIDH. Biasse, Iezzi, and Jacobson [BIJ18] work out some more details of the at-
tack ideas mentioned above for Regev’s algorithm. They focus on the class-group-
computation part of the oracle and they work out how to represent random elements
of the class group as a product of small prime ideals. Their analysis is purely asymp-
totic and an assessment of the actual cost on specific instances is explicitly left for
future work. Bonnetain and Schrottenloher [BS18] determine (quantum) query com-
plexities for breaking CSIDH under the assumption that the quantum memory can
be made very large, which implies that Kuperberg’s faster algorithms would be ap-
plicable. They estimate the number of oracle queries as (5π2/4)21.8

√
log N . The 1.8

appears to approximate the
√

2 log 3 in Kuperberg [Kup05, Theorem 5.1]. They state

21.8
√

log N+2.3 for the number of qubits. While we ignored Kuperberg’s algorithm due
to the large memory costs, they take the stance that “the most time-efficient version
is relevant”, and so do not ignore this algorithm. For small N the number of qubits
stated in [BS18] might be possible, which would indeed make Kuperberg’s algorithm
relevant for these sizes. However, in this case the total cost is dominated by the high
cost of computing the oracle, which Childs–Jao–Soukharev placed at Lp[1/2, 1/

√
2].

Bonnetain and Schrottenloher instead make use of Couveignes’ (exponential-time,
but perhaps better for small parameters) LLL-based method for the oracle computa-
tion, but apply BKZ for more effective lattice-basis reduction. The current version of
Bonnetain–Schrottenloher [BS18] also presents concrete estimates for the attack costs
for our parameter sets, but unfortunately this version ignores most of the cost of eval-
uating isogenies. For example: (1) Algorithm 2 in this chapter makes heavy use of
input-dependent branches, which is impossible in superposition [Jao+18, Section 4];
(2) [BS18] skips finding points of order `i which are needed as the kernel of the `i-
isogeny; (3) [BS18] applies a result for multiplication costs in F2n to multiplications

212 Chapter IX. CSIDH

in Fp. We analyzed the (significantly higher) cost of a quantum oracle for isogeny
evaluation and conclude that the current estimates of Bonnetain–Schrottenloher do
not imply that CSIDH-512 (see §7.3) is broken under NIST level 1 (c. f. the reference
to [Ber+19] below).

Jao, LeGrow, Leonardi, and Ruiz-Lopez recently made a preprint [Jao+18] of their
MathCrypt paper available to us. They address the issue of superpolynomial space
in the oracle computation identified by Galbraith and Vercauteren (stated above)
and give a new algorithm for finding short representations of elements. Their paper
focuses on the asymptotic analysis of the oracle step so that they achieve overall
polynomial quantum space, but does not obtain any concrete cost estimates.

Bernstein, Lange, Martindale, and Panny analyze the cost of quantum evaluation
of the CSIDH group action in [Ber+19]. Even after introducing several speedups to
arithmetic in finite fields and computing isogenies in superposition, for CSIDH-512 it
still takes 240 quantum operations on a quantum computer of 240 qubits to compute
a single evaluation of the Kuperberg or Regev oracle for success probability 2−32

and reduced range of exponents. They also give a more detailed analysis of the
shortcomings and errors in [BS18] mentioned above.

7.3 Instantiations

Finally we present estimates for some sizes of p.

Security estimates. As explained in §7.1, the best classical attack has query com-
plexity O(4

√
p), and the number of queries has been worked out for different quan-

tum attacks. We consider [CJS14] in combination with Regev and Kuperberg (i. e.
Lp
[
1/2, 3/

√
2
]

and Lp
[
1/2, 1/

√
2
]
, respectively) as well as the pure query com-

plexity of Regev’s and Kuperberg’s algorithms (i. e. LN
[
1/2,
√

2
]
, O(23

√
log N) and

O(21.8
√

log N), respectively). We summarize the resulting attack complexities, ignor-
ing the memory costs and without restricting the maximum depth of quantum cir-
cuits, for some sizes of p in Table 1. We note again that we expect these complexities
to be subject to more careful analysis, taking into account the implicit constants,11

the (in-)feasibility of long sequential quantum operations, and the large memory re-
quirement. We also include the recent estimates on the query complexity and full

11 This is illustrated dramatically by the eighth column stating a complexity of Lp[1/2, 1/
√

2] for
[CJS14]-Kuperberg, which we recall arises by multiplying the query complexity of Kuperberg’s (first) al-
gorithm and Childs–Jao–Soukharev’s estimate Lp[1/2, 1/

√
2] for the running time of Bisson’s algorithm;

so here it would make more sense to add the corresponding entries of the fourth column, but we decided
to leave the numbers as they are in order to be consistent in the way we discard o(1)’s.

7. Security 213

Table 1. Estimated attack complexities ignoring limits on depth. The three rightmost columns
state costs for the complete attack; the others state classical and quantum query complexities.
All numbers are rounded to whole bits and use N = # cl(O) = √p, o(1) = 0, and all hidden
O-constants 1, except for numbers taken from [BS18].

CSIDH-log p C
la

ss
ic

al
lo

g
4√

p

R
eg

ev
[R

eg
04

]
lo

g
L

N
[1

/2
,√

2]

K
up

.[
K

up
05

]
3√ lo

g
N

K
up

.[
K

up
05

]
1.

8√ lo
g

N

Ta
bl

e
7

in
[B

S1
8]

[C
JS

14
]-

R
eg

ev
lo

g
L

p
[1

/2
,3

/√
2]

[C
JS

14
]-

K
up

.
lo

g
L

p
[1

/2
,1

/√
2]

Ta
bl

e
8

in
[B

S1
8]

CSIDH-512 128 62 48 29 32.5 139 47 71
CSIDH-1024 256 94 68 41 44.5 209 70 88
CSIDH-1792 448 129 90 54 57.5 288 96 104

attack complexity by Bonnetain and Schrottenloher [BS18].

We point out a recent analysis [Adj+19] which shows that the classical attack
on SIDH (which is the same for CSIDH) is likely slower in practice than current
parameter estimates assumed, which is due to the huge memory requirements of
the searches. Similarly, the cost of the quantum attacks is significantly higher than
just the query complexity times the cost of the group action because evaluating the
oracle in superposition is significantly more expensive than a regular group action.

Recall that public keys consist of a single element A ∈ Fp, which may be rep-
resented using dlog pe bits. A private key is represented as a list of n integers in
{−m, . . . , m}, where m was chosen such that n log(2m + 1) ≈ log

√
p, hence it may

be stored using roughly (log p)/2 bits. Therefore the rows of Table 1 correspond to
public key sizes of 64, 128, and 224 bytes, and private keys are approximately half
that size when encoded optimally.

Security levels. We approximate security levels as proposed by NIST for the post-
quantum standardization effort [Nat16, §4.A.5]. That is, a k-bit security level means
that the required effort for the best attacks is at least as large as that needed for a key-
retrieval attack on a block cipher with a k-bit key (e. g. AES-k for k ∈ {128, 192, 256}).
In other words, under the assumption that the attacks query an oracle on a circuit
at least as costly as AES, we should have a query complexity of at least 2k−1 resp.√

2k to a classical resp. quantum oracle. NIST further restricts the power of the
quantum computation to circuits of maximum depth 240 up to 296, meaning that
theoretically optimal tradeoffs (such as the formulas in Table 1 above) might not be

214 Chapter IX. CSIDH

possible for cryptographic sizes. The parameters for CSIDH-log p were chosen to
match the query complexity of Regev’s attack on the hidden-shift problem (see the
third column in Table 1) for roughly 2k/2, which should match NIST levels 1-3 as the
group action computation has depth at least as large as AES.

Some other algorithms give lower estimates which makes it necessary to eval-
uate the exact cost of the oracle queries or compute the lower-order terms in the
complexity. The analysis in [BS18, Table 8] states lower overall costs compared to
AES. While this is a significant improvement, we believe that this does not affect
our security claim when accounting precisely for the actual cost of oracle queries,
as stated above. Our preliminary analysis shows costs of more than 250 qubit op-
erations for evaluating the oracle for log p = 512, where [BS18] assumes 237. This
means that the NIST levels are reached even with the low query numbers in [BS18].
More analysis is certainly needed and it is unclear whether that will result in larger
or smaller choices of p. Note that adjusting parameters only involves changing the
prime p (and a few numbers derived from it) and is therefore very simple, should it
turn out that our initial estimates are insufficient.

8 Implementation

In this section, we outline our most important tricks to make the system easier to
implement or the code faster. As pointed out earlier, the crucial step is to use a field
of size 4 · `1 · · · `n − 1, where the `i are small distinct odd primes; this implies that
all `i are Elkies primes for a supersingular elliptic curve over Fp and that the action
of ideals (`i, π ± 1) can be computed efficiently using Fp-rational points. See §4 for
these design decisions. The following section focuses on lower-level implementation
details.

Montgomery curves. The condition p + 1 ≡ 4 (mod 8) implies that all curves in
È `p(Z[π], π) can be put in the form y2 = x3 + Ax2 + x (c. f. Proposition 8) for some
A ∈ Fp via an Fp-isomorphism. This is commonly referred to as the Montgomery
form [Mon87] of an elliptic curve and is popular due to the very efficient arithmetic
on its x-line. This extends well to computations of isogenies on the x-line, as was
first shown by Costello–Longa–Naehrig [CLN16a, §3]. Our implementation uses
exactly the same formulas for operations on curves. For isogeny computations on
Montgomery curves we use a projectivized variant (to avoid almost all inversions)
of the formulas from Costello–Hisil [CH17] and Chapter VIII. This can be done as
follows.

8. Implementation 215

For a fixed prime ` ≥ 3, a point P of order `, and an integer k ∈ {1, . . . , `− 1},
let (Xk : Zk) be the projectivized x-coordinate of [k]P. Then by defining ci ∈ Fp such
that

`−1

∏
i=1

(Ziw + Xi) =
`−1

∑
i=0

ciwi

as polynomials in w, we observe that

(τ(A− 3σ) : 1) =
(

Ac0c`−1 − 3(c0c`−2 − c1c`−1) : c2
`−1
)
,

where

τ =
`−1

∏
i=1

Xi
Zi

, σ =
`−1

∑
i=1

(
Xi
Zi
− Zi

Xi

)
and A is the Montgomery coefficient of the domain curve. By noticing that x([k]P) =
x([`− k]P) for all k ∈ {1, . . . , (`− 1)/2} we can reduce the computation needed by
about half. That is, we can compute (τ(A− 3σ) : 1) iteratively in about 5`M + `S
operations, noting that τ(A − 3σ) is the Montgomery coefficient of the codomain
curve of an isogeny with kernel 〈P〉 (see Proposition VIII.5). If necessary, a single
division at the end of the computation suffices to obtain an affine curve constant. We
refer to the implementation for more details.

Note that for a given prime `, we could reduce the number of field operations by
finding an appropriate representative of the isogeny formulas modulo (a factor of)
the `-division polynomial ψ` (as done in [CLN16a] for 3- and 4-isogenies). Although
this would allow for a more efficient implementation, we do not pursue this now for
the sake of simplicity.

Rational points. Recall that the goal is to evaluate the action of (the class of) an
ideal le1

1 · · · l
en
n on a curve E ∈ È `p(Z[π], π), where each li = (`i, π − 1) is a prime

ideal of small odd norm `i and the ei are integers in a short range {−m, . . . , m}.
We assume E is given in the form EA : y2 = x3 + Ax2 + x. The obvious way to do
this is to consider each factor l±1

i in this product and to find the abscissa of a point
P of order `i on E, which (depending on the sign) is defined over Fp or Fp2 \Fp.
This exists by our choice of p and `i (c. f. §4). Finding such an abscissa amounts
to sampling a random Fp-rational x-coordinate, checking whether x3 + Ax2 + x is
a square or not (for l+1

i resp. l−1
i) in Fp (and resampling if it was wrong), followed

by a multiplication by (p + 1)/`i and repeating from the start if the result is ∞. The
kernel of the isogeny given by l±1

i is then 〈P〉, so the isogeny may be computed using
VÃl’lu-type formulas. Repeating this procedure for all l±1

i gives the result.

216 Chapter IX. CSIDH

However, fixing a sign before sampling a random point effectively means wast-
ing about half of all random points, including an ultimately useless square test.
Moreover, deciding on a prime `i before sampling a point and doing the cofactor
multiplication wastes another proportion of the points, including both an ultimately
useless square test and a scalar multiplication. Both of these issues can be remedied
by not fixing an `i before sampling a point, but instead taking any x-coordinate, de-
termining the smallest field of definition (i. e. Fp or Fp2) of the corresponding point,
and then performing whatever isogeny computations are possible using that point
(based on its field of definition and order). The steps are detailed in Algorithm 2.
Due to the commutativity of cl(O), and since we only decrease (the absolute value

Algorithm 2. Evaluating the class-group action.

Input: An element A ∈ Fp and a list of integers (e1, . . . , en).
Output: An element B such that [le1

1 · · · l
en
n]EA = EB (where EB : y2 = x3 + Bx2 + x).

1 while some ei 6= 0 do
2 Sample a random x ∈ Fp

3 if x3 + Ax2 + x is a square in Fp then s← 1
4 else s← −1
5 Set S← {i | ei 6= 0, sign(ei) = s}
6 if S = ∅ then goto Line 2
7 Set k← ∏i∈S `i and Q← [(p + 1)/k]P
8 for each i ∈ S do
9 Set R← [k/`i]Q

10 if R = ∞ then skip this i
11 Compute an isogeny ϕ : EA → EB : y2 = x3 + Bx2 + x with ker ϕ = R
12 Set A← B, Q← ϕ(Q), k← k/`i, and finally ei ← ei − s
13 return A

of) each ei once we successfully applied the action of l±1
i to the current curve, this

algorithm indeed computes the action of [le1
1 le2

2 · · · l
en
n].

Remark 14. Since the probability that a random point has order divisible by `i (and
hence leads to an isogeny step in Algorithm 2) grows with `i, the isogeny steps for
big `i are typically completed before those for small `i. Hence it may make sense to
sample the exponents ei for ideals li from different ranges depending on the size of
`i, or to not include any very small `i in the factorization of p + 1 at all to reduce
the expected number of repetitions of the loop above. Note moreover that doing so
may also improve the performance of straightforward constant-time adaptations of
our algorithms, since it yields stronger upper bounds on the maximum number of

8. Implementation 217

required loop iterations (at the expense of slightly higher cost per isogeny compu-
tation). Varying the choice of the `i can also lead to performance improvements if
the resulting prime p has lower Hamming weight. Finding such a p is a significant
computational effort but needs to be done only once; all users can use the same finite
field.

Remark 15. Algorithm 2 is obviously variable-time when implemented naïvely. In-
deed, the number of points computed in the isogeny formulas is linear in the degree,
hence the iteration counts of certain loops in our implementation are very directly
related to the private key. We note that it would not be very hard to create a constant-
time implementation based on this algorithm by always performing the maximal
required number of iterations in each loop and only storing the results that were
actually needed (using constant-time conditional instructions), although this incurs
quite a bit of useless computation, leading to a doubling of the number of curve op-
erations on average. We leave the design of optimized constant-time algorithms for
future work.

Public-key validation. Recall that the public-key validation method outlined in §5
essentially consists of computing [(p + 1)/`i]P for each i, where P is a random point
on E. Performing this computation in the straightforward way is simple and effec-
tive. On the other hand, a divide-and-conquer approach, such as the following recur-
sive algorithm, yields better speeds at the expense of slightly higher memory usage.
Note that Algorithm 3 only operates on public data, hence need not be constant-time
in a side-channel resistant implementation.

Algorithm 3. Batch cofactor multiplication [Sut07, Algorithm 7.3].

Input: An elliptic-curve point P and positive integers (k1, . . . , kn).
Output: The points (Q1, . . . , Qn), where Qi =

[
∏j 6=i k j

]
P.

1 if n = 1 then return (P) . Base case
2 Set m← dn/2e and let u← ∏m

i=1 ki, v← ∏n
i=m+1 ki

3 Set L← [v]P and R← [u]P
4 recurse with input (L, (k1, . . . , km)) giving (Q1, . . . , Qm) . Left half
5 recurse with input (R, (km+1, . . . , kn)) giving (Qm+1, . . . , Qn) . Right half
6 return (Q1, . . . , Qn)

This routine can be used for verifying that an elliptic curve E/Fp is supersingular
as follows: Pick a random point P ∈ E(Fp) and run Algorithm 3 on input [4]P and
(`1, . . . , `n) to obtain the points Qi = [(p + 1)/`i]P. Then continue like in Algo-

218 Chapter IX. CSIDH

Table 2. Performance numbers for our proof-of-concept implementation (2018.08.26), aver-
aged over 10 000 runs on an Intel Skylake i5 processor clocked at 3.5 GHz.

Function Clock cycles Wall-clock time Stack memory

Key validation 5.5 · 106 cc 2.1 ms 4 368 bytes

Group action 106 · 106 cc 40.8 ms 2 464 bytes

rithm 1 to verify that E is supersingular using these precomputed points.

In practice, it is not necessary to run Algorithm 3 as a black-box function un-
til it returns all the points Q1, . . . , Qn: The order checking in Algorithm 1 can be
performed as soon as a new point Qi becomes available, i. e. in the base case of Al-
gorithm 3. This reduces the memory usage (since the points Qi can be discarded im-
mediately after use) and increases the speed (since the algorithm terminates as soon
as enough information was obtained) of public-key validation using Algorithms 1
and 3. We note that the improved performance of this algorithm compared to Algo-
rithm 1 alone essentially comes from a time-space trade-off, hence the memory usage
is higher (c. f. §8.1). On severely memory-constrained devices one may instead opt
for the naïve algorithm, which requires less space but is slower.

8.1 Performance Results

On top of a minimal implementation in the sage computer algebra system [Sag18]
for demonstrative purposes, we created a somewhat optimized proof-of-concept im-
plementation of the CSIDH group action for a particular 512-bit prime p. While this
implementation features 512-bit field arithmetic written in assembly (for Intel Sky-
lake processors), it also contains generic C code supporting other field sizes and can
therefore easily be ported to other computer architectures or parameter sets if de-
sired. The prime p is chosen as p = 4 · `1 · · · `74 − 1 where `1 through `73 are the
smallest 73 odd primes and `74 = 587 is the smallest prime distinct from the other `i

that renders p prime. This parameter choice implies that public keys have a size of
64 bytes. Private keys are stored in 37 bytes for simplicity, but an optimal encoding
would reduce this to only 32 bytes. Table 2 summarizes performance numbers for
our proof-of-concept implementation. Note that private-key generation is not listed
as it only consists of sampling n random integers in a small range {−m, . . . , m},
which has negligible cost.

We emphasize that both our implementations are intended as a proof of concept
and unfit for production use; in particular, they are explicitly not side-channel resistant

8. Implementation 219

and may contain any number of bugs. We leave the design of hardened and more
optimized implementations for future work.

220 Chapter IX. CSIDH

Discussion & Conclusions

Finally, we reflect on the material that has been discussed thus far. This thesis has
been divided into two parts that deal with cryptographic protocols intended for se-
curity against classical and quantum adversaries, respectively. It is only natural that
the separation of these two adversarial models plays an important role in the discus-
sion as well. We emphasize that this division is not necessarily legitimate in practice;
typically established systems relying on some cryptographic primitive will need to
migrate to an alternative secure against a quantum adversary, enforcing design re-
strictions on the post-quantum primitive. Furthermore, the uncertainty of the ad-
vancements in quantum computing may warrant for an intermediate period of time
where classical and post-quantum cryptographic primitives are used simultaneously
(called hybrid systems). However, we limit ourselves to a discussion on the impact
of our results and for that reason feel that a separation between classical and post-
quantum primitives is justified.

Moreover, an interesting aspect of the field of cryptography is that it is exception-
ally fast-paced. As all of the work in this thesis has been made public, the first paper
appearing online on 30 October 2015 (Chapter III), much of the material has been fol-
lowed up on by various people. Since the content of this thesis is based on published
work, these follow-up articles have not (with a few exceptions) been discussed. On
the other hand, they can significantly influence the conclusions to be drawn from
our work. Wherever necessary, we comment on those of interest before presenting
conclusions.

Classical Cryptography (Part 2)

We recall that the main goal of the second part (Chapter III–VI) was to improve the
security and efficiency of curve-based primitives based on the discrete logarithm
problem. The first step in this direction (Chapter III) provides complete addition

222 Discussion & Conclusions

formulas for elliptic curves in short Weierstrass form whose group of rational points
over the base (prime) field is odd. These curves are ubiquitous due to their appear-
ance in standards (e. g. [Acc99b; Nat13] though many others exist). As the formulas
do not negatively impact the protocols based on the curves themselves, these for-
mulas can be integrated into existing systems and directly increase the confidence in
their security. This becomes increasingly true in complex systems where exceptional
cases are hard to avoid, in particular when one knows an adversary to have access
to side-channels (e. g. for embedded systems). Although the formulas are not as ef-
ficient as established ones (see e. g. Table III.5), we believe the incurred slowdown is
often worthwhile with respect to the ease of implementation. Again, this is especially
true in systems where the overall efficiency is not determined by the cryptographic
primitive, for which the overhead caused by the formulas will be negligible.

The remaining chapters in the second part (Chapter IV–VI) look towards primi-
tives based on Kummer varieties. In the case of elliptic curves these have been pop-
ularized through the use of Curve25519 [Ber06a], which has been recommended for
use by the Crypto Forum Research Group (CFRG) [LHT16] and is to be included in
the NIST SP 800-186 standard. The attractiveness of Curve25519 does not only come
from its speed, but also from its simplicity. Although initially aimed at the Diffie–
Hellman key exchange, we have aimed to capture this simplicity and transfer it to
the qDSA signature scheme (Chapter V). The main advantage is that one never needs
to compute on the elliptic curve, reducing the code base and improving the ease of
implementation. We have shown its feasibility in Chapter IV by implementing the
scheme based on Curve25519, providing highly memory friendly implementations
on the AVR ATmega (see Table V.3) and ARM Cortex M0 (see Table V.4). Moreover,
its efficiency has since been demonstrated on the ARM Cortex M family [FA17] of
microprocessors and on Intel’s Haswell and Skylake processors [FH+17]. A study
of the arithmetic of the Kummer lines of curves with rational 2-torsion (see Chap-
ter VI) shows that one can easily extend the protocol to other forms of curves. This is
particularly interesting for the case of squared Kummer lines [GL09] where single-
instruction multiple-data (SIMD) instructions can prove beneficial [KS17]. We have
provided an extension to the squared Kummer line on the ARM Cortex M0 (see Ta-
ble VI.2), which has since been implemented on the Skylake platform as well [KS17].
We expect the rise of SIMD to increase their popularity.

The genus-2 counterpart has not received much attention with respect to stan-
dardization, as its computational advantage had not been clear until the work of
Gaudry in 2007 [Gau07]. In Chapter IV we provided the first implementation of a
signature scheme based on a genus-2 Jacobian on the AVR ATmega and ARM Cor-

223

tex M0 architectures, and significantly outperformed the state-of-the-art. There have
since appeared several implementations on FPGAs [GCT17; GT17; Kop+18], for
which the arithmetic is highly suitable due to its inherent parallelism. Although very
efficient, its major downside is the complexity of operations on the Jacobian. This is
precisely the problem that the qDSA scheme intends to solve; all operations are per-
formed on the Kummer surface instead. Its benefits compared to elliptic curves (e. g.
Curve25519) are clear, and they outperform them in terms of code size as well as effi-
ciency. On the other hand, the use of genus-2 curve-based cryptography is much less
standard and therefore not likely to be adopted on a large scale any time soon. We
believe to have alleviated the technical restrictions on doing so, and hope confidence
in its security will be maintained and increased.

Concluding, we believe our work has made a positive impact on the state of
curve-based cryptography. The implementation of the most basic cryptographic pro-
tocols (i. e. key exchange and signatures) has been made more efficient while retain-
ing security, both in the case of more established prime order Weierstrass curves as
well as the more modern schemes based on Kummer varieties. We expect that these
will not only be integrated in existing and upcoming curve-based classical schemes,
but hope that the study of the arithmetic of Kummer varieties could also be valuable
for isogeny-based protocols.

Post-Quantum Cryptography (Part 3)

The second part focuses on isogeny-based cryptography, which has seen a relatively
recent surge in interest. The original had been proposed in 2011 [JDF11], yet it was
not until the paper by Costello, Longa and Naehrig [CLN16a] that its significance
was first demonstrated. The instantiation based on the x-line of a Montgomery curve
computed an isogeny in approximately 15 milliseconds, while having public keys of
564 bytes at an estimated 128-bit security level. It has since gained much attention
and improvements, culminating in the SIKE proposal [Jao+16] for standardization
by NIST. It computes an isogeny in roughly 2.5 milliseconds with 378-byte public
keys, for NIST security category I [Nat16, §4.A.5].12 The main advantage of SIKE is
the small size of its public keys; it is the key exchange proposal with the smallest
public keys.

In Chapter VII we significantly improved the efficiency of compressing the public
keys. The main idea was proposed by [Aza+16] and our improvements both made
it practical, as well as decreased the size of the compressed keys. A follow-up paper

12 This means that breaking the security is at least as hard as recovering a key from AES-128.

224 Discussion & Conclusions

by Zanon et al. [Zan+18] includes additional optimizations. The main downside is
that the techniques to obtain efficient key compression are complex, while rather
cumbersome to implement. For that reason it had initially been excluded from the
SIKE submission, though the advancement to Round 2 has led to the future inclusion
of public-key compression into the proposal. An interesting line of research would
be to improve this further, or alternatively to simplify its implementation.

The next chapter (Chapter VIII) aims to improve the understanding of isoge-
nies between Montgomery curves, and related models. It builds upon the work
by Costello and Hisil [CH17], and generalizes their statements while simultaneously
simplifying their proofs. We believe this work can be extended; that is, it could lead
to interesting isogeny formulas for alternative curve models. In particular, those
that have a canonical choice of point (compared to (0, 0) for Montgomery curves).
We provide a first step in this direction in §VIII.4, but expect this could be improved.

Furthermore, an unfortunate property of SIDH is its insecurity when using static
keys [Gal+16]. This ultimately boils down to a lack of public-key validation, whereas
computation with respect to erroneous public keys can leak information about the
private key. As a result, it is only secure in an ephemeral setting. Alternatively, the
SIKE submission applies modifications to the protocol to provide active security (and
is actually a key encapsulation mechanism), essentially doubling its runtime. Although
not affecting its security, it prohibits using SIKE as a direct replacement for Diffie–
Hellman. This led to the development of CSIDH in Chapter IX which clearly shares
certain characteristics with SIKE. For example, they are based on isogeny graphs su-
persingular elliptic curves and both use the formulas present in Chapter VIII. How-
ever, on a protocol level there are significant differences. The straightforward public-
key validation of CSIDH (see Proposition IX.8) makes the scheme non-interactive, i. e.
allows for static–static key exchange. This gives it a unique flavor and makes it ex-
tremely interesting for practitioners. The main limitation for adoption of CSIDH
has been a lack of concrete understanding of the (sub-exponential) quantum attacks,
though recent papers [BS18; Ber+19] have provided more clarity in this area. We are
convinced more work in this direction will be very beneficial for the use of CSIDH.
Moreover, work has appeared that increases the efficiency of the scheme [MR18]
or considers constant-time implementation [MCR18]. We believe improvements are
still to be made and should be looked into.

Finally, we comment on an obviously desirable yet (seemingly) hard to attain
goal of isogeny-based cryptography. That is, to achieve a full isogeny-based public-
key infrastructure one would want to have a signature scheme. There have been
multiple attempts; Yoo et al. [Yoo+17] present the first general purpose scheme by

225

applying the Fiat-Shamir (or Unruh) transformation to a 1-bit identification scheme
of Jao and De Feo [JDF11], while Galbraith, Petit and Silva [GPS17] independently
present a similar and a second more intricate scheme. Notably, both schemes are ex-
tremely inefficient and lead to large signatures. It is an interesting direction to look
into, though significant changes to the identification scheme (or the transformation)
need to be made to make it practical. Alternatively, a recent paper by Galbraith
and De Feo [DFG19] puts forward a signature scheme based on a 1-bit identification
protocol [RS06] related to the CSIDH class group action. Though clever tricks are
applied (and further ones have since been proposed [DPV18]), the scheme remains
slow and either the public key or the signature is big (trade-offs are possible). Given
its relative novelty, worthwhile improvements could still be found. Again, for sig-
nificant gains we expect drastic changes will be necessary. However, all in all we
believe the search for isogeny-based signatures deserves attention and is a valuable
research direction.

226 Discussion & Conclusions

Bibliography

[Acc99a] Accredited Standards Committee X9. American National Standard X9.62-
1999, Public key cryptography for the financial services industry: the elliptic
curve digital signature algorithm (ECDSA). Draft at http://grouper.
ieee.org/groups/1363/Research/Other.html. 1999.

[Acc99b] Accredited Standards Committee X9. American National Standard X9.63-
2001, Public key cryptography for the financial services industry: key agree-
ment and key transport using elliptic curve cryptography. Draft at http:
//grouper.ieee.org/groups/1363/Research/Other.html. 1999.

[Adj+19] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domínguez, Al-
fred Menezes, and Francisco Rodríguez-Henríquez. “On the Cost of
Computing Isogenies Between Supersingular Elliptic Curves”. In: Se-
lected Areas in Cryptography – SAC 2018. Ed. by Carlos Cid and Michael
J. Jacobson Jr. Cham: Springer International Publishing, 2019, pp. 322–
343. DOI: 10.1007/978-3-030-10970-7_15.

[AFJ14] Reza Azarderakhsh, Dieter Fishbein, and David Jao. Efficient Implemen-
tations of A Quantum-Resistant Key-Exchange Protocol on Embedded sys-
tems. Tech. rep. http://cacr.uwaterloo.ca/techreports/2014/
cacr2014-20.pdf. 2014.

[Age14] Agence nationale de la sécurité des sysèmes d’information (ANSSI).
Mécanismes cryptographiques: Règles et recommandations concernant le
choix et le dimensionnement des mécanismes cryptographiques. http :

//www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf. 2014.

http://grouper.ieee.org/groups/1363/Research/Other.html
http://grouper.ieee.org/groups/1363/Research/Other.html
http://grouper.ieee.org/groups/1363/Research/Other.html
http://grouper.ieee.org/groups/1363/Research/Other.html
https://doi.org/10.1007/978-3-030-10970-7_15
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-20.pdf
http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf
http://www.ssi.gouv.fr/uploads/2015/01/RGS_v-2-0_B1.pdf

228 Bibliography

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. “NewHope on
ARM Cortex-M”. In: Security, Privacy, and Applied Cryptography Engi-
neering. Ed. by Claude Carlet, M. Anwar Hasan, and Vishal Saraswat.
Cham: Springer International Publishing, 2016, pp. 332–349. DOI:
10.1007/978-3-319-49445-6_19.

[AKR12] Christophe Arène, David Kohel, and Christophe Ritzenthaler. “Com-
plete addition laws on abelian varieties”. In: LMS Journal of Com-
putation and Mathematics 15 (2012), pp. 308–316. DOI: 10 . 1112 /

S1461157012001027.

[And] Android Documentation for App Developers. https : / / developer .

android.com/guide/topics/security/cryptography.

[App] Apple Documentation for App Developers. https://developer.apple.
com/documentation/security/seckeyalgorithm.

[Arè+11] Christophe Arène, Tanja Lange, Michael Naehrig, and Christophe
Ritzenthaler. “Faster computation of the Tate pairing”. In: Journal of
Number Theory 131.5 (2011). Elliptic Curve Cryptography, pp. 842 –857.
DOI: 10.1016/j.jnt.2010.05.013.

[Aza+16] Reza Azarderakhsh, David Jao, Kassem Kalach, Brian Koziel, and
Christopher Leonardi. “Key Compression for Isogeny-Based Cryp-
tosystems”. In: Proceedings of the 3rd ACM International Workshop on
ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, May 30
- June 03, 2016. 2016, pp. 1–10. DOI: 10.1145/2898420.2898421.

[Bai62] Walter L. Baily Jr. “On the theory of θ-functions, the moduli of abelian
varieties, and the moduli of curves”. In: Annals of Mathematics (2) 75
(1962), pp. 342–381. DOI: 10.2307/1970178.

[Bar+02] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott.
“Efficient Algorithms for Pairing-Based Cryptosystems”. In: Advances
in Cryptology — CRYPTO 2002. Ed. by Moti Yung. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 354–369. DOI: 10.1007/3-540-
45708-9_23.

[Bar+07] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó hÉigeartaigh, and
Michael Scott. “Efficient pairing computation on supersingular Abelian
varieties”. In: Designs, Codes and Cryptography 42.3 (2007), pp. 239–271.
DOI: 10.1007/s10623-006-9033-6.

https://doi.org/10.1007/978-3-319-49445-6_19
https://doi.org/10.1112/S1461157012001027
https://doi.org/10.1112/S1461157012001027
https://developer.android.com/guide/topics/security/cryptography
https://developer.android.com/guide/topics/security/cryptography
https://developer.apple.com/documentation/security/seckeyalgorithm
https://developer.apple.com/documentation/security/seckeyalgorithm
https://doi.org/10.1016/j.jnt.2010.05.013
https://doi.org/10.1145/2898420.2898421
https://doi.org/10.2307/1970178
https://doi.org/10.1007/3-540-45708-9_23
https://doi.org/10.1007/3-540-45708-9_23
https://doi.org/10.1007/s10623-006-9033-6

Bibliography 229

[Bat+05] Lejla Batina, David Hwang, Alireza Hodjat, Bart Preneel, and In-
grid Verbauwhede. “Hardware/Software Co-design for Hyperelliptic
Curve Cryptography (HECC) on the 8051 µP”. In: Cryptographic Hard-
ware and Embedded Systems – CHES 2005. Ed. by Josyula R. Rao and
Berk Sunar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 106–118. DOI: 10.1007/11545262_8.

[BBMÖ04] Lejla Batina, Geeke Bruin-Muurling, and Sıddıka Berna Örs. “Flexible
Hardware Design for RSA and Elliptic Curve Cryptosystems”. In: Top-
ics in Cryptology – CT-RSA 2004. Ed. by Tatsuaki Okamoto. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004, pp. 250–263. DOI: 10.1007/
978-3-540-24660-2_20.

[BCL14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange.
“Curve41417: Karatsuba Revisited”. In: Cryptographic Hardware and
Embedded Systems – CHES 2014. Ed. by Lejla Batina and Matthew Rob-
shaw. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 316–
334. DOI: 10.1007/978-3-662-44709-3_18.

[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust. “The Magma Al-
gebra System I: The User Language”. In: Journal of Symbolic Computation
24.3/4 (1997), pp. 235–265. DOI: 10.1006/jsco.1996.0125.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Im-
portance of Checking Cryptographic Protocols for Faults”. In: Advances
in Cryptology — EUROCRYPT ’97. Ed. by Walter Fumy. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1997, pp. 37–51. DOI: 10.1007/3-
540-69053-0_4.

[Ber+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-
tiane Peters. “Twisted Edwards Curves”. In: Progress in Cryptology
– AFRICACRYPT 2008. Ed. by Serge Vaudenay. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 389–405. DOI: 10.1007/978-3-
540-68164-9_26.

[Ber+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. “High-speed high-security signatures”. In: Journal of Crypto-
graphic Engineering 2.2 (2012), pp. 77–89. DOI: 10.1007/s13389-012-
0027-1.

https://doi.org/10.1007/11545262_8
https://doi.org/10.1007/978-3-540-24660-2_20
https://doi.org/10.1007/978-3-540-24660-2_20
https://doi.org/10.1007/978-3-662-44709-3_18
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/978-3-540-68164-9_26
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1

230 Bibliography

[Ber+13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
“Elligator: elliptic-curve points indistinguishable from uniform ran-
dom strings”. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. New York, NY, USA: ACM, 2013,
pp. 967–980. DOI: 10.1145/2508859.2516734.

[Ber+14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Pe-
ter Schwabe. “Kummer Strikes Back: New DH Speed Records”. In: Ad-
vances in Cryptology – ASIACRYPT 2014. Ed. by Palash Sarkar and Tetsu
Iwata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 317–
337. DOI: 10.1007/978-3-662-45611-8_17.

[Ber+15a] Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange,
Peter Schwabe, and Sjaak Smetsers. “TweetNaCl: A Crypto Library
in 100 Tweets”. In: Progress in Cryptology - LATINCRYPT 2014. Ed. by
Diego F. Aranha and Alfred Menezes. Cham: Springer International
Publishing, 2015, pp. 64–83. DOI: 10.1007/978-3-319-16295-9_4.

[Ber+15b] Daniel J. Bernstein, Chitchanok Chuengsatiansup, David Kohel, and
Tanja Lange. “Twisted Hessian Curves”. In: Progress in Cryptology –
LATINCRYPT 2015. Ed. by Kristin Lauter and Francisco Rodríguez-
Henríquez. Cham: Springer International Publishing, 2015, pp. 269–
294. DOI: 10.1007/978-3-319-22174-8_15.

[Ber+16] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
The KECCAK sponge function family. http://keccak.noekeon.org/.
2016.

[Ber+19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz Panny.
“Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of
Isogenies”. In: Advances in Cryptology – EUROCRYPT 2019. Ed. by Yu-
val Ishai and Vincent Rijmen. Cham: Springer International Publishing,
2019, pp. 409–441. DOI: 10.1007/978-3-030-17656-3_15.

[Ber06a] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”.
In: Public Key Cryptography - PKC 2006. Ed. by Moti Yung, Yevgeniy
Dodis, Aggelos Kiayias, and Tal Malkin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 207–228. DOI: 10.1007/11745853_14.

[Ber06b] Daniel J. Bernstein. Differential addition chains. http://cr.yp.to/ecdh/
diffchain-20060219.pdf. 2006.

https://doi.org/10.1145/2508859.2516734
https://doi.org/10.1007/978-3-662-45611-8_17
https://doi.org/10.1007/978-3-319-16295-9_4
https://doi.org/10.1007/978-3-319-22174-8_15
http://keccak.noekeon.org/
https://doi.org/10.1007/978-3-030-17656-3_15
https://doi.org/10.1007/11745853_14
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf

Bibliography 231

[Ber06c] Daniel J. Bernstein. Elliptic vs. hyperelliptic, part 1. http://cr.yp.to/
talks/2006.09.20/slides.pdf. 2006.

[BIJ18] Jean-François Biasse, Annamaria Iezzi, and Michael J. Jacobson.
“A Note on the Security of CSIDH”. In: Progress in Cryptology –
INDOCRYPT 2018. Ed. by Debrup Chakraborty and Tetsu Iwata.
Cham: Springer International Publishing, 2018, pp. 153–168. DOI:
10.1007/978-3-030-05378-9_9.

[Bis12] Gaetan Bisson. “Computing endomorphism rings of elliptic curves un-
der the GRH”. In: Journal of Mathematical Cryptology 5.2 (2012), pp. 101–
114. DOI: 10.1515/JMC.2011.008.

[BJ02] Éric Brier and Marc Joye. “Weierstraß Elliptic Curves and Side-Channel
Attacks”. In: Public Key Cryptography. Ed. by David Naccache and Pas-
cal Paillier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 335–345. DOI: 10.1007/3-540-45664-3_24.

[BJ03] Eric Brier and Marc Joye. “Fast Point Multiplication on Elliptic Curves
through Isogenies”. In: Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes. Ed. by Marc Fossorier, Tom Høholdt, and Alain Poli.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 43–50. DOI:
10.1007/3-540-44828-4_6.

[BJS14] Jean-François Biasse, David Jao, and Anirudh Sankar. “A Quantum
Algorithm for Computing Isogenies between Supersingular Elliptic
Curves”. In: Progress in Cryptology – INDOCRYPT 2014. Ed. by Willi
Meier and Debdeep Mukhopadhyay. Cham: Springer International
Publishing, 2014, pp. 428–442. DOI: 10.1007/978-3-319-13039-2_25.

[BLa] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of
Cryptographic Systems. https://bench.cr.yp.to/index.html.

[BLb] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database. https:
//hyperelliptic.org/EFD/index.html.

[BLc] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for
elliptic-curve cryptography. http://safecurves.cr.yp.to/.

[BL07] Daniel J. Bernstein and Tanja Lange. “Faster Addition and Doubling on
Elliptic Curves”. In: Advances in Cryptology – ASIACRYPT 2007. Ed. by
Kaoru Kurosawa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 29–50. DOI: 10.1007/978-3-540-76900-2_3.

http://cr.yp.to/talks/2006.09.20/slides.pdf
http://cr.yp.to/talks/2006.09.20/slides.pdf
https://doi.org/10.1007/978-3-030-05378-9_9
https://doi.org/10.1515/JMC.2011.008
https://doi.org/10.1007/3-540-45664-3_24
https://doi.org/10.1007/3-540-44828-4_6
https://doi.org/10.1007/978-3-319-13039-2_25
https://bench.cr.yp.to/index.html
https://hyperelliptic.org/EFD/index.html
https://hyperelliptic.org/EFD/index.html
http://safecurves.cr.yp.to/
https://doi.org/10.1007/978-3-540-76900-2_3

232 Bibliography

[BL09] Daniel J. Bernstein and Tanja Lange. Complete addition laws for elliptic
curves. http://cr.yp.to/talks/2009.04.17/slides.pdf. 2009.

[BL95] W. Bosma and H. W. Lenstra. “Complete Systems of Two Addition
Laws for Elliptic Curves”. In: Journal of Number theory 53.2 (1995),
pp. 229–240. DOI: 10.1006/jnth.1995.1088.

[BLS12] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. “The Security Im-
pact of a New Cryptographic Library”. In: Progress in Cryptology – LAT-
INCRYPT 2012. Ed. by Alejandro Hevia and Gregory Neven. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 159–176. DOI: 10 .
1007/978-3-642-33481-8_9.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-Friendly Ellip-
tic Curves of Prime Order”. In: Selected Areas in Cryptography. Ed. by
Bart Preneel and Stafford Tavares. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 319–331. DOI: 10.1007/11693383_22.

[Boe90] Bert den Boer. “Diffie-Hellman is as Strong as Discrete Log for Certain
Primes”. In: Advances in Cryptology — CRYPTO’ 88. Ed. by Shafi Gold-
wasser. New York, NY: Springer New York, 1990, pp. 530–539. DOI:
10.1007/0-387-34799-2_38.

[Bos+13] Joppe W. Bos, Craig Costello, Huseyin Hisil, and Kristin Lauter. “Fast
Cryptography in Genus 2”. In: Advances in Cryptology – EUROCRYPT
2013. Ed. by Thomas Johansson and Phong Q. Nguyen. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2013, pp. 194–210. DOI: 10.1007/978-
3-642-38348-9_12.

[Bos+14] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore,
Michael Naehrig, and Eric Wustrow. “Elliptic Curve Cryptography
in Practice”. In: Financial Cryptography and Data Security. Ed. by Nico-
las Christin and Reihaneh Safavi-Naini. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 157–175. DOI: 10 . 1007 / 978 - 3 - 662 -
45472-5_11.

[Bos+16] Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig. “Se-
lecting elliptic curves for cryptography: an efficiency and security anal-
ysis”. In: Journal of Cryptographic Engineering 6.4 (2016), pp. 259–286.
DOI: 10.1007/s13389-015-0097-y.

http://cr.yp.to/talks/2009.04.17/slides.pdf
https://doi.org/10.1006/jnth.1995.1088
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/0-387-34799-2_38
https://doi.org/10.1007/978-3-642-38348-9_12
https://doi.org/10.1007/978-3-642-38348-9_12
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/s13389-015-0097-y

Bibliography 233

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles Are Practical: A
Paradigm for Designing Efficient Protocols”. In: Proceedings of the 1st
ACM Conference on Computer and Communications Security. New York,
NY, USA: ACM, 1993, pp. 62–73. DOI: 10.1145/168588.168596.

[Brö08] Reinier Bröker. “A p-adic algorithm to compute the Hilbert class poly-
nomial”. In: Mathematics of Computation 77.264 (2008), pp. 2417–2435.
DOI: 10.1090/S0025-5718-08-02091-7.

[BS07] Reinier Bröker and Peter Stevenhagen. “Efficient CM-constructions of
elliptic curves over finite fields”. In: Mathematics of Computation 76.260
(2007), pp. 2161–2179. DOI: 10.1090/S0025-5718-07-01980-1.

[BS18] Xavier Bonnetain and André Schrottenloher. Quantum Security Analysis
of CSIDH and Ordinary Isogeny-based Schemes. IACR Cryptology ePrint
Archive 2018/537, version 20180621:135910. https://eprint.iacr.
org/2018/537/20180621:135910. 2018.

[BV07] Johannes Buchmann and Ulrich Vollmer. Binary quadratic forms: an algo-
rithmic approach. Vol. 20. Algorithms and Computation in Mathematics.
Springer, 2007. DOI: 10.1007/978-3-540-46368-9.

[BY91] Gilles Brassard and Moti Yung. “One-Way Group Actions”. In: Ad-
vances in Cryptology – CRYPTO’ 90. Ed. by Alfred J. Menezes and
Scott A. Vanstone. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 94–107. DOI: 10.1007/3-540-38424-3_7.

[Can87] David G. Cantor. “Computing in the Jacobian of a Hyperelliptic
Curve”. In: Mathematics of Computation 48 (1987), pp. 95–101. DOI:
10.1090/S0025-5718-1987-0866101-0.

[CBC07] Gang Chen, Guoqiang Bai, and Hongyi Chen. “A High-Performance
Elliptic Curve Cryptographic Processor for General Curves Over GF(p)
Based on a Systolic Arithmetic Unit”. In: Circuits and Systems II: Ex-
press Briefs, IEEE Transactions on 54.5 (2007), pp. 412–416. DOI: 10.1109/
TCSII.2006.889459.

[CC86] David V. Chudnovsky and Gregory V. Chudnovsky. “Sequences of
numbers generated by addition in formal groups and new primality
and factorization tests”. In: Advances in Applied Mathematics 7 (1986),
pp. 385–434. DOI: 10.1016/0196-8858(86)90023-0.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1090/S0025-5718-08-02091-7
https://doi.org/10.1090/S0025-5718-07-01980-1
https://eprint.iacr.org/2018/537/20180621:135910
https://eprint.iacr.org/2018/537/20180621:135910
https://doi.org/10.1007/978-3-540-46368-9
https://doi.org/10.1007/3-540-38424-3_7
https://doi.org/10.1090/S0025-5718-1987-0866101-0
https://doi.org/10.1109/TCSII.2006.889459
https://doi.org/10.1109/TCSII.2006.889459
https://doi.org/10.1016/0196-8858(86)90023-0

234 Bibliography

[CCS15] Craig Costello, Ping-Ngai Chung, and Benjamin Smith. Fast, uniform,
and compact scalar multiplication for elliptic curves and genus 2 Jacobians
with applications to signature schemes. Cryptology ePrint Archive, Report
2015/983. https://eprint.iacr.org/2015/983. 2015.

[CCS17] Ping Ngai Chung, Craig Costello, and Benjamin Smith. “Fast, Uniform
Scalar Multiplication for Genus 2 Jacobians with Fast Kummers”. In:
Selected Areas in Cryptography – SAC 2016. Ed. by Roberto Avanzi and
Howard Heys. Cham: Springer International Publishing, 2017, pp. 465–
481. DOI: 10.1007/978-3-319-69453-5_25.

[Cer] Ltd Certivox UK. CertiVox Standard Curves. http://docs.certivox.
com/docs/miracl/certivox-standard-curves.

[Cer10] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parame-
ters, Version 2.0. http://www.secg.org/sec2-v2.pdf. 2010.

[CF96] John W. S. Cassels and E. Victor Flynn. Prolegomena to a middlebrow arith-
metic of curves of genus 2. Vol. 230. Cambridge University Press, 1996.
DOI: 10.1017/CBO9780511526084.

[CGF08] Wouter Castryck, Steven Galbraith, and Reza Rezaeian Farashahi.
Efficient arithmetic on elliptic curves using a mixed Edwards-Montgomery
representation. Cryptology ePrint Archive, Report 2008/218. https :

//eprint.iacr.org/2008/218. 2008.

[CH17] Craig Costello and Huseyin Hisil. “A Simple and Compact Algorithm
for SIDH with Arbitrary Degree Isogenies”. In: Advances in Cryptology –
ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham:
Springer International Publishing, 2017, pp. 303–329. DOI: 10.1007/
978-3-319-70697-9_11.

[Che+16] Lidong Chen, Stephen P. Jordan, Yi-Kai Liu, Dustin Moody, Rene C.
Peralta, Ray A. Perlner, and Daniel C. Smith-Tone. Report on Post-
Quantum Cryptography. NISTIR 8105, DRAFT. http : / / csrc . nist .
gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf.
2016.

[Chi10] Chinese Commerical Cryptography Administration Office. SM2 Dig-
ital Signature Algorithm. See http://www.oscca.gov.cn/UpFile/

2010122214836668.pdf and http://tools.ietf.org/html/draft-

shen-sm2-ecdsa-02. 2010.

https://eprint.iacr.org/2015/983
https://doi.org/10.1007/978-3-319-69453-5_25
http://docs.certivox.com/docs/miracl/certivox-standard-curves
http://docs.certivox.com/docs/miracl/certivox-standard-curves
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1017/CBO9780511526084
https://eprint.iacr.org/2008/218
https://eprint.iacr.org/2008/218
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
http://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
http://tools.ietf.org/html/draft-shen-sm2-ecdsa-02

Bibliography 235

[Cho15] Tung Chou. Sandy2x. Message on the Curves mailing list at https://
moderncrypto.org/mail-archive/curves/2015/000637.html. 2015.

[CJS14] Andrew M. Childs, David Jao, and Vladimir Soukharev. “Constructing
elliptic curve isogenies in quantum subexponential time”. In: Journal of
Mathematical Cryptology 8.1 (2014), pp. 1–29. DOI: 10.1515/jmc-2012-
0016.

[CL15] Craig Costello and Patrick Longa. “FourQ: Four-Dimensional Decom-
positions on a Q-curve over the Mersenne Prime”. In: Advances in Cryp-
tology – ASIACRYPT 2015. Ed. by Tetsu Iwata and Jung Hee Cheon.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 214–235. DOI:
10.1007/978-3-662-48797-6_10.

[CL84] Henri Cohen and Hendrik W. Lenstra, Jr. “Heuristics on class groups
of number fields”. In: Number Theory Noordwijkerhout 1983. Ed. by Hen-
drik Jager. Springer, 1984, pp. 33–62. DOI: 10.1007/BFb0099440.

[CLG09] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. “Cryptographic
Hash Functions from Expander Graphs”. In: Journal of Cryptology 22.1
(2009), pp. 93–113. DOI: 10.1007/s00145-007-9002-x.

[CLN16a] Craig Costello, Patrick Longa, and Michael Naehrig. “Efficient Algo-
rithms for Supersingular Isogeny Diffie-Hellman”. In: Advances in Cryp-
tology – CRYPTO 2016. Ed. by Matthew Robshaw and Jonathan Katz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 572–601. DOI:
10.1007/978-3-662-53018-4_21.

[CLN16b] Craig Costello, Patrick Longa, and Michael Naehrig. SIDH Library.
http://research.microsoft.com/en- us/downloads/bd5fd4cd-

61b6-458a-bd94-b1f406a3f33f/. 2016.

[CMO98] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono. “Efficient Elliptic
Curve Exponentiation Using Mixed Coordinates”. In: Advances in
Cryptology — ASIACRYPT’98. Ed. by Kazuo Ohta and Dingyi Pei.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 51–65. DOI:
10.1007/3-540-49649-1_6.

[Com15] Committee on National Security Systems (CNSS). Advisory Memoran-
dum: Use of Public Standards for the Secure Sharing of Information Among
National Security Systems. https://www.cnss.gov/CNSS/openDoc.cfm?
Q5ww0Xu+7kg/OpTB/R2/MQ==. 2015.

https://moderncrypto.org/mail-archive/curves/2015/000637.html
https://moderncrypto.org/mail-archive/curves/2015/000637.html
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/BFb0099440
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/978-3-662-53018-4_21
http://research.microsoft.com/en-us/downloads/bd5fd4cd-61b6-458a-bd94-b1f406a3f33f/
http://research.microsoft.com/en-us/downloads/bd5fd4cd-61b6-458a-bd94-b1f406a3f33f/
https://doi.org/10.1007/3-540-49649-1_6
https://www.cnss.gov/CNSS/openDoc.cfm?Q5ww0Xu+7kg/OpTB/R2/MQ==
https://www.cnss.gov/CNSS/openDoc.cfm?Q5ww0Xu+7kg/OpTB/R2/MQ==

236 Bibliography

[Cor99] Jean-Sébastien Coron. “Resistance Against Differential Power Analysis
For Elliptic Curve Cryptosystems”. In: Cryptographic Hardware and Em-
bedded Systems. Ed. by Çetin K. Koç and Christof Paar. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1999, pp. 292–302. DOI: 10.1007/3-
540-48059-5_25.

[Cos11] Romain Cosset. “Applications of theta functions for hyperelliptic
curve cryptography”. https://tel.archives- ouvertes.fr/tel-
00642951/file/main.pdf. PhD thesis. Université Henri Poincaré -
Nancy I, 2011.

[COS86] Don Coppersmith, Andrew M. Odlzyko, and Richard Schroeppel. “Dis-
crete Logarithms in GF(p)”. In: Algorithmica 1.1 (1986), pp. 1–15. DOI:
10.1007/BF01840433.

[Cou06] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint
Archive, Report 2006/291. https://eprint.iacr.org/2006/291.
2006.

[Cox13] David A. Cox. Primes of the form x2 + ny2: Fermat, class field theory, and
complex multiplication. 2nd. Pure and applied mathematics. Wiley, 2013.
DOI: 10.1002/9781118400722.

[CS17] Craig Costello and Benjamin Smith. “Montgomery curves and their
arithmetic”. In: Journal of Cryptographic Engineering 8 (2017), pp. 227–
240. DOI: 10.1007/s13389-017-0157-6.

[DF17] Luca De Feo. “Mathematics of Isogeny Based Cryptography”. In: arXiv
e-prints (2017). https://arxiv.org/abs/1711.04062.

[DFG19] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Sig-
natures from Class Group Actions”. In: Advances in Cryptology – EURO-
CRYPT 2019. Ed. by Yuval Ishai and Vincent Rijmen. Cham: Springer
International Publishing, 2019, pp. 759–789. DOI: 10.1007/978-3-030-
17659-4_26.

[DFJP14] Luca De Feo, David Jao, and Jérôme Plût. “Towards Quantum-
Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies”.
In: Journal of Mathematical Cryptology 8 (2014), pp. 209–247. DOI:
10.1515/jmc-2012-0015.

https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://tel.archives-ouvertes.fr/tel-00642951/file/main.pdf
https://tel.archives-ouvertes.fr/tel-00642951/file/main.pdf
https://doi.org/10.1007/BF01840433
https://eprint.iacr.org/2006/291
https://doi.org/10.1002/9781118400722
https://doi.org/10.1007/s13389-017-0157-6
https://arxiv.org/abs/1711.04062
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1515/jmc-2012-0015

Bibliography 237

[DFKS18] Luca De Feo, Jean Kieffer, and Benjamin Smith. “Towards Practical Key
Exchange from Ordinary Isogeny Graphs”. In: Advances in Cryptology –
ASIACRYPT 2018. Ed. by Thomas Peyrin and Steven Galbraith. Cham:
Springer International Publishing, 2018, pp. 365–394. DOI: 10.1007/
978-3-030-03332-3_14.

[DG16] Christina Delfs and Steven D. Galbraith. “Computing isogenies be-
tween supersingular elliptic curves over Fp”. In: Designs, Codes and
Cryptography 78.2 (2016), pp. 425–440. DOI: 10 . 1007 / s10623 - 014 -
0010-1.

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in cryptogra-
phy”. In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–
654. DOI: 10.1109/TIT.1976.1055638.

[DPV18] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster
SeaSign signatures through improved rejection sampling. Cryptology ePrint
Archive, Report 2018/1109. https://eprint.iacr.org/2018/1109.
2018.

[Duq04] Sylvain Duquesne. “Montgomery Scalar Multiplication for Genus 2
Curves”. In: Algorithmic Number Theory. Ed. by Duncan Buell. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 153–168. DOI:
10.1007/978-3-540-24847-7_11.

[Dwo15] Morris J. Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. Tech. rep. http : / / www . nist . gov /

manuscript- publication- search.cfm?pub_id=919061. National
Institute of Standards and Technology (NIST), 2015.

[Dül+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter,
Christof Paar, Ana Helena Sánchez, and Peter Schwabe. “High-speed
Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers”. In: Designs,
Codes and Cryptography 77.2 (2015), pp. 493–514. DOI: 10.1007/s10623-
015-0087-1.

[ECC05] ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation.
http://www.ecc-brainpool.org/download/Domain-parameters.

pdf. 2005.

[Edw07] Harold Edwards. “A normal form for elliptic curves”. In: Bulletin of the
American Mathematical Society 44.3 (2007), pp. 393–422. DOI: 10.1090/
S0273-0979-07-01153-6.

https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1109/TIT.1976.1055638
https://eprint.iacr.org/2018/1109
https://doi.org/10.1007/978-3-540-24847-7_11
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919061
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919061
https://doi.org/10.1007/s10623-015-0087-1
https://doi.org/10.1007/s10623-015-0087-1
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1090/S0273-0979-07-01153-6

238 Bibliography

[ElG85] Taher ElGamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: Advances in Cryptology. Ed. by
George Robert Blakley and David Chaum. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1985, pp. 10–18. DOI: 10.1109/TIT.1985.1057074.

[Eng14] Andreas Enge. “Bilinear pairings on elliptic curves”. In: arXiv e-prints
(2014). https://arxiv.org/abs/1301.5520.

[FA17] H. Fujii and D. F. Aranha. “Curve25519 for the Cortex-M4 and beyond”.
In: Progress in Cryptology – LATINCRYPT 2017. http://www.cs.haifa.
ac.il/~orrd/LC17/paper39.pdf. 2017.

[FGV11] Junfeng Fan, Benedikt Gierlichs, and Frederik Vercauteren. “To Infinity
and Beyond: Combined Attack on ECC Using Points of Low Order”.
In: Cryptographic Hardware and Embedded Systems – CHES 2011. Ed. by
Bart Preneel and Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 143–159. DOI: 10.1007/978-3-642-23951-9_10.

[FH+17] Armando Faz-Hernández, Hayato Fujii, Diego F. Aranha, and Julio
López. “A Secure and Efficient Implementation of the Quotient Dig-
ital Signature Algorithm (qDSA)”. In: Security, Privacy, and Applied
Cryptography Engineering. Ed. by Sk Subidh Ali, Jean-Luc Danger, and
Thomas Eisenbarth. Cham: Springer International Publishing, 2017,
pp. 170–189. DOI: 10.1007/978-3-319-71501-8_10.

[FH17] Reza Rezaeian Farashahi and Seyed Gholamhossein Hosseini. “Differ-
ential Addition on Twisted Edwards Curves”. In: Information Security
and Privacy. Ed. by Josef Pieprzyk and Suriadi Suriadi. Cham: Springer
International Publishing, 2017, pp. 366–378. DOI: 10.1007/978-3-319-
59870-3_21.

[FHL15] Armando Faz-Hernández and Julio López. “Fast Implementation of
Curve25519 Using AVX2”. In: Progress in Cryptology – LATINCRYPT
2015. Ed. by Kristin Lauter and Francisco Rodríguez-Henríquez. Cham:
Springer International Publishing, 2015, pp. 329–345. DOI: 10.1007/
978-3-319-22174-8_18.

[FMW12] Reza Rezaeian Farashahi, Dustin Moody, and Hongfeng Wu. “Isomor-
phism classes of Edwards curves over finite fields”. In: Finite Fields and
Their Applications 18.3 (2012), pp. 597 –612. DOI: 10.1016/j.ffa.2011.
12.004.

https://doi.org/10.1109/TIT.1985.1057074
https://arxiv.org/abs/1301.5520
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
https://doi.org/10.1007/978-3-642-23951-9_10
https://doi.org/10.1007/978-3-319-71501-8_10
https://doi.org/10.1007/978-3-319-59870-3_21
https://doi.org/10.1007/978-3-319-59870-3_21
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1007/978-3-319-22174-8_18
https://doi.org/10.1016/j.ffa.2011.12.004
https://doi.org/10.1016/j.ffa.2011.12.004

Bibliography 239

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asym-
metric and Symmetric Encryption Schemes”. In: Advances in Cryptology
— CRYPTO’ 99. Ed. by Michael Wiener. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 537–554. DOI: 10.1007/s00145-011-9114-
1.

[Fre+13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-
terson. “Non-Interactive Key Exchange”. In: Public-Key Cryptography –
PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 254–271. DOI: 10.1007/
978-3-642-36362-7_17.

[FS09] Reza Rezaeian Farashahi and Igor E. Shparlinski. “On the number of
distinct elliptic curves in some families”. In: Designs, Codes and Cryptog-
raphy 54.1 (2009), p. 83. DOI: 10.1007/s10623-009-9310-2.

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solu-
tions to Identification and Signature Problems”. In: Advances in Cryp-
tology — CRYPTO’ 86. Ed. by Andrew M. Odlyzko. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1987, pp. 186–194. DOI: 10.1007/3-540-
47721-7_12.

[FV12] Junfeng Fan and Ingrid Verbauwhede. “An Updated Survey on Se-
cure ECC Implementations: Attacks, Countermeasures and Cost”. In:
Cryptography and Security: From Theory to Applications: Essays Dedicated
to Jean-Jacques Quisquater on the Occasion of His 65th Birthday. Ed. by
David Naccache. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 265–282. DOI: 10.1007/978-3-642-28368-0_18.

[Gal+16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. “On
the Security of Supersingular Isogeny Cryptosystems”. In: Advances in
Cryptology – ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi
Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 63–
91. DOI: 10.1007/978-3-662-53887-6_3.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2012. DOI: 10.1017/CBO9781139012843.

[Gal99] Steven D. Galbraith. “Constructing Isogenies between Elliptic Curves
Over Finite Fields”. In: LMS Journal of Computation and Mathematics 2
(1999), pp. 118–138. DOI: 10.1112/S1461157000000097.

https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/s10623-009-9310-2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-28368-0_18
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1017/CBO9781139012843
https://doi.org/10.1112/S1461157000000097

240 Bibliography

[Gau+07] Pierrick Gaudry, Emmanuel Thomé, Nicolas Thériault, and Claus
Diem. “A Double Large Prime Variation for Small Genus Hyperelliptic
Index Calculus”. In: Mathematics of Computation 76.257 (2007), pp. 475–
492. DOI: 10.1090/S0025-5718-06-01900-4.

[Gau06] Pierrick Gaudry. Variants of the montgomery form based on theta functions.
http://www.fields.utoronto.ca/audio/06-07/number_theory/

gaudry/. 2006.

[Gau07] Pierrick Gaudry. “Fast genus 2 arithmetic based on Theta functions”.
In: Journal of Mathematical Cryptology 1.3 (2007), pp. 243–265. DOI: 10.
1515/JMC.2007.012.

[GCT17] Gabriel Gallin, Turku Ozlum Celik, and Arnaud Tisserand. “Architec-
ture Level Optimizations for Kummer Based HECC on FPGAs”. In:
Progress in Cryptology – INDOCRYPT 2017. Ed. by Arpita Patra and
Nigel P. Smart. Cham: Springer International Publishing, 2017, pp. 44–
64. DOI: 10.1007/978-3-319-71667-1_3.

[GHS02] Steven D. Galbraith, Keith Harrison, and David Soldera. “Implement-
ing the Tate Pairing”. In: Proceedings of the 5th International Symposium
on Algorithmic Number Theory. ANTS-V. Berlin, Heidelberg: Springer-
Verlag, 2002, pp. 324–337. DOI: 10.1007/3-540-45455-1_26.

[GL09] Pierrick Gaudry and David Lubicz. “The arithmetic of characteristic 2
Kummer surfaces and of elliptic Kummer lines”. In: Finite Fields and
Their Applications 15.2 (2009), pp. 246–260. DOI: 10.1016/j.ffa.2008.
12.006.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. “Faster
Point Multiplication on Elliptic Curves with Efficient Endomor-
phisms”. In: Advances in Cryptology — CRYPTO 2001. Ed. by Joe Kilian.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 190–200. DOI:
10.1007/3-540-44647-8_11.

[Gov01] Government Committee of Russia for Standards. Information technol-
ogy. Cryptographic data security. Signature and verification processes of [elec-
tronic] digital signature. See https://tools.ietf.org/html/rfc5832.
2001.

[GP08] Tim Güneysu and Christof Paar. “Ultra High Performance ECC over
NIST Primes on Commercial FPGAs”. In: Cryptographic Hardware and
Embedded Systems – CHES 2008. Ed. by Elisabeth Oswald and Pankaj

https://doi.org/10.1090/S0025-5718-06-01900-4
http://www.fields.utoronto.ca/audio/06-07/number_theory/gaudry/
http://www.fields.utoronto.ca/audio/06-07/number_theory/gaudry/
https://doi.org/10.1515/JMC.2007.012
https://doi.org/10.1515/JMC.2007.012
https://doi.org/10.1007/978-3-319-71667-1_3
https://doi.org/10.1007/3-540-45455-1_26
https://doi.org/10.1016/j.ffa.2008.12.006
https://doi.org/10.1016/j.ffa.2008.12.006
https://doi.org/10.1007/3-540-44647-8_11
https://tools.ietf.org/html/rfc5832

Bibliography 241

Rohatgi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 62–
78. DOI: 10.1007/978-3-540-85053-3_5.

[GPS17] Steven D. Galbraith, Christophe Petit, and Javier Silva. “Identification
Protocols and Signature Schemes Based on Supersingular Isogeny
Problems”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International
Publishing, 2017, pp. 3–33. DOI: 10.1007/978-3-319-70694-8_1.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing. New York, NY, USA: ACM, 1996, pp. 212–219. DOI:
10.1145/237814.237866.

[GS12] Pierrick Gaudry and Éric Schost. “Genus 2 Point Counting over Prime
Fields”. In: Journal of Symbolic Computing 47.4 (2012), pp. 368–400. DOI:
10.1016/j.jsc.2011.09.003.

[GT17] G. Gallin and A. Tisserand. “Hyper-threaded multiplier for HECC”.
In: 51st Asilomar Conference on Signals, Systems, and Computers. 2017,
pp. 447–451. DOI: 10.1109/ACSSC.2017.8335378.

[GV18] Steven D. Galbraith and Frederik Vercauteren. “Computational prob-
lems in supersingular elliptic curve isogenies”. In: Quantum Information
Processing 17.10 (2018), p. 265. DOI: 10.1007/s11128-018-2023-6.

[Hal05] Sean Hallgren. “Fast Quantum Algorithms for Computing the Unit
Group and Class Group of a Number Field”. In: Proceedings of the Thirty-
seventh Annual ACM Symposium on Theory of Computing. New York, NY,
USA: ACM, 2005, pp. 468–474. DOI: 10.1145/1060590.1060660.

[Ham12] Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology
ePrint Archive, Report 2012/309. http://eprint.iacr.org/2012/309.
2012.

[Ham14] Mike Hamburg. Twisting Edwards curves with isogenies. Cryptology
ePrint Archive, Report 2014/027. http://eprint.iacr.org/. 2014.

[Ham15a] Mike Hamburg. “Decaf: Eliminating Cofactors Through Point Com-
pression”. In: Advances in Cryptology – CRYPTO 2015. Ed. by Rosario
Gennaro and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2015, pp. 705–723. DOI: 10.1007/978-3-662-47989-6_34.

[Ham15b] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint
Archive, Report 2015/625. http://eprint.iacr.org/. 2015.

https://doi.org/10.1007/978-3-540-85053-3_5
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1145/237814.237866
https://doi.org/10.1016/j.jsc.2011.09.003
https://doi.org/10.1109/ACSSC.2017.8335378
https://doi.org/10.1007/s11128-018-2023-6
https://doi.org/10.1145/1060590.1060660
http://eprint.iacr.org/2012/309
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-662-47989-6_34
http://eprint.iacr.org/

242 Bibliography

[Ham17] Mike Hamburg. The STROBE protocol framework. Cryptology ePrint
Archive, Report 2017/003. http://eprint.iacr.org/2017/003. 2017.

[Har77] Robin Hartshorne. Algebraic Geometry. Vol. 52. Springer-Verlag New
York, 1977. DOI: 10.1007/978-1-4757-3849-0.

[Has36] Helmut Hasse. “Zur Theorie der abstrakten elliptischen Funktio-
nenkörper III. Die Struktur des Meromorphismenrings. Die Rie-
mannsche Vermutung.” In: Journal für die reine und angewandte Mathe-
matik 175 (1936), pp. 193–208. DOI: 10.2969/jmsj/00310045.

[HC14] Huseyin Hisil and Craig Costello. “Jacobian Coordinates on Genus 2
Curves”. In: Advances in Cryptology – ASIACRYPT 2014. Ed. by Palash
Sarkar and Tetsu Iwata. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 338–357. DOI: 10.1007/s00145-016-9227-7.

[Hes08] Florian Hess. “Pairing Lattices”. In: Pairing-Based Cryptography – Pair-
ing 2008. Ed. by Steven D. Galbraith and Kenneth G. Paterson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 18–38. DOI: 10.1007/
978-3-540-85538-5_2.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular
Analysis of the Fujisaki-Okamoto Transformation”. In: Theory of Cryp-
tography. Ed. by Yael Kalai and Leonid Reyzin. Cham: Springer Interna-
tional Publishing, 2017, pp. 341–371. DOI: 10.1007/978-3-319-70500-
2_12.

[Hil90] David Hilbert. “Ueber die Theorie der algebraischen Formen”. In:
Mathematische Annalen 36.4 (1890), pp. 473–534. DOI: 10 . 1007 /

BF01208503.

[His+08] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Daw-
son. “Twisted Edwards Curves Revisited”. In: Advances in Cryptology
- ASIACRYPT 2008. Ed. by Josef Pieprzyk. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 326–343. DOI: 10 . 1007 / 978 - 3 - 540 -
89255-7_20.

[His10] Huseyin Hisil. “Elliptic curves, group law, and efficient computation”.
http://eprints.qut.edu.au/33233/. PhD thesis. Queensland Uni-
versity of Technology, 2010.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols.
Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-
14303-8.

http://eprint.iacr.org/2017/003
https://doi.org/10.1007/978-1-4757-3849-0
https://doi.org/10.2969/jmsj/00310045
https://doi.org/10.1007/s00145-016-9227-7
https://doi.org/10.1007/978-3-540-85538-5_2
https://doi.org/10.1007/978-3-540-85538-5_2
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/BF01208503
https://doi.org/10.1007/BF01208503
https://doi.org/10.1007/978-3-540-89255-7_20
https://doi.org/10.1007/978-3-540-89255-7_20
http://eprints.qut.edu.au/33233/
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-14303-8

Bibliography 243

[HLX12] Zhi Hu, Patrick Longa, and Maozhi Xu. “Implementing the 4-
dimensional GLV method on GLS elliptic curves with j-invariant
0”. In: Designs, Codes and Cryptography 63.3 (2012), pp. 331–343. DOI:
10.1007/s10623-011-9558-1.

[HM89] James L. Hafner and Kevin S. McCurley. “A rigorous subexponential
algorithm for computation of class groups”. In: Journal of the Ameri-
can Mathematical Society 2.4 (1989), pp. 837–850. DOI: 10.1090/S0894-
0347-1989-1002631-0.

[HMV06] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to el-
liptic curve cryptography. Springer Science & Business Media, 2006. DOI:
10.1007/b97644.

[Hod+07] Alireza Hodjat, Lejla Batina, David Hwang, and Ingrid Verbauwhede.
“HW/SW Co-design of a Hyperelliptic Curve Cryptosystem Using a
Microcode Instruction Set Coprocessor”. In: Integration, the VLSI Journal
- Special issue: Embedded cryptographic hardware 40.1 (2007), pp. 45–51.
DOI: 10.1016/j.vlsi.2005.12.011.

[HS13] Michael Hutter and Peter Schwabe. “NaCl on 8-Bit AVR Microcon-
trollers”. In: Progress in Cryptology – AFRICACRYPT 2013. Ed. by Amr
Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013, pp. 156–172. DOI: 10.1007/
978-3-642-38553-7_9.

[HS15] Michael Hutter and Peter Schwabe. “Multiprecision multiplication
on AVR revisited”. In: Journal of Cryptographic Engineering 5.3 (2015),
pp. 201–214. DOI: 10.1007/s13389-015-0093-2.

[HSV06] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. “The Eta Pair-
ing Revisited”. In: IEEE Transactions on Information Theory 52.10 (2006),
pp. 4595–4602. DOI: 10.1109/TIT.2006.881709.

[Hud05] Ronald W. H. T. Hudson. Kummer’s quartic surface. Cambridge Univer-
sity Press, 1905.

[Hus04] Dale Husemöller. Elliptic Curves. Graduate Texts in Mathematics.
Springer, 2004. DOI: 10.1007/b97292.

[ICA15] ICAO. Doc 9303: Machine Readable Travel Documents – Part 12. Tech. rep.
2015.

https://doi.org/10.1007/s10623-011-9558-1
https://doi.org/10.1090/S0894-0347-1989-1002631-0
https://doi.org/10.1090/S0894-0347-1989-1002631-0
https://doi.org/10.1007/b97644
https://doi.org/10.1016/j.vlsi.2005.12.011
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/s13389-015-0093-2
https://doi.org/10.1109/TIT.2006.881709
https://doi.org/10.1007/b97292

244 Bibliography

[IT02] Tetsuya Izu and Tsuyoshi Takagi. “Exceptional Procedure Attack on El-
liptic Curve Cryptosystems”. In: Public Key Cryptography — PKC 2003.
Ed. by Yvo G. Desmedt. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 224–239. DOI: 10.1007/3-540-36288-6_17.

[Jao+16] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello,
Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia,
Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, and
David Urbanik. SIKE. Supersingular Isogeny Key Encapsulation. Submis-
sion to [Nat16]. http://sike.org. 2016.

[Jao+18] David Jao, Jason LeGrow, Christopher Leonardi, and Luis Ruiz-Lopez.
A subexponential-time, polynomial quantum space algorithm for inverting the
CM group action. MathCrypt. 2018.

[JDF11] David Jao and Luca De Feo. “Towards Quantum-Resistant Cryptosys-
tems from Supersingular Elliptic Curve Isogenies”. In: Post-Quantum
Cryptography. Ed. by Bo-Yin Yang. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 19–34. DOI: 10.1007/978-3-642-25405-5_2.

[JMV09] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. “Ex-
pander graphs based on GRH with an application to elliptic curve
cryptography”. In: Journal of Number Theory 129.6 (2009), pp. 1491–
1504. DOI: 10.1016/j.jnt.2008.11.006.

[JT09] Marc Joye and Michael Tunstall. “Exponent Recoding and Regular Ex-
ponentiation Algorithms”. In: Progress in Cryptology – AFRICACRYPT
2009. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2009, pp. 334–349. DOI: 10.1007/978-3-642-02384-2_21.

[Kal95] Burton S. Kaliski. “The Montgomery Inverse and Its Applications”. In:
IEEE Transactions on Computers 44.8 (1995), pp. 1064–1065. DOI: 10 .
1109/12.403725.

[KAMK16] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani.
“Fast Hardware Architectures for Supersingular Isogeny Diffie-
Hellman Key Exchange on FPGA”. In: Progress in Cryptology –
INDOCRYPT 2016. Ed. by Orr Dunkelman and Somitra Kumar
Sanadhya. Cham: Springer International Publishing, 2016, pp. 191–206.
DOI: 10.1007/978-3-319-49890-4_11.

https://doi.org/10.1007/3-540-36288-6_17
http://sike.org
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1016/j.jnt.2008.11.006
https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1109/12.403725
https://doi.org/10.1109/12.403725
https://doi.org/10.1007/978-3-319-49890-4_11

Bibliography 245

[KD14] Sabyasachi Karati and Abhijit Das. “Faster Batch Verification of Stan-
dard ECDSA Signatures Using Summation Polynomials”. In: Applied
Cryptography and Network Security. Ed. by Ioana Boureanu, Philippe
Owesarski, and Serge Vaudenay. Cham: Springer International Publish-
ing, 2014, pp. 438–456. DOI: 10.1007/978-3-319-07536-5_26.

[Kel18] Julian Kelly. Engineering superconducting qubit arrays for Quantum
Supremacy. APS March Meeting. 2018.

[Kie17] Jean Kieffer. “Étude et accélération du protocole d’échange de clés de
Couveignes–Rostovtsev–Stolbunov”. https://arxiv.org/abs/1804.
10128. Mémoire du Master 2. Université Paris VI, 2017.

[Kir+15] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley,
Jerome A. Solinas, and David Tuller. Failure is not an Option: Standard-
ization issues for post-quantum key agreement. Talk at NIST workshop on
Cybersecurity in a Post-Quantum World: http://www.nist.gov/itl/
csd/ct/post-quantum-crypto-workshop-2015.cfm. 2015.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Anal-
ysis”. In: Advances in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388–397. DOI:
10.1007/3-540-48405-1_25.

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of Com-
putation 48 (1987), pp. 203–209. DOI: 10 . 1090 / S0025 - 5718 - 1987 -
0866109-5.

[Kob88] Neal Koblitz. “A Family of Jacobians Suitable for Discrete Log Cryp-
tosystems”. In: Advances in Cryptology — CRYPTO’ 88. Ed. by Shafi
Goldwasser. New York, NY: Springer New York, 1988, pp. 94–99. DOI:
10.1007/0-387-34799-2_8.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Advances in Cryptology —
CRYPTO ’96. Ed. by Neal Koblitz. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 104–113. DOI: 10.1007/3-540-68697-5_9.

[Koh11] David Kohel. “Addition law structure of elliptic curves”. In: Journal of
Number Theory 131.5 (2011), pp. 894–919. DOI: 10.1016/j.jnt.2010.
12.001.

https://doi.org/10.1007/978-3-319-07536-5_26
https://arxiv.org/abs/1804.10128
https://arxiv.org/abs/1804.10128
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/0-387-34799-2_8
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1016/j.jnt.2010.12.001
https://doi.org/10.1016/j.jnt.2010.12.001

246 Bibliography

[Koh96] David Kohel. “Endomorphism rings of elliptic curves over finite
fields”. http://iml.univ- mrs.fr/~kohel/pub/thesis.pdf. PhD
thesis. University of California at Berkeley, 1996.

[Kop+18] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg
Sigl. “Fast FPGA Implementations of Diffie-Hellman on the Kummer
Surface of a Genus-2 Curve”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018.1 (2018), pp. 1–17. DOI: 10.13154/
tches.v2018.i1.1-17.

[KS17] Sabyasachi Karati and Palash Sarkar. “Kummer for Genus One over
Prime Order Fields”. In: Advances in Cryptology – ASIACRYPT 2017. Ed.
by Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International
Publishing, 2017, pp. 3–32. DOI: 10.1007/978-3-319-70697-9_1.

[KS19] Sabyasachi Karati and Palash Sarkar. “Connecting Legendre with
Kummer and Edwards”. In: Advances in Mathematics of Communications
13.1 (2019), pp. 41–66. DOI: 10.3934/amc.2019003.

[Kup05] Greg Kuperberg. “A Subexponential-Time Quantum Algorithm for the
Dihedral Hidden Subgroup Problem”. In: SIAM Journal on Computing
35.1 (2005), pp. 170–188. DOI: 10.1137/S0097539703436345.

[Kup13] Greg Kuperberg. “Another Subexponential-time Quantum Algorithm
for the Dihedral Hidden Subgroup Problem”. In: TQC. Vol. 22. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2013, pp. 20–34. DOI: 10.
4230/LIPIcs.TQC.2013.20.

[KW03] Jonathan Katz and Nan Wang. “Efficiency Improvements for Signature
Schemes with Tight Security Reductions”. In: Proceedings of the 10th
ACM Conference on Computer and Communications Security. New York,
NY, USA: ACM, 2003, pp. 155–164. DOI: 10.1145/948109.948132.

[Käs12] Emilia Käsper. “Fast Elliptic Curve Cryptography in OpenSSL”. In: Fi-
nancial Cryptography and Data Security. Ed. by George Danezis, Sven Di-
etrich, and Kazue Sako. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 27–39. DOI: 10.1007/978-3-642-29889-9_4.

[LD99] Julio López and Ricardo Dahab. “Fast Multiplication on Elliptic Curves
Over GF(2m) without precomputation”. In: Cryptographic Hardware and
Embedded Systems. Ed. by Çetin K. Koç and Christof Paar. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1999, pp. 316–327. DOI: 10.1007/
3-540-48059-5_27.

http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
https://doi.org/10.13154/tches.v2018.i1.1-17
https://doi.org/10.13154/tches.v2018.i1.1-17
https://doi.org/10.1007/978-3-319-70697-9_1
https://doi.org/10.3934/amc.2019003
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.4230/LIPIcs.TQC.2013.20
https://doi.org/10.1145/948109.948132
https://doi.org/10.1007/978-3-642-29889-9_4
https://doi.org/10.1007/3-540-48059-5_27
https://doi.org/10.1007/3-540-48059-5_27

Bibliography 247

[Len87] Hendrik W. Lenstra. “Factoring Integers with Elliptic Curves”. In: The
Annals of Mathematics 126 (1987), pp. 649–673. DOI: 10.2307/1971363.

[LG10] Patrick Longa and Catherine Gebotys. “Efficient Techniques for High-
Speed Elliptic Curve Cryptography”. In: Cryptographic Hardware and
Embedded Systems, CHES 2010. Ed. by Stefan Mangard and François-
Xavier Standaert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 80–94. DOI: 10.1007/978-3-642-15031-9_6.

[LHT16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for Se-
curity. RFC 7748. RFC Editor, 2016, pp. 1–22.

[Lic69] Stephen Lichtenbaum. “Duality theorems for curves over P-adic
fields”. In: Inventiones Mathematicae 7 (1969), pp. 120–136. DOI:
10.1007/BF01389795.

[Liu+13] Zhe Liu, Hwajeong Seo, Johann Großschädl, and Howon Kim. “Effi-
cient Implementation of NIST-Compliant Elliptic Curve Cryptography
for Sensor Nodes”. In: Information and Communications Security. Ed. by
Sihan Qing, Jianying Zhou, and Dongmei Liu. Cham: Springer Interna-
tional Publishing, 2013, pp. 302–317. DOI: 10.1007/978-3-319-02726-
5_22.

[Liu+17] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz, and
Hwajeong Seo. “FourQ on Embedded Devices with Strong Counter-
measures Against Side-Channel Attacks”. In: Cryptographic Hardware
and Embedded Systems – CHES 2017. Ed. by Wieland Fischer and Nao-
fumi Homma. Cham: Springer International Publishing, 2017, pp. 665–
686. DOI: 10.1007/978-3-319-66787-4_32.

[LL94] Chae Hoon Lim and Pil Joong Lee. “More Flexible Exponentiation with
Precomputation”. In: Advances in Cryptology — CRYPTO ’94. Ed. by
Yvo G. Desmedt. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 95–107. DOI: 10.1007/3-540-48658-5_11.

[LLL82] Hendrik W. Lenstra, Jr., Arjen K. Lenstra, and Lászlo Lovász. “Factor-
ing Polynomials with Rational Coefficients”. In: Mathematische Annalen
261 (1982), pp. 515–534. DOI: 10.1007/BF01457454.

[LR85] Herbert Lange and Wolfgang Ruppert. “Complete systems of addition
laws on abelian varieties”. In: Inventiones mathematicae 79.3 (1985),
pp. 603–610. DOI: 10.1007/BF01388526.

https://doi.org/10.2307/1971363
https://doi.org/10.1007/978-3-642-15031-9_6
https://doi.org/10.1007/BF01389795
https://doi.org/10.1007/978-3-319-02726-5_22
https://doi.org/10.1007/978-3-319-02726-5_22
https://doi.org/10.1007/978-3-319-66787-4_32
https://doi.org/10.1007/3-540-48658-5_11
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01388526

248 Bibliography

[LV00] Arjen K. Lenstra and Eric R. Verheul. “The XTR Public Key System”. In:
Advances in Cryptology — CRYPTO 2000. Ed. by Mihir Bellare. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1–19. DOI: 10.1007/
3-540-44598-6_1.

[LWG14] Zhe Liu, Erich Wenger, and Johann Großschädl. “MoTE-ECC: Energy-
Scalable Elliptic Curve Cryptography for Wireless Sensor Networks”.
In: Applied Cryptography and Network Security. Ed. by Ioana Boureanu,
Philippe Owesarski, and Serge Vaudenay. Cham: Springer Interna-
tional Publishing, 2014, pp. 361–379. DOI: 10.1007/978-3-319-07536-
5_22.

[McE78] Robert J. McEliece. “A Public-Key Cryptosystem Based On Algebraic
Coding Theory”. In: The Deep Space Network Progress Report 42.44 (1978),
pp. 114–116.

[MCR18] Michael Meyer, Fabio Campos, and Steffen Reith. On Lions and Elli-
gators: An efficient constant-time implementation of CSIDH. Cryptology
ePrint Archive, Report 2018/1198. https://eprint.iacr.org/2018/
1198. 2018.

[Mil04] Victor S. Miller. “The Weil Pairing, and Its Efficient Calculation”. In:
Journal of Cryptology 17.4 (2004), pp. 235–261. DOI: 10.1007/s00145-
004-0315-8.

[Mil86] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances
in Cryptology — CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426. DOI:
10.1007/3-540-39799-X_31.

[Mon85] Peter L. Montgomery. “Modular Multiplication without Trial Divi-
sion”. In: Mathematics of Computation 44.170 (1985), pp. 519–521. DOI:
10.1090/S0025-5718-1985-0777282-X.

[Mon87] Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods
of factorization”. In: Mathematics of Computation 48.177 (1987), pp. 243–
264. DOI: 10.1090/S0025-5718-1987-0866113-7.

[Mor61] Louis J. Mordell. “The congruence (p− 1/2)! ≡ ±1 mod p”. In: Amer-
ican Mathematical Monthly 68.2 (1961), pp. 145–146. DOI: 10 . 2307 /
2312481.

https://doi.org/10.1007/3-540-44598-6_1
https://doi.org/10.1007/3-540-44598-6_1
https://doi.org/10.1007/978-3-319-07536-5_22
https://doi.org/10.1007/978-3-319-07536-5_22
https://eprint.iacr.org/2018/1198
https://eprint.iacr.org/2018/1198
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1987-0866113-7
https://doi.org/10.2307/2312481
https://doi.org/10.2307/2312481

Bibliography 249

[MOV91] Alfred Menezes, Tatsuaki Okamoto, and Scott Vanstone. “Reducing El-
liptic Curve Logarithms to Logarithms in a Finite Field”. In: Proceedings
of the Twenty-third Annual ACM Symposium on Theory of Computing. New
York, NY, USA: ACM, 1991, pp. 80–89. DOI: 10.1145/103418.103434.

[MR18] Michael Meyer and Steffen Reith. “A Faster Way to the CSIDH”. In:
Progress in Cryptology – INDOCRYPT 2018. Ed. by Debrup Chakraborty
and Tetsu Iwata. Cham: Springer International Publishing, 2018,
pp. 137–152. DOI: 10.1007/978-3-030-05378-9_8.

[MRa99] David M’Raïhi, David Naccache, David Pointcheval, and Serge Vaude-
nay. “Computational Alternatives to Random Number Generators”. In:
Selected Areas in Cryptography. Ed. by Stafford Tavares and Henk Meijer.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 72–80. DOI:
10.1007/3-540-48892-8_6.

[MS16] Dustin Moody and Daniel Shumow. “Analogues of Velu’s Formulas
for Isogenies on Alternate Models of Elliptic Curves”. In: Mathematics
of Computation 85.300 (2016), pp. 1929–1951. DOI: 10.1090/mcom/3036.

[Mum93] David Mumford. Tata lectures on theta II. Birkhäuser Boston, 1993. DOI:
10.1007/978-0-8176-4578-6.

[MW99] Ueli M. Maurer and Stefan Wolf. “The Relationship Between Breaking
the Diffie–Hellman Protocol and Computing Discrete Logarithms”. In:
SIAM Journal on Computing 28.5 (1999), pp. 1689–1721. DOI: 10.1137/
S0097539796302749.

[Nac+95] David Naccache, David M’Raïhi, Serge Vaudenay, and Dan Raphaeli.
“Can D.S.A. be improved? — Complexity trade-offs with the digital
signature standard —”. In: Advances in Cryptology — EUROCRYPT’94.
Ed. by Alfredo De Santis. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1995, pp. 77–85. DOI: 10.1007/BFb0053426.

[Nat00] National Institute for Standards and Technology (NIST). Digital Sig-
nature Standard. Federal Information Processing Standards Publication
186-2. http : / / csrc . nist . gov / publications / fips / archive /
fips186-2/fips186-2.pdf. 2000.

[Nat13] National Institute for Standards and Technology (NIST). Digital Sig-
nature Standard. Federal Information Processing Standards Publication
186-4. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-
4.pdf. 2013.

https://doi.org/10.1145/103418.103434
https://doi.org/10.1007/978-3-030-05378-9_8
https://doi.org/10.1007/3-540-48892-8_6
https://doi.org/10.1090/mcom/3036
https://doi.org/10.1007/978-0-8176-4578-6
https://doi.org/10.1137/S0097539796302749
https://doi.org/10.1137/S0097539796302749
https://doi.org/10.1007/BFb0053426
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

250 Bibliography

[Nat15] The National Security Agency. Suite B Cryptography (fact sheet). https:
//www.nsa.gov/ia/programs/suiteb_cryptography/. 2015.

[Nat16] National Institute of Standards and Technology. Post-Quantum Cryp-
tography Standardization. https : / / csrc . nist . gov / Projects /

Post - Quantum - Cryptography / Post - Quantum - Cryptography -

Standardization. 2016.

[NLD15] Erick Nascimento, Julio López, and Ricardo Dahab. “Efficient and
Secure Elliptic Curve Cryptography for 8-bit AVR Microcontrollers”.
In: Security, Privacy, and Applied Cryptography Engineering. Ed. by
Rajat Subhra Chakraborty, Peter Schwabe, and Jon Solworth.
Cham: Springer International Publishing, 2015, pp. 289–309. DOI:
10.1007/978-3-319-24126-5_17.

[NV10] Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm. Survey
and Applications. Springer, 2010. DOI: 10.1007/978-3-642-02295-1.

[OS01] Katsuyuki Okeya and Kouichi Sakurai. “Efficient Elliptic Curve Cryp-
tosystems from a Scalar Multiplication Algorithm with Recovery of the
y-Coordinate on a Montgomery-Form Elliptic Curve”. In: Cryptographic
Hardware and Embedded Systems — CHES 2001. Ed. by Çetin K. Koç,
David Naccache, and Christof Paar. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 126–141. DOI: 10.1007/3-540-44709-1_12.

[OT03] Katsuyuki Okeya and Tsuyoshi Takagi. “The Width-w NAF Method
Provides Small Memory and Fast Elliptic Scalar Multiplications Secure
against Side Channel Attacks”. In: Topics in Cryptology — CT-RSA 2003.
Ed. by Marc Joye. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 328–343. DOI: 10.1007/3-540-36563-X_23.

[OW99] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search
with Cryptanalytic Applications”. In: Journal of Cryptology 12.1 (1999),
pp. 1–28. DOI: 10.1007/PL00003816.

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: Post-
Quantum Cryptography. Ed. by Michele Mosca. Cham: Springer Inter-
national Publishing, 2014, pp. 197–219. DOI: 10.1007/978- 3- 319-
11659-4_12.

[Per] Thomas Perrin. The XEdDSA and VXEdDSA Signature Schemes. https:
//whispersystems.org/docs/specifications/xeddsa/.

https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://doi.org/10.1007/978-3-319-24126-5_17
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/3-540-44709-1_12
https://doi.org/10.1007/3-540-36563-X_23
https://doi.org/10.1007/PL00003816
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/

Bibliography 251

[Pet17] Christophe Petit. “Faster Algorithms for Isogeny Problems Using Tor-
sion Point Images”. In: Advances in Cryptology – ASIACRYPT 2017. Ed.
by Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International
Publishing, 2017, pp. 330–353. DOI: 10.1007/978-3-319-70697-9_12.

[PH78] Stephen C. Pohlig and Martin E. Hellman. “An improved algorithm for
computing logarithms over GF(p) and its cryptographic significance”.
In: IEEE Transactions on Information Theory 24.1 (1978), pp. 106–110. DOI:
10.1109/TIT.1978.1055817.

[Piz90] Arnold K. Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin
of the American Mathematical Society 23.1 (1990), pp. 127–137. DOI: 10.
1090/S0273-0979-1990-15918-X.

[Pol75] John M. Pollard. “A monte carlo method for factorization”. In: BIT Nu-
merical Mathematics 15.3 (1975), pp. 331–334. DOI: 10.1007/BF01933667.

[PS00] David Pointcheval and Jacques Stern. “Security Arguments for Digital
Signatures and Blind Signatures”. In: Journal of Cryptology 13.3 (2000),
pp. 361–396. DOI: 10.1007/s001450010003.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature
Schemes”. In: Advances in Cryptology — EUROCRYPT ’96. Ed. by Ueli
Maurer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 387–
398. DOI: 10.1007/3-540-68339-9_33.

[Reg04] Oded Regev. “A Subexponential Time Algorithm for the Dihedral
Hidden Subgroup Problem with Polynomial Space”. In: arXiv e-prints
(2004). https://arxiv.org/abs/quant-ph/0406151.

[Reg05] Oded Regev. “On Lattices, Learning with Errors, Random Linear
Codes, and Cryptography”. In: Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing. New York, NY, USA: ACM,
2005, pp. 84–93. DOI: 10.1145/1060590.1060603.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. RFC Editor, 2018, pp. 1–160.

[Roe+17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter.
“Quantum Resource Estimates for Computing Elliptic Curve Discrete
Logarithms”. In: Advances in Cryptology – ASIACRYPT 2017. Ed. by
Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer International
Publishing, 2017, pp. 241–270. DOI: 10.1007/978-3-319-70697-9_9.

https://doi.org/10.1007/978-3-319-70697-9_12
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1090/S0273-0979-1990-15918-X
https://doi.org/10.1007/BF01933667
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/3-540-68339-9_33
https://arxiv.org/abs/quant-ph/0406151
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-319-70697-9_9

252 Bibliography

[RS03] Karl Rubin and Alice Silverberg. “Torus-Based Cryptography”. In: Ad-
vances in Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 349–365. DOI: 10.1007/978-
3-540-45146-4_21.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-key Cryptosystem
Based on Isogenies. Cryptology ePrint Archive, Report 2006/145. https:
//eprint.iacr.org/2006/145. 2006.

[RSA78] Ron L. Rivest, Adi Shamir, and Leonard Adleman. “A Method for Ob-
taining Digital Signatures and Public-key Cryptosystems”. In: Commu-
nunications of the ACM 21.2 (1978), pp. 120–126. DOI: 10.1145/359340.
359342.

[Sag18] The Sage Developers. SageMath, the Sage Mathematics Software System.
https://sagemath.org. 2018.

[Sch87] René Schoof. “Nonsingular Plane Cubic Curves over Finite Fields”. In:
Journal of Combinatorial Theory, Series A 46.2 (1987), pp. 183–211. DOI:
10.1016/0097-3165(87)90003-3.

[Sch90] Claus P. Schnorr. “Efficient Identification and Signatures for Smart
Cards”. In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by
Gilles Brassard. New York, NY: Springer New York, 1990, pp. 239–252.
DOI: 10.1007/0-387-34805-0_22.

[Sco07] Michael Scott. “Implementing Cryptographic Pairings”. In: Proceedings
of the First International Conference on Pairing-Based Cryptography. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 177–196.

[Sem04] Igor Semaev. Summation polynomials and the discrete logarithm problem
on elliptic curves. Cryptology ePrint Archive, Report 2004/031. https:
//eprint.iacr.org/2004/031. 2004.

[Sha71] Daniel Shanks. “Class number, a theory of factorization, and genera”.
In: Proceedings of Symposia in Pure Mathematics. Vol. 20. 1971, pp. 415–
440.

[Sho94] Peter W. Shor. “Algorithms for quantum computation: Discrete loga-
rithms and factoring”. In: Foundations of Computer Science, 1994 Proceed-
ings., 35th Annual Symposium on. IEEE. 1994, pp. 124–134. DOI: 10.1109/
SFCS.1994.365700.

https://doi.org/10.1007/978-3-540-45146-4_21
https://doi.org/10.1007/978-3-540-45146-4_21
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://sagemath.org
https://doi.org/10.1016/0097-3165(87)90003-3
https://doi.org/10.1007/0-387-34805-0_22
https://eprint.iacr.org/2004/031
https://eprint.iacr.org/2004/031
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

Bibliography 253

[Sho97] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer”. In: SIAM Journal
on Computing 26.5 (1997), pp. 1484–1509.

[Sie35] Carl Siegel. “Über die Classenzahl quadratischer Zahlkörper”. In: Acta
Arithmetica 1.1 (1935), pp. 83–86.

[Sig] Signal Protocol Specification. https://signal.org/docs/.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves, 2nd Edition. Grad-
uate Texts in Mathematics. Springer, 2009. DOI: 10.1007/978-0-387-
09494-6.

[SL03] Martijn Stam and Arjen K. Lenstra. “Efficient Subgroup Exponentiation
in Quadratic and Sixth Degree Extensions”. In: Cryptographic Hardware
and Embedded Systems - CHES 2002. Ed. by Burton S. Kaliski, çetin K.
Koç, and Christof Paar. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 318–332. DOI: 10.1007/3-540-36400-5_24.

[SS04] Edward Schaefer and Michael Stoll. “How to do a p-descent on an el-
liptic curve”. In: Transactions of the American Mathematical Society 356.3
(2004), pp. 1209–1231.

[SS95] Peter Smith and Christopher Skinner. “A public-key cryptosystem and
a digital signature system based on the Lucas function analogue to dis-
crete logarithms”. In: Advances in Cryptology — ASIACRYPT’94. Ed. by
Josef Pieprzyk and Reihanah Safavi-Naini. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 355–364. DOI: 10.1007/BFb0000447.

[Sta03] Martijn Stam. “Speeding up subgroup cryptosystems”. http : / /

alexandria.tue.nl/extra2/200311829.pdf?q=subgroup. PhD thesis.
Technische Universiteit Eindhoven, 2003.

[Sta04] Colin Stahlke. Point Compression on Jacobians of Hyperelliptic Curves over
Fq. Cryptology ePrint Archive, Report 2004/030. https://eprint.
iacr.org/2004/030. 2004.

[Sto04] Anton Stolbunov. “Public-key encryption based on cycles of isogenous
elliptic curves”. MA thesis. Saint-Petersburg State Polytechnical Uni-
versity, 2004. DOI: 10.13140/RG.2.2.29215.05282.

[Sto10] Anton Stolbunov. “Constructing public-key cryptographic schemes
based on class group action on a set of isogenous elliptic curves”. In:
Advances in Mathematics of Communications 4.2 (2010), pp. 215–235. DOI:
10.3934/amc.2010.4.215.

https://signal.org/docs/
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.1007/3-540-36400-5_24
https://doi.org/10.1007/BFb0000447
http://alexandria.tue.nl/extra2/200311829.pdf?q=subgroup
http://alexandria.tue.nl/extra2/200311829.pdf?q=subgroup
https://eprint.iacr.org/2004/030
https://eprint.iacr.org/2004/030
https://doi.org/10.13140/RG.2.2.29215.05282
https://doi.org/10.3934/amc.2010.4.215

254 Bibliography

[Sto11] Anton Stolbunov. “Cryptographic Schemes Based on Isogenies”. PhD
thesis. Norwegian University of Science and Technology, 2011. DOI: 10.
13140/RG.2.2.20826.44488.

[Sut07] Andrew V. Sutherland. “Order computations in generic groups”.
https://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf.
PhD thesis. Massachusetts Institute of Technology, 2007.

[Sut11] Andrew V. Sutherland. “Structure computation and discrete loga-
rithms in finite abelian p-groups”. In: Mathematics of Compututation
80.273 (2011), pp. 477–500. DOI: 10.1090/S0025-5718-10-02356-2.

[Sut12a] Andrew V. Sutherland. “Identifying supersingular elliptic curves”. In:
LMS Journal of Computation and Mathematics 15 (2012), pp. 317–325. DOI:
10.1112/S1461157012001106.

[Sut12b] Andrew V. Sutherland. “Isogeny volcanoes”. In: ANTS X. Vol. 1. The
Open Book Series. Mathematical Sciences Publishers, 2012, pp. 507–
530. DOI: 10.2140/obs.2013.1.507.

[Szc+08] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin Col-
lier, and Ricardo Dahab. “NanoECC: Testing the Limits of Elliptic
Curve Cryptography in Sensor Networks”. In: Wireless Sensor Net-
works. Ed. by Roberto Verdone. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 305–320. DOI: 10.1007/978-3-540-77690-1_19.

[Tat66] John Tate. “Endomorphisms of abelian varieties over finite fields”.
In: Inventiones mathematicae 2.2 (1966), pp. 134–144. DOI: 10 . 1007 /
BF01404549.

[Tib14] Mehdi Tibouchi. “Elligator Squared: Uniform Points on Elliptic Curves
of Prime Order as Uniform Random Strings”. In: Financial Cryptography
and Data Security. Ed. by Nicolas Christin and Reihaneh Safavi-Naini.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 139–156. DOI:
10.1007/978-3-662-45472-5_10.

[TTA18] Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe. “New Bleichen-
bacher Records: Fault Attacks on qDSA Signatures”. In: IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2018.3 (2018),
pp. 331–371. DOI: 10.13154/tches.v2018.i3.331-371.

https://doi.org/10.13140/RG.2.2.20826.44488
https://doi.org/10.13140/RG.2.2.20826.44488
https://groups.csail.mit.edu/cis/theses/sutherland-phd.pdf
https://doi.org/10.1090/S0025-5718-10-02356-2
https://doi.org/10.1112/S1461157012001106
https://doi.org/10.2140/obs.2013.1.507
https://doi.org/10.1007/978-3-540-77690-1_19
https://doi.org/10.1007/BF01404549
https://doi.org/10.1007/BF01404549
https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.13154/tches.v2018.i3.331-371

Bibliography 255

[Unr12] Dominique Unruh. “Quantum Proofs of Knowledge”. In: Advances
in Cryptology – EUROCRYPT 2012. Ed. by David Pointcheval and
Thomas Johansson. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 135–152. DOI: 10.1007/978-3-642-29011-4_10.

[Ver04] Eric R. Verheul. “Evidence that XTR Is More Secure than Supersingu-
lar Elliptic Curve Cryptosystems”. In: Journal of Cryptology 17.4 (2004),
pp. 277–296. DOI: 10.1007/s00145-004-0313-x.

[Vél71] Jacques Vélu. “Isogénies entre courbes elliptiques”. In: Comptes Rendus
de l’Académie des Sciences des Paris 273 (1971), pp. 238–241.

[Wat69] William C. Waterhouse. “Abelian varieties over finite fields”. In: An-
nales scientifiques de l’École Normale Supérieure 2.4 (1969), pp. 521–560.

[Wha17] WhatsApp Encryption Overview. Tech. rep. https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf. 2017.

[WUW13] Erich Wenger, Thomas Unterluggauer, and Mario Werner. “8/16/32
Shades of Elliptic Curve Cryptography on Embedded Processors”.
In: Progress in Cryptology – INDOCRYPT 2013. Ed. by Goutam Paul
and Serge Vaudenay. Cham: Springer International Publishing, 2013,
pp. 244–261. DOI: 10.1007/978-3-319-03515-4_16.

[Yoo+17] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and
Vladimir Soukharev. “A Post-quantum Digital Signature Scheme
Based on Supersingular Isogenies”. In: Financial Cryptography and
Data Security. Ed. by Aggelos Kiayias. Cham: Springer International
Publishing, 2017, pp. 163–181. DOI: 10.1007/978-3-319-70972-7_9.

[Zan+18] Gustavo H. M. Zanon, Marcos A. Simplicio, Geovandro C. C. F. Pereira,
Javad Doliskani, and Paulo S. L. M. Barreto. “Faster Isogeny-Based
Compressed Key Agreement”. In: Post-Quantum Cryptography. Ed. by
Tanja Lange and Rainer Steinwandt. Cham: Springer International
Publishing, 2018, pp. 248–268. DOI: 10.1007/978-3-319-79063-3_12.

https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/s00145-004-0313-x
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.1007/978-3-319-03515-4_16
https://doi.org/10.1007/978-3-319-70972-7_9
https://doi.org/10.1007/978-3-319-79063-3_12

256 Bibliography

Summary

This thesis works towards simple, secure and efficient curve-based primitives. After
a review of the necessary background material in Part 1, the focus of Part 2 is on
protocols secure against classical adversaries, i. e. those based on the discrete loga-
rithm problem. In Part 3 we look towards cryptographic schemes based on isogeny
problems that aim to be secure against quantum adversaries. This work is organized
as a sequence of papers, whose content we briefly describe here.

Chapter III. This chapter considers the arithmetic of elliptic curves present in many
standards. That is, curves in (short) Weierstrass form defined over a prime
field Fp whose group of rational points over Fp has prime order. Such curves
were known to have complete addition formulas (i. e. formulas that work on
all pairs of points as input), but they incurred a tremendous slowdown com-
pared to the incomplete formulas. In this chapter we significantly improve
these formulas. Although a minor loss of efficiency remains (of about 30–40%
in software depending on parameters), the implementation naturally simpli-
fies and should give users more confidence in their security.

Chapter IV & V. The next two chapters consider the practicality of schemes based
on the efficient arithmetic on Kummer varieties. In Chapter IV we present
implementations of the Diffie–Hellman key exchange and Schnorr signature
scheme based on a Kummer surface of a genus-2 hyperelliptic curve, outper-
forming all other existing schemes and demonstrating its applicability for low-
resource devices. An arguably more elegant approach slightly modifies the
signature scheme itself to be naturally instantiated with a Kummer variety.
This leads to the qDSA signature scheme. On top of a theoretical security anal-
ysis of the scheme and highly efficient implementations, we also show how to
efficiently instantiate the necessary operations (i. e. signature verification and
public-key compression) with genus-2 Kummer surfaces.

258 Summary

Chapter VI. The final chapter of Part 2 studies the relations of the various Kum-
mer lines that have appeared in the literature. In the presence of full rational
2-torsion, we provide explicit maps between Montgomery curves, (twisted)
Edwards models and (squared) Kummer lines. We present an easy framework
for moving between the different models with isomorphisms. This improves
interoperability of the models and simplifies the task of an implementer. In
particular, this allows for a straightforward generalization of the qDSA signa-
ture scheme to the squared Kummer line.

Chapter VII. The main advantage of SIDH compared to alternative post-quantum
schemes is the relatively small size of its public keys. This chapter shows how
to achieve even smaller public keys. We provide techniques for efficiently sam-
pling torsion bases on a curve, significantly improve the pairing computations
and obtain extremely efficient discrete logarithms in smooth cyclic groups.
Moreover, we show how to compress the keys even further at essentially no
cost.

Chapter VIII. The speed of supersingular-isogeny Diffie–Hellman is for a large part
determined by the efficiency of the arithmetic of the elliptic-curve model and
its isogeny formulas. A particularly popular form is the Montgomery form,
which is used in the currently most optimal implementations of SIDH. This
chapter studies the isogeny formulas between elliptic curves in Montgomery
form, expanding on and simplifying the work of [CH17]. That is, we show that
the isogeny formulas generalize to any group not containing the point (0, 0)
(and in particular 2-isogenies) and provide simplifications to the proofs. We
also include potential new models that could lead to elegant isogeny formulas,
though they do not lead to faster implementations of SIDH as of yet.

Chapter IX. The last chapter proposes a new cryptographic primitive for key ex-
change, which is strongly related to the work of Couveignes [Cou06] and Ros-
tovtsev and Stolbunov [RS06]. We replace the class group action arising from
the endomorphism ring of an ordinary elliptic curve by a class group action
related to the Fp-rational endomorphism ring of a supersingular elliptic curve.
The main upside is the fact that the group of rational points over Fp has exactly
size p + 1, allowing to easily select primes such that the curves have extremely
smooth group orders. This leads to significantly faster evaluation of isogenies,
while retaining the extremely small public keys. Moreover, we show how to
efficiently validate public keys. As a result, the key exchange supports static
public keys and is considered non-interactive.

Samenvatting (Dutch summary)

Dit proefschrift draagt bij aan de ontwikkeling van eenvoudige, veilige en efficiënte
primitieven gebaseerd op algebraïsche krommen. Na in Deel 1 een overzicht te heb-
ben gegeven van de benodigde achtergrondkennis, richt Deel 2 zich op protocollen
die bestand zijn tegen klassieke aanvallers, i. e. die zijn gebaseerd op het discrete lo-
garitme probleem. In Deel 3 kijken we naar cryptografische ontwerpen gebaseerd
op isogenieproblemen met veiligheid ten opzichte van kwantumaanvallers als doel.
Dit proefschrift is een verzameling van reeds gepubliceerde artikelen, die we nu in
het kort beschrijven.

Hoofdstuk III. Dit hoofdstuk houdt zich bezig met de aritmetiek van elliptische
krommen die in veel standaarden voor komt. Met andere woorden, krommen
beschreven door een Weierstrass vorm gedefinieerd over een priemlichaam Fp

waarvan de orde van de groep van rationale punten over Fp priem is. Het
was bekend dat voor zulke krommen complete formules voor de optelling be-
staan, maar alleen ten koste van een enorme vertraging ten opzichte van de in-
complete varianten. In dit hoofdstuk verbeteren we deze formules significant.
Hoewel een klein verlies van efficiëntie niet te voorkomen is (van ongeveer 30–
40% in software afhankelijk van parameters), leidt ons resultaat tot natuurlijke
vereenvoudigingen die het vertrouwen in de veiligheid verhogen.

Hoofdstuk IV & V. De volgende twee hoofdstukken richten zich op de uitvoerbaar-
heid van digitale handtekeningen gebaseerd op de efficiënte aritmetiek van
Kummervariëteiten. In Hoofdstuk IV presenteren we implementaties van de
sleuteluitwisseling van Diffie en Hellman en het protocol voor digitale handte-
keningen van Schnorr gebaseerd op een Kummervariëteit van een hyperellip-
tische kromme van genus 2, die alle bestaande werken overtreft en de toepas-
baarheid op kleine apparaten demonstreert. Een wellicht elegantere aanpak
past het protocol voor digitale handtekeningen licht aan om zich gemakkelij-
ker te lenen voor een Kummervariëteit, wat leidt tot het qDSA protocol. Naast

260 Samenvatting (Dutch summary)

een theoretische analyse van de veiligheid en zeer efficiënte implementaties,
laten we ook zien hoe de benodigde operaties (i. e. verificatie van een handte-
kening en compressie van een publieke sleutel) kunnen worden geïnstantieerd
met een genus-2 Kummervariëteit.

Hoofdstuk VI. Het laatste hoofdstuk van Deel 2 bestudeert de relaties tussen de
verschillende Kummerlijnen die in de literatuur voor komen. Onder de aan-
name dat de 2-torsie punten volledig rationaal zijn, verstrekken we expliciete
afbeeldingen tussen krommen in Montgomery vorm, (getwiste) Edwards vorm
en (gekwadrateerde) Kummerlijnen. We presenteren gemakkelijk te beschrij-
ven isomorfismen tussen de verschillende modellen. Dit bevordert de intero-
perabiliteit en versimpelt de taken van ontwikkelaars. In het bijzonder kunnen
we eenvoudig de theorie van qDSA generaliseren naar het domein van gekwa-
drateerde Kummerlijnen.

Hoofdstuk VII. Het grote voordeel van SIDH ten opzichte van alternatieve post-
kwantum ontwerpen is dat de publieke sleutels relatief klein zijn. Dit hoofd-
stuk laat zien hoe deze sleutels nog kleiner gemaakt kunnen worden. Hiervoor
presenteren we technieken om efficiënt torsie-basissen te genereren, verbeteren
we de berekeningen van de paringen en verschaffen we extreem efficiënte dis-
crete logaritmen in gladde cyclische groepen. Bovendien laten we zien hoe de
publieke sleutels vrijwel kosteloos nog verder gecomprimeerd kunnen wor-
den.

Hoofdstuk VIII. De snelheid van SIDH is voor een groot deel bepaald door de ef-
ficiëntie van de aritmetiek van het model van de elliptische kromme en de
bijbehorende formules voor isogenieën. Een bijzonder populaire vorm is het
Montgomery model, welk momenteel gebruikt wordt in de meest optimale
implementaties van SIDH. Dit hoofdstuk bestudeert de formules voor isoge-
nieën tussen elliptische krommen in Montgomery vorm, waarmee we het werk
van [CH17] uitbreiden en vereenvoudigen. We laten zien dat de formules ge-
neraliseren naar willekeurige groepen die het punt (0, 0) niet bevatten (en in
het bijzonder 2-isogenieën) en maken de bewijzen gemakkelijker. We stellen
ook alternatieve modellen voor die tot elegante formules voor isogenieën kun-
nen leiden, hoewel dat tot op heden nog niet tot snellere implementaties van
SIDH heeft geleid.

Hoofdstuk IX. Het laatste hoofdstuk stelt een nieuwe primitieve voor sleuteluit-
wisseling voor, die sterk gerelateerd is aan het werk van Couveignes [Cou06]

261

en Rostovtsev en Stolbunov [RS06]. We vervangen de actie van de klassen-
groep die ontstaat vanuit de endomorfisme ring van een ordinaire elliptische
kromme door de klassengroepactie gerelateerd aan de Fp-rationale endomor-
fisme ring van een supersinguliere elliptische kromme. Het belangrijkste voor-
deel is dat de groep van rationale punten over Fp precies p + 1 punten be-
vat, wat het gemakkelijk maakt om priemen te vinden waarvoor de krommen
extreem gladde groepordes hebben. Dit leidt tot drastisch snellere evaluaties
van isogenieën met behoud van de kleine publieke sleutels. Bovendien laten
we zien hoe publieke sleutels geverifieerd kunnen worden. Het gevolg is dat
de sleuteluitwisseling statische publieke sleutels ondersteunt en zodoende als
niet-interactief kan worden beschouwd.

262 Samenvatting (Dutch summary)

List of Publications

Conference proceedings

– Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. “CSIDH: An Efficient Post-Quantum Commutative Group Action”. In:
Advances in Cryptology – ASIACRYPT 2018. Ed. by Thomas Peyrin and Steven
Galbraith. Cham: Springer International Publishing, 2018, pp. 395–427

– Joost Renes. “Computing Isogenies Between Montgomery Curves Using the
Action of (0, 0)”. In: Post-Quantum Cryptography. Ed. by Tanja Lange and
Rainer Steinwandt. Cham: Springer International Publishing, 2018, pp. 229–
247

– Joost Renes and Benjamin Smith. “qDSA: Small and Secure Digital Signatures
with Curve-Based Diffie–Hellman Key Pairs”. In: Advances in Cryptology – ASI-
ACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham: Springer
International Publishing, 2017, pp. 273–302

– Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. “Efficient Compression of SIDH Public Keys”. In: Advances in
Cryptology – EUROCRYPT 2017. Ed. by Jean-Sébastien Coron and Jesper Buus
Nielsen. Cham: Springer International Publishing, 2017, pp. 679–706

– Pedro Maat C. Massolino, Joost Renes, and Lejla Batina. “Implementing Com-
plete Formulas on Weierstrass Curves in Hardware”. In: Security, Privacy, and
Applied Cryptography Engineering. Ed. by Claude Carlet, M. Anwar Hasan, and
Vishal Saraswat. Cham: Springer International Publishing, 2016, pp. 89–108

– Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. “µKummer:
Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers”. In:
Cryptographic Hardware and Embedded Systems – CHES 2016. Ed. by Benedikt

264 List of Publications

Gierlichs and Axel Y. Poschmann. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 301–320

– Joost Renes, Craig Costello, and Lejla Batina. “Complete Addition Formulas
for Prime Order Elliptic Curves”. In: Advances in Cryptology – EUROCRYPT
2016. Ed. by Marc Fischlin and Jean-Sébastien Coron. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 403–428

Preprints

– Michael Naehrig and Joost Renes. Dual Isogenies and Their Application to Public-
key Compression for Isogeny-based Cryptography. Cryptology ePrint Archive, Re-
port 2019/499. https://eprint.iacr.org/2019/499. 2019

– Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando
Virdia. Improved Classical Cryptanalysis of the Computational Supersingular
Isogeny Problem. Cryptology ePrint Archive, Report 2019/298. https :

//eprint.iacr.org/2019/298. 2019

– Huseyin Hisil and Joost Renes. On Kummer Lines With Full Rational 2-torsion
and Their Usage in Cryptography. Cryptology ePrint Archive, Report 2018/839.
https://eprint.iacr.org/2018/839. 2018

Other

– David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Joost Renes, Vladimir Soukharev, and David Urbanik. SIKE.
Supersingular Isogeny Key Encapsulation. Submission to [Nat16]. http://sike.
org. 2016

https://eprint.iacr.org/2019/499
https://eprint.iacr.org/2019/298
https://eprint.iacr.org/2019/298
https://eprint.iacr.org/2018/839
http://sike.org
http://sike.org

Curriculum Vitae

Joost Renes

June 2019 –
Postdoctoral Researcher
Digital Security Group
Radboud University, The Netherlands

Summers of 2016 – 2018
Intern
Security and Cryptography Group
Microsoft Research, USA

January 2015 – May 2019
PhD Candidate
Digital Security Group
Radboud University, The Netherlands

September 2012 – July 2013
Master of Advanced Studies (With Merit)
Mathematics
University of Cambridge, United Kingdom

September 2009 – June 2012
Bachelor of Science (Cum Laude)
Mathematics
Utrecht University, The Netherlands

	Acknowledgements
	Introduction
	List of Symbols
	1 Background
	Elliptic and Hyperelliptic Curves
	Algebraic Curves
	Curves of Genus 1 and 2
	Elliptic Curves
	Hyperelliptic Curves of Genus 2

	Curve-based Cryptographic Protocols
	Classical Cryptography
	Diffie–Hellman
	Schnorr Signatures

	Post-Quantum Cryptography
	Supersingular Isogeny Diffie–Hellman
	Ordinary Isogeny Diffie–Hellman

	2 Classical Cryptography
	Complete Addition Formulas for Prime Order Elliptic Curves
	Introduction
	Complete Addition Formulas
	The General Case
	The Case a = -3
	The Case a = 0

	Some Intuition Towards Optimality
	Choice of Y = 0 for Bidegree (2,2) Addition Laws
	Jacobian Coordinates

	Using These Formulas in Practice
	Application to Prime Order Curves
	Interoperability With Composite Order Curves
	An OpenSSL Implementation

	Hardware Implementations
	Magma Verification Code for Parallel add

	muKummer: Efficient Hyperelliptic Signatures and Key Exchange
	Introduction
	High-level Overview
	Signatures
	Diffie-Hellman Key Exchange.

	Algorithms and Their Implementation
	The Field Fp
	The Curve C and Its Theta Constants
	Compressed and Decompressed Elements of J
	The Kummer Surface K
	Pseudo-addition on K

	Scalar Multiplication
	Pseudomultiplication on K
	Point Recovery from K to J
	Full Scalar Multiplication on J

	Results and Comparison

	qDSA: Small and Secure Digital Signatures
	Introduction
	The qDSA Signature Scheme
	The Kummer Variety Setting
	Basic Operations
	The qID Identification Protocol
	Applying Fiat–Shamir
	The qDSA Signature Scheme

	Implementing qDSA with Elliptic Curves
	Montgomery Curves
	Signature Verification
	Using Cryptographic Parameters

	Implementing qDSA with Kummer Surfaces
	Constants
	Fast Kummer Surfaces
	Deconstructing Pseudo-doubling

	Signature Verification on Kummer Surfaces
	Biquadratic Forms and Pseudo-addition
	Deriving Efficiently Computable Forms
	Signature Verification
	Using Cryptographic Parameters

	Kummer Point Compression
	The General Principle
	From Squared Kummers to Tetragonal Kummers
	Compression and Decompression for KSqr
	Using Cryptographic Parameters

	Implementation
	Core Functionality
	Comparison to Previous Work

	Elliptic Implementation Details
	Pseudoscalar Multiplication
	The BValues Subroutine for Signature Verification

	Kummer Surface Implementation Details
	Scalar Pseudomultiplication
	Subroutines for Signature Verification
	Subroutines for Compression and Decompression

	On Kummer Lines with Full Rational 2-torsion
	Introduction
	Notation
	Maps between Kummer Lines
	Models with Rational 2-torsion
	Actions of Points of Order 2
	Hybrid Kummer Lines

	Isomorphism Classes over Finite Fields
	Identifying Kummer Lines
	Canonical Kummer Lines
	Squared and Intermediate Kummer Lines

	3 Post-Quantum Cryptography
	Efficient Compression of SIDH Public Keys
	Introduction
	Constructing Torsion Bases
	Square Roots, Cube Roots, and Elligator 2
	Generating a Torsion Basis
	Generating a Torsion Basis

	The Tate Pairing Computation
	Optimized Miller Functions
	Parallel Pairing Computation and the Final Exponentiation

	Efficient Pohlig-Hellman in mu
	Arithmetic in the Cyclotomic Subgroup
	Pohlig-Hellman
	Windowed Pohlig-Hellman
	The Complexity of Nested Pohlig-Hellman
	Discrete Logarithms in mu
	Discrete Logarithms in mu

	Final Compression and Decompression
	Compression
	Decompression

	Implementation Details

	Computing Isogenies between Montgomery Curves
	Introduction
	Isogenies on Weierstrass Curves
	Montgomery Form and 2-isogenies
	The General Formula
	2-isogenies
	Application to Isogeny-based Cryptography
	Relating 2-isogenies and 4-isogenies

	Triangular Form and 3-isogenies
	The General Formula
	3-isogenies
	Application to Isogeny-based Cryptography

	CSIDH
	Introduction
	Isogeny Graphs
	The Class-group Action
	Construction and Design Choices
	Representing & Validating Fp-isomorphism Classes
	Non-interactive Key Exchange
	Security
	Classical Security
	Quantum Security
	Instantiations

	Implementation
	Performance Results

	Discussion & Conclusions
	Bibliography
	Summary
	Samenvatting (Dutch summary)
	List of Publications
	Curriculum Vitae

